Tải bản đầy đủ (.pdf) (10 trang)

2015)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (9.06 MB, 10 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

xuflr

siru

rUrgoa



2015


s6

454



r4n cni

nn

xArue

rnArue -

<sub>NAM </sub>

ra052



oArus

cHo

rRUNG

Hoc

pxd

rnOruc

vA

rnuruc

xoc co s6



Tru s6: 187B Gi6ng V6, Ha Ndi.


DT Bi6n tdp: (04) 35121607; DT - Fax Ph6t hdnh, Tri su: (04) 35121606


</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

4?'F:'i,
-jl:ii..,. <sub>t:-r,</sub>


a.,- 1 .. ',


.i. .


?


fts6ff

€'E

E

E
EEg € €
E_F <sub>-E-i A_a</sub>


Gi6o

su

Ld Vdn Thi6m



::

(1918

-

1991)




;iti:ir:r.. .l


i'i.',so



LUo.

c

vE

ctnt

rHU'oNG



LE VAN THIEM



Gido su LO Vdn Thiemld Ch0 tich ddu ti0n


.

c0a Hoi Toan hoc Vi0t Nam. Ong ld nhd todn
'hqc..n6i ti5ng, co nhung dong gop lon trong


nghiOn cuu vd ung dung Todn hoc. Ong c0ng
ld mot trong nh0ng nguoi ddt ndn mong cho


'r gido dqc dai hoc

0

nuoc ta, nguoi thAy c0a


nhi6u thd he cdc nhd to6n hoc Vi6t Nam. GidLo


su LO Vdn Thiemluon ddnh sU quan tAm ddc
bi6t ddn viec gidng dqy todn hoc d cdc truong
pnd tnOng. Ong

la

mot trong nhting nguoi
sdng lAp h6 th6ng phd thOng chuy6n todn vd
Tap chi Toan hoc va Tudi tr6.


Gidi thudng

L€

Vdn Thi6m do Hdi Toan hoc
Viet Nam

ddt ra

nhdm g6p phdLn

ghi

nhAn


nh0ng thdnh tich xudt sdc c0a nhung thdy c0


gido vd hoc sinh phd thOng da khdc phuc kho
khan dd dqy vd hoc to6n gr6i, dong vien hoc
sinh di sAu vdo mon hoc co vai tro dac bi6t
quan trong trong su phdt tridn lAu ddi c0a n6n


khoa hoc nuoc nhd. Gidi thuilng LO Van Thi€m
cring ld su ghi nhfn cong lao crla Gido su

ld


Vdn Thi6m, mOt nhd todn hoc l6n, m6t nguoi
thdy da h6t long vi su nghiOp giAo duc.


HFgAI#'ruGLE

YAN

TTITEM

ruA&€

E#E€



HA

HUY

KHOAI (Vi6n

Todn

hqc

Viat Nam)



Tu khi ra dai, Giei thuhng Le Van Thi€m dd nhAn dugc su 0ng h0 to lon vd
tinh thdn vdr vAt chdt c0a cQng ddng toAn hoc vd xA hQi. Dac biQt, sau dip kjt


ni6m 40 ndm Vi6t Nam tham gia Olympic To6n hoc Qu6c t5, mot cuu hQc sinh
chuyen toAn

(di

dd nghi khOng n6u t6n) da 0ng ho Quy gi6i thuo'ng s5 ti6n


1 tyi ddng.


II.

GIAITHU'ONG

LE

VANITI{IEIVI 2014


Hoi Todn hqc Vi6t Nam quydi dinh trao Gidi thudng

L€

Van Thi6m ndm
2014 cho c6c nhd gi6o vd hoc sinh sau dAy:


'1.

<sub>Co gido </sub>

<sub>Nguyen Ngoc </sub>

<sub>Xu&n, </sub>

<sub>THFT </sub>

<sub>chuyen Hodng </sub>

<sub>Vdm </sub><sub>T'hu,</sub>
hloa tsinh



*

Sinh nam 1981.


*

Tham gia dEy ToAn ho'n 1 1 ndm, trong d6 dqy chuy6n Todn 10 ndm.

*

C6ng tdc trong mot truo'ng

gip

nhi6u kho khdn,


a Trong 3 ldn phu tr6ch chinh Doi tuydn dA c6 11 hoc sinh doat gidi Qudc
gia, 2 hoc sinh doat Huy chuong Bac Olympic To6n Singapore mo r6ng.
o Nhidu bdi vi6t, chuyen d6 cho ciic hOi thiio.


o 9 ndm ld gido vi6n dqy gi6i, chi6n si thi dua cdp Tinh nam hoc2013-2014,


giAo vi6n ti6u bidu kh6i THPT chuy6n tinh Hoa Binh.


a Khi ld hoc sinh dd tung doat gidi trong ky thi hgc sinh gi6i Qu6c gia,
2, Vu'ong Nguy0n Thuy Duong,

hoc sinh

THPT

chuydn

LO

<sub>Qu!'00n,</sub>



Dd

Nang


*

Huy chucrng Vdng Olympic 30/4 todn midn Nam.

*

GiAi Ba hQc sinh gi6iToan Qudc gia nam 2013.

*

Gitii Nhdt hQc sinh gi6iTo6n Qudc gia

nim2014.



a Huy chuong Bac Olympic Todn Qu6c td ndm 2014.


3. NguyOn The

Hodn, hoc sinh

THPT

chuy6n

KHTN-DHQG Ha NOi


a Gidi Nhl hQc sinh

gi6iTodn

Qudc gia nam 2014.


*

Huy chuong

Viing

Olympic Todn Qu6c td ndm 2014.
o Guong mat tr6 tieu bidu DHQG Ha NOi.


o Guong

mit

tr6 tieu bidu th0 do Ha N6i ndm 2014.


4.

Trdn

H0ng Qudn,

hoc

sinh

THPT

chuy€n Thdi

Binh



*

GiAi Ba hoc sinh gi6i To6n Qu6c gia ndm 2013.
o GiAi Nhl hQc sinh gi6iToiin Qudc gia ndm 2014.


*

Huy chuong Vdrng Olympic Toan Qu6c t6 ndm 20'14.


5. Vo Quang Hung,

hoc

sinh

THPT

chuyOn ltlguy6n

Binh

Khi0m,


Quang

Nam


o Gidi Nhi Olympic Todn Hd Noi mo rong (2013).


o Huy chuong Bac Otympic Todn Duy6n hdi dOng

bing

Bdc BQ.


r

Giai Nhdt ky thi hoc sinh gioi Qu6c Gia ndm hgc 2013

<sub>- </sub>

2014.


L6 trao gi6i da ctugc td chuc tai cu6c Gdp

m{t

ddu xudn

cta-H6i

Todn
hoc Vi6t Nam

tai

He N0i.

ngiy

71312015.


na.


</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

BHr

rEHn

rinH

r6ns

<sub>ELrEn</sub>



ruu0E

vH

URE

rrunE



$^"ddy

chirng

t6i xin

minh hoa

mQt

sii

bai


to6n

tinh tdng

quen

thu6c

vi

img

dung

cta



chfng.



OBii

todn

l.

Tfnh cac tdng

sau:

A

=

1.2 + 2.3 + ... + n.(n + 1)


B =

1.2.3 + 2.3.4 + ... +

n(n

+

l)(n

+

2)



OBii

torin

2.

Tinh cdc t6ng

sau:


C

<sub>=12 +22 +32 </sub>

+...+

n2

(n

e

N-).


D

=13

+23

+33

I

...+

n3

(n

e

N.).


ViQc

tinh

c6c

tdng

quen thuQc

tr6n khdng kh6


AOi

vOi

c6c

bpn hoc to6n. Ta

c6

ngay

ki5t qu6:


A

=

1.2 + 2.3 + ... + n.(n +

l)



_

n(n+t)(n+z)

<sub>(n </sub>

<sub>e </sub>

<sub>N_) </sub>

<sub>(1)</sub>
-1


B

:1.2.3+2.3.4+

...+

n(n+1)(n+2)


_

n(n

+ l)(n +2)(n

+3)

<sub>/ </sub><sub>n </sub>

<sub>c </sub>

<sub>N* </sub>

<sub>\</sub>



4

\"e1\ I

Q)



NhQn

xdt:

CLc

t6ng

o

bii

to6n

1

vd

bdi tobn 2



c6

mOi

li€n

h0

v6i

nhau,

cU thi5

nhu

sau:

A

<sub>=1.2+23+ </sub>

...+

n.(n+1) =

n(n+1)(n+2)



<+

1(1+l)+2(2+

1)+...+

n.(n+l)




_

n(n+l)(n+2)


3


e

(12

+22

+

...+

n2) +

(l +2 +...+

n)



_

n(n+l)(n+2)


3


^

12

,

.2

,

,

.^,

_n(n+l)(n+2)

n(n+l)


v r TL T...Tr' <sub>- </sub>


3-- 2


_

n(n+l)(2n+l)



6

VAy

C

=12

+22

+...+

n2


*

n(n+I)(2n+t)



6


(n

e

N.)



(n

e

N-).



PHAN

DINH

ANH



(GV THCS

Thqch

Kim, L6c Hd,

Hd

TTnh)


B

<sub>= </sub>

1.2.3 + 2.3.4 + ... + n(n +

l)(n

+

2)



_

n(n+l)(n+2)(n+3)



4



e

(2

<sub>-r)2(2+ </sub>

1) + (3

<sub>- </sub>

1)3(3 + 1)

+...



+(n+l-l)(n+l)(n+

1+1)


*

n(n+l)(n+2)(n+3)



4



e2(22

<sub>-l)+3(32 -1)+...+(n </sub>

+1)[(n

+1)'-1]



_

n(n+l)(n+2)(n+3)



4


a(23

+33

+...+

n3)*(2+3+...+n+l)



_

n(n+l)(n+2)(n+3)



4



e

(13

+23

+33 +

...+

n3

)-

(1

+2 +3 +...+

n

+l)


_

n(n+l)(n+2)(n+3)


e13

+23 +33

+...+nt

:n(n




(n+l)(n



2

YA,y:

D

<sub>- </sub>

13

+23

+33

+...+

n3


=(1+2+...+n)z

(ne



Sau

clAy

li

mdt

vdi img

dung



(4)



que


tr6n:



Bitil.

Cho


S

=

1.2.3

+2.3.4

+...

+ n(n

+1)(n

+2)

(n

e

N-).



Ch{rng

minh rdng

J4S

+T

td

s6

n

nhi€n.



Ldi

gidi.

Theo

kt5t qurb

(2),

ta

c6:



45 + 1

=

n(n

+l)(n

+2Xn

+ 3) + 1


=(nz +3n)(n2

+3n+2)+t


=(nz

+3n+l)2



3Ja5a1

=n2+3n+1eN*


Vav

J+S+t

lds6qrnhi6nv6i

n

eN*.




n+



n+



T



rl'



t<ct


)(r'


9



1)
4

(n+2)(r



4



t

ln@



-=L

<sub>'</sub>


n(n+1)


2
)


ta

chc

\




lXtr



2)



ln




L-I.)



cta


+



+



=



1\


3)


!)l'



n(n+l)



2
+

1)l'



l




(n

e

N.)

(3)



TOAN

HOC



Sd

asa

ta-zorsl

o

q,rdita



</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

Bili

2.

Tim sd ttr nhi€n n bi€t

rdng:



I



Jlr+2'



Lbi

gidi.

Theo

k€t

quA

(4), ta

c6:


11



-:-l


JF

+F Jilri+3t

"



1


Ldi

gi,fii



SO

hinh vudng

c6

c4nh

bing

8

ld

1.2


56

hinh ru6ng

c6 cpnh

bitgT lir

2.3


SO

hinh vu6ng

c6

canh bing 6

ld:

3.4




SO

hinh vu6ng

c6 canh

bing2ld:

7.8
SO

trintr

vudng

c6

cpnh

bing

1

td: 8.9

.


VQy 1u6i 6

vu6ng

d6

co tdt cit



1.2+2.3+...+7.8+

8.g'n":t"

-3

8'9:

l0

=

240



(hinh ru6ng).



Bni 5.

MAt

kh6i

ldp

phtrtmg

c:rj

th€

tich 8

x

8

x
8

:

512

hinh liip phrumg

do'n vi

bdng nhau xdp



khit

nhau.

Hoi kh6i

lap phucmg

dt)

c6 bao

nhiAu

hinh

lqp

phu'crng?


Ldi

gi,fii

(h.2)



SO

trintr

lQp

phucrng

c6

c4nh



bing8lA: 1:13.



SO

hinh

lfp

phucrng

c6

c4nh



bingT

ld:8:23.



SO

ninn l6p phuong c6

cqnh

bing

6

lit:27

:33.



56

hinh lflp phuong

c6 cpnh

bing2ld:343

:73

.



SO

hinh

lpp

phucrng

c6

cpnh

bing

i

ld:

512

:

83.

Vfy

khOi

lip

phuong

<16 c6:


theo(4) l- q 612


13

+23 +33

+...+83

+93

=

I


=

|

=1296



12

)



(hinh

lfp

phuong).



D0

luyQn

tQp, citc

em

c6

th6

Dm

c6c

bdi tf,p

sau:

BAI TAP



1.

Mot

minh lu6i

hinh

cht

nhat c6 kich thu6c


ld

8

x

10

:

80 6

vuOng clon

vi bing

nhau.

H6i


minh 1u6i

<16 c6 bao

nhi6u

hinh

vudng?



2.

MOt

ttrOi

frop

cht

nhat

c6 the

tich ld 8

x

9

x



10:720

hinh

lap

phuong tlon

vi bing

nhau

xi5p


khit

nhau.

H6i

kh6i

hQp

cht

nhat

d6

c6

bao


nhi6u

hinh

l{p

phuong?



2013
2015



20t3


20t5



JF-+-FIT*.-*d



11


22



20t3


2C;|5


2

2013



a

<sub>u+ </sub>

<sub>3g+"'+ </sub>

<sub>r,r1t; </sub>

=

<sub>zol5</sub>



,222

2 2

2013



A I- r


--l


r---vr

<sub>3'3 4'"'' n </sub>

<sub>n+l-2015</sub>


n-l

2013





,^--

n+1-

2Ol5



e

n=2014.




Bni 3.

M\t

ban cr|

vua

<sub>Qu6c t€ </sub>

co 8

x

8:

64

6


vudng

dctn

vi.

Hoi

bdn

cd'vua tt6 crj tdt ca

mi1,



hinh

vudng?

Ldi gidi

(h.1)



S5 ninn

vu6ng

c6

cpnh


bing8ld:1:12.



SO

hinh

vu6ng

c6

cpnh


bingT

l*4:22.



^.(

,.

,


So hinh

vu6ng

c6

canh


bing

6

ld:9:32.

Hink

1


SO

trintr

vu6ng

c6 cpnh

bing}lir

49

:72.


SO

trintr

vudng

c6

cpnh

bing

I

ld:

64

:

82.


.!

Vav

co

tat

ca:


lz

+22 +32

+

...+72+

82 'h"g3) 8(8 + 1X2'8 + 1)
6



=

204 (hinh

vu6ng).



Bni 4.

Mil

n)n

nhd

hinh chir nhdt

c6

kich

thacrc


8

x

9 6

vu6ng

do.n

vi

(g6m

cdc,

vi\n

gach lat


hinh

vu6ng

bing

nhau).

Hoi

nin

nhd

d6 cd

bao
nhiAtr

hinh

vu6ng'l



^

TOnN

HQC



Z

t

<sub>cfrOifta </sub>

<sub>ss </sub>



</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

Hudng

dAn

giei

sf

T[rr

rrturu

Hfir

srfrrlr

Grdt

tlnsru

T$fiH

Lffp

s



TP.

ET

6



'0,


),b



<0



,bc



€r



CEilfi

W[TI$E:[

NArra

2At4

-

2015



+a+b=a+c+z@ffill+u+,



+

u + b

:(,[ai

*.[ni




)'

>,[a

+b

=

{Ai

*,luiV.



Bli

2. a)

Pr (;r+t)(-r+z)(x+3)(.r+6)=3x,



e

<sub>[(, </sub>

+

r)(x

+

o)][(r

+

z)(

x

+z)]=zp



o

(*'

+7

x

+6)(x,

+5-r+

A)

:Zx,



o

(r'

+6x+6)2

<sub>- </sub>

xz =3xz



o

(r'+

6-r +

6)'

=

4*,

*l:::2::2=?r,


Tim duoc

nghiOm

cia phucrng

trinh

dd

cho

ld



x

=

Jlo

-4;

x

=

_Jlo

<sub>-4.</sub>



b)

Tu PT

ZQ+y-xz

<sub>=1a!</sub>


12Q-

ya2y-

yz=

*1

I



=ZpiW-*)-

x+l



x

I\

/\

<sub>' </sub>

<sub>x</sub>



=

a(x

+t)

(z_4

<sub>1+)' </sub>

=(,.

t)


[#-

+

<sub>e- *))=o</sub>



=(x+

1) (,,r+1

*8f,

+4xz)

=O


=

(x+1)

(ax z

-)az

-$yz

q3 x

-2x

+l)=O




>

(x

+t)(zx -t)(zx,

*zx-l)=o

(*)



ciai

PT

(*)

vd

thri

l4i

tathSy



1

3

+Jt7



,,

,

=

<sub>t </sub>

ld

ciic

nghiQm

cua


(

<sub>\/ </sub>

\



thi6t =l

L-O,4ll {+Z,S

<sub>l=0.</sub>



\y

/\y

)



Ddp

s6: (*;

<sub>y) e {(2; </sub>

5);

(-2;

<sub>-5)} </sub>

.


Bii

4.

Ta

c6

0<r<

j.

o"

d6

1

<sub>- </sub>

2x>

0,3x >

0.

Ap

dgng

BDT

Cauchy cho

hai

sd

duong, ta

c6


n_

2-x

,1+2x

_

4-2x

, l+2x



n- r-zxa-- 2p:$t u



(t-zx)+:,t+2x

<sub>I </sub>

<sub>3 </sub>

<sub>r.2</sub>



-

<sub>ZU-[- </sub>

<sub>3* </sub>

=r-

<sub>211-u1+ </sub>

<sub></sub>



u+-_L/

r

_,\,r/r_r\-ro


-r\t-2x-

<sub>'/-3\;-'l- </sub>

<sub>3</sub>


3x

,

l-2x

,

l0-"

f

Zx

t-Zx

.

lO

16


- t-2*-

*

-T'-ll-2*'

3x

-T:T


Dlng

thric xdy rakhi

vd

chi

khi



,3{

=l

<sub>^2* </sub>

<>3

r-

l-2.r<+5,r=l

e.r=l.



t-zx 5x

)



Vdy

gi6

tri

nho nh6t cua bi€u thric

A

h

+.



Bii

s.



u)

<sub>ryla </sub>

ftt,u

c6

LEBH

c6,ntqi E


=>HBE=BHE.Xdt

AEBC

vd LEAB

c6


BEC

(chung), EBC

=

EAB. Do

cl6


LEBC

a'AEAB

(g.g=6dE=[EE.

Suy

ra



BCE=BHE

(=ABE). Vpy tt?

gi6c

HCEB

ndi



ti6p.



b)

,EAEB

ra

co

<sub>:+ </sub>

=

*

(do

LEBC

a

AEAB

<sub>). </sub>

\ait



EB

:

EM

(do

<sub>E lI-trungdii5m </sub>

cria

MB),

do

d,o



r+c

)

0.


r=c<0.

Tt

gid


'-l

<sub>ac + </sub>

<sub>ab </sub>

<sub>=0</sub>



cr=(a+c)(U+c)



fi)t



,>

<sub>0,</sub>


t)



u)'



)=l



ab<


),

b:



-c)


t)



'u)



0=



+ah



,0,



l+(



1


-+



7


-(



:a+



b+,



7)



,a



(t



[;



1



C


+Ct


W




oa



=0,


'-[



t



;*-),



bc+



q



Bdi

1"

Ta

co


=

L--!+2,1=o

=[l)'

*2,

I

[t']-

r

:o



y x

<sub>\y, </sub>

<sub>\y/</sub>



111


abc



1


Do

d6

:=



11




ta

c6:

:+i



ab



)52-621



+0,

y

*0.



\/\



{

<sub>l-[ </sub>

<sub>," </sub>

_

ll=2.1



v/

\"

x)




(,-x=-l;x=



PT

dd cho.


Bii

3.DK:



EM

EC



EA_EM



Ta

c6:


us

nrn,n-ror'

T?8ilrHE[

<sub>S</sub>



</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>

Thdi gian ldm bdi:

150

<sub>Phrtt</sub>



C0u 1

(2

dihd.

Cho bi6u

thirc



P=(rv-,)(#.r)[*)',



v6i

x>0,x*1.



1)

Rtit

gen

P.



')


2) Tim sii

chinh phuong

x

sao

cho

<sub>f </sub>

h

s0


nguy6n.



Ceu 2

Q dih@

1).

Cho c6c

s6

thgc

<sub>x, Y, </sub>

z,

a,

b,

c

th6a

mdn

c6c

di6u

ki€n

<sub>'obc</sub>

*

+!

<sub>+' =l </sub>

vi



o



*b

*'

=

o

.

Chimg minh

ring



xyz



x2 "2

-2


:;+1.


+:r=1-D'

('.'


2)

Tim

c5c

s6

nguy6n

a

d6

phu<rng trinh:


x2

<sub>-(3+2a)x+40-a=0 </sub>

c6

nghiQm

nguy6n.



H6y tim

c6c nghiQm nguYdn <16.


Cflu 3

(1,5

di€m).1)

Cho

hQ phucrng

trinh


(


)x+mY

=3Y11


l*-Y

=m2

-2



v\i

x,y

lir

dn,

m

lir

tham s6.

tim

m

aC

tQ



phucrng

trinh

c6

nghiQm

duy

nh6t

(x;y)

thoa



mdn

x2

-2x-y>0.



2)

Cho

o,

b,

c

la.

d0

d}ri

ei6c thoa mdn di0u kiqn



iri

nho nh6t

cria

bi6u thuc



" b+c-a c+a-b

a+b-c



Ciu

4

(3

diim).

Cho

tam

gigc AB-C

c6

<sub>!a </sub>

g6c



nhen, n6i ti6p

cluong

trdn

(O)

<sub>.(AB < </sub>

AO.

Cic



ti6p tuy6n

vO

(O) t4i B

vi

C cdt nhau

t4i N. Vc


aaj,

dU

song song

vbi

BC. Dudng thdng

MN


cdt

dudng trdn (O)

tqi

Mvd

P.



1)

cho

ai6t

<sub>fir+ftr=fi, </sub>

tintr

<10

ddi doan


BC.



2) chung minh

ring

<sub># =#</sub>



3) Chrmg

minh

ring

ile

,

ounelP

<l6ng

quy.



Ciu

5

(1,5

di€m).1)

Cho cluong

trdn

t6m

O <sub>Q6n</sub>

kinh

1, tam

gi6c

ABC c6

c6c

<linh

A, B, C ndm


trong

ducrng

trdn vd

c6.diQn

tich lon

hon ho{c


bAng

1..

Chung

minh

rdng

tli6m

O

ndm trong


ho{c

ndm

trdn c4nh

cira

tam

gi6c

ABC.



2)

Cho

tfp

6={t;2;3;...;t6\.

HaY

tim

s6

nguydn ducrng

k

<sub>.nhd nh6t sao.cho trong m5i</sub>



tfll

lon

gOm E

phin

tu

c;ua

A

dAut6n tai

hai.s6


phdn

biQt

a,b

md

a2

+bz

li

mdt

sd

nguy6n t6.



NGUYEN VAN XA


(GV THPT Yan Phong s6 2,

Bdc

Ninh)

Sru

tdm

ba canh cria

mQt

tam



2c+b=abc.

Tim

gi5



7

<sub>xe, </sub>

<sub>LECM </sub>



vir

a,EMA c(:

Ciil

<sub>"",, ";: </sub>

chuns, EM

=E-.



EA

EM.




Do

d6 A,ECM

a

LEMA

(c.g.c)

+EMC=EAM.

Mit



iAil=6a,

ne"

ifri=6i



+AD

llBM=5h=614=fiA.



Vpy

tam

gi6c

ABD

c6n tPi.B.


c)

Gqi N=BJ\AD

thl

BJL

AD

tai

N

<sub>= </sub>

N

h



trung

di6m

cin

AD

<sub>=AN=DN=S-. </sub>

y61

6fgy



2


c6

NKttBM

_BM

<sub>-N{=4. </sub>

Ta

c6

ffu=B=+ffy.



JB.

2


^e

frN=!frE

2^

ncn

fifi=frds.

X6t

AA,IN

vd


LMBO

c6

AJN=MOB,

suy ra
AAJN

A

LMOB

(g.g)


./N

AN

.,TN

AN

<sub>-.JN- </sub>

AN


.=

oB=

MB-

2oB=

zMB'

JB-

2MB



laco




NK

<sub>- </sub>

AN

(-l{\=rvr=4{

<sub>+ex=NK=A! </sub>

<sub>.</sub>


MB

2MB\

JBl

2

)



Ti

AK:

NKvd AN

:

DN

<sub>= </sub>

KD

:

3KA,



rnd6

<sub>#=+.</sub>



Bii

6.

Gie

sir

n=ab

(a, b ldc6c

cht

s6, a

I

0)
Theo

diu

bdi, ta

c6:

U+O.aUiaU+(lOa+b)ia+bt

a.


Ddt

b=ma(meN.,mcl0).



Tt

d6

;=10

a+b=l}a+ma

chia h6t

cho zaz.

N€n
1O at ma


=10

i

m>

m

e{t;

Z;

5\.



o

Nliu rr

:

1

thi

b:

a.Ta c6:llat

az*lli

a*a=7.



Dodoa:b:1,tac6

ab=17.



o N6u

z

:

2

rhl b

:

2a.Ta

c6 c6c s6

tZ

zq;

36. Cdc
s6

n;zq;36

th6a man dA bdi.


o Ntiu

z

:

5 ta c6

b:

5a

+bi.5.

NCn b

:

5, suY ra


a:

1.

56

oU=tS

(th6a mdn Ad Ua1l.


Vay c6

nlm

s6 thoa mdn d6u bdi, d6 ld:


ll;

12;

15;24;36.



NGUYEN

OTIC

TAN


gP.

HA

chi

Minh)



.

TONN

HOC



</div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7>

Chui'n

[i


cho lrilhi


tdt ns[i0p illPT

vi

thi uio


Oai hoc


trinlr



Q

hu.ng ta thdy rang trong

di

thi

Dai

hpc cdc ndm


v

<sub>gdn ddy, cac bdi </sub>

<sub>phuong </sub>

<sub>trinh </sub>

<sub>(P7), </sub>

<sub>bdt</sub>


phtrong

trinh

(BPT),

h€

phuong trinh

(HPT)

duoc

gidi

bdng cdch nhdn

luctng hAn <sub>,hW, </sub>

<sub>.ddt,nhdn </sub>

ta


chung

dua

,i

pr,

BPT

tich ld riit phii

bi€n.

Nhiiu


bqn dqc thudng ddt cdu

hdi:

Co

sd

dO c6 cdch

gidi


nhu vQy ld

gi?

De

giilp

cdc em hoc sinh c6 co sd

dii


tim duqc

ldi gidi

bdi

todn bdng cach nhdn luqng



li€n

hqp, c[ing nhu

d6n

dau

cdu,v€

PT, BPT,,HPT




trong d€

thi

THPT

<sub>Qu6c </sub>

gia

sdp

tbi

bdi

viAt. ndy

trinh

bdy

cct

sd dd

c6 ldi giai

cho cac cdu

vi

PT,
BPT,

HPT

trong.di

thi

Dai

hoc cdc ndm

trudc

ddy
th6ng quc mQt s6

thi

dq sau


Thi

dy

1.

(EH

kh6i

A

<sub>- </sub>

2014)

Gidi he

phaong



Cdch 2. Ta

c6:


(1)e

<sub>li(r:fl=tz-x,lrfi</sub>



)

y(12-

*')=Aa-2ax.tD1

+

x'?(tz-y)



o

lTy

<sub>-144 </sub>

+24x$2J

<sub>-12x2 </sub>

= 0


e

llxz -

zax

<sub>"lnj </sub>

+

D(12

<sub>- </sub>

y)

=

o


<+

l2(x

-JO))'z

<sub>=o </sub>

<+

*=,12-t



[x>o



o<

<sub>' </sub>



|.Y

=

12-

x2'



Thay y

<sub>=12- </sub>

x2

vio

PT

(2)

ta

iluoc


x3

<sub>-8x -l=2JT6-x'z</sub>



<> x3

<sub>-8x </sub>

<sub>-z </sub>

=z(Jto-V

-t)




<+(.r-3)(,r2+3x+1=p\



'

Jlo-

xz

+l



*

(,,-3)[(

x2

+3x

+l

y*Sf.l

=

o


' 'L'

'

Jto-xz

+tl



<)

x=3>

<sub>J </sub>

=3

.


Thu lai

ta

dugc

nghigm

cira

HPT

U

(:;:).



Cach 3. DAt

;

<sub>= </sub>

(x;

Jn:F),i,

=

(,ln

t

;

<sub>Ji).</sub>



ra

c6



l;l

=lil=

Jo



Pr

(1)

ez(x.{rz-y

+$@-q)=z.tz


-, -, -r2


e2.a.b=a

+b'

<sub>e\a-b) =0e </sub>

a-

b


*x-JO).rl'>o



rhay

y

<sub>=12- xz"uY#bjf, </sub>

u-n"


xj_gx_l=2,1T0_x,



<)

x3

-8x-l

<sub>= </sub>

z(Jio-7-t)




<+(x-3)(x:*:r*l;=ffi


. t

2(x$\

1


e(x-s)l

<sub>' 'L' </sub>

(x:+3x+

l)+$!

<sub>' </sub>

l=6



Jl0-xz+l-l



ta nrn,n-roru,

T?EI#8E

<sub>5</sub>



Lrri

gi,rti


Cach

t.sr,

[-2$

t

x

<2Ji


-vuLtt

t'-tt'



l, <y<12'

laco:





.[*=*?,a,p@:fl=':+t-Do

d6


x,!tz-

y

+r5(u:*t)



. x2

+12-

y

<sub>*y </sub>

+12-

<sub>x2 _ </sub>

<sub>r,</sub>



22--'



vdv

i'J--\

PT

(1)

e

"

l'=

o


ly=12_x2'




Thay y

<sub>=12- </sub>

x2

vdo

PT

(2)

ta clugc:
x3

<sub>-8x </sub>

_

t=2,[19-*z



<=) x3

<sub>-8.r- </sub>

z+z(t-JiO-r,

<sub>)= </sub>

o


(

<sub>z(x+3) </sub>

<sub>)</sub>



<+

(-r-:)l

\ /(

x2

+3x

+;

a-

-1]

<sub>l= </sub>

0

(3).


1+J1o-x2

<sub>)</sub>



Do

x >

o

suy

ra xz

+3x

+11-2('I1)-

,

g.
1+

J10-

x2
NCn

PT

(3)

<+

x:3

.YOi

x

=3

ta

<sub>dugc y = </sub>

3.

Vfly

h0

phuong trinh

c6 m6t nghiCm

ta

(:;

:).



</div>
<span class='text_page_counter'>(8)</span><div class='page_container' data-page=8>

<>J=3-y=3.



Thir lai

ta

dugc

nghiQm cira

HPT

U

(:;3)

.


t

Binh

luQn: Qua ba"c6ch

gi6i

tr6n

ta

th6y

ring,


phuong

trinh

(l)

c6 th6

tlugc

su

lf

bang nhi6u crich

kh6c nhau, nhung sau

khi

thay y=12-xz

viro
phucrng

trinh

(2) ta dugc PT


p _gy_1=2[g_yz

(3).


Thi

PT (3) ttuqc gi6i

bing

c6ch nhdn

luqng

li6n hqp,
d4t nhAn tu chung dua v6

tich

ld tlon gian nhat.


Tuy

nhi6n

cin cir

niro

d6

ta

bii5n

d6i

PT


p

_gy-1=2$$*yz

(3)

thdnhPT



xr-8x4:2([6A-t)t



Xin

dugc

trinh

bdy

c[n

cf

d6 nhu sau:


-

Ddu

ti6n ta

dirng

M6y tinh b6

flii

(MTBT)

dC

tht


nghiQm, ta

th6y

PT (3)

c6 hai

nghiQm

ld x=-1

vd

x=3.

Tuy

nhi6n

ta chi

quan

tdm

t6i

nghiQm

x:3



md

kh6ng

quan t6m

t6i

nghiQm

x=-1

vi di6u

kiQn


c6

nghi6m

li

x>0

.

Nhu

vfy

ta

phii

ldm xudt

hiQn

d4i

lucrng

x-3

<16

dat

nh6n

tu chung,

nghia

ld

ta


phii

dua

PT (3)

.r,4

dang

(x-a)7(x)=o.

Mu6n vfly



ta phAi

tim s6

a

sao cho bi6u

thtc

ZJTO

<sub>- </sub>

x'z

<sub>- </sub>

a


sau

khi

nhdn

lugng li6n hqp xu6t

hiQn

dai

luqng



x=3.



- Do

PT (3)

chi

c6 rnQt nghiQm

x=3 n6n

cdch dcrn


gi6n nh6t dC

tim

a

ld ta

thay

x=3

vdo PT



2[g-x2

-a=0

ta

tim

dugc

a=2.

(Luu

y

ld

do PT

(3) c6 duy nh6t m6t nghiQm nguy6n n6n ta

mdi

ding


c6ch

tr6n,

nt5u

PT (3)

c6

hai

nghiQm nguy6n

ho{c


kh6ng

nguy6n

ta

sE

ding c6ch

kh5c

sE

dugc trinh



bdy 6 phdn sau).


- Do tl6 ta c6

PT

x3

<sub>-8x-1 =2JT6:P</sub>



<+x3-8x-3=zJtO-x'-2.



Thi

dqt

2.

(DH

kh6i

8-2014)

Gidi

h€

phactng

trinh



f(t-.v,1/,.-,

+x:z+(x-y-t).F

(1)


fzy,

-:r+6)+

t

=ZJi2

-

J4x

-srt

Q)


Ldi

gidi.

DK:

(*).

Ta

c6

:


o

V6i

y = L, thay vdo

PT (2)

ta

tlugc

:


9-3x=0<>x=3.



o

<sub>V6i </sub>

y

<sub>= </sub>

x-1,

DK

(*)e

1 <

x

a2.PT

(2)

trd





thdnh:2x2-x-3=Jr-e

2(x2

<sub>- </sub>

x

<sub>- </sub>

1) +

(x

-r-

J2

<sub>- </sub>

x)

=

o


r

<sub>1 </sub>

<sub>)^</sub>



o(.r2

<sub>. </sub>

_x_l)l

<sub>,\ </sub>

2*-.

_

t=n




x-l

+,12-x

<sub>)</sub>



<> -r2

--r-1 -

0

:--,

'-)^- 2

<sub>" </sub>

=

I

tJ5

'


Tt

d6

ta

tim

dugc

nghiOm

ctra hQ

phuong

trinh


td:

(3rr;,I

l*-6,-tI6)



\-

2

)



l

Binh lufln:



o

Khi

dgc

ldi

gi6i

HPT h6n,

chlc chin

nhi6u ban sE


d[t

c6u

h6i:

"Co

sd ndo AC Uii5n

d6i

PT (1) thenh PT


(3)?".

Sau il6y ld mQt cSch tt6

tri

ldi

c6u

h6i

tr6n.
-

Thay

x=3

vdo PT

(l)

tadugc:



(t-y)J:-y

+3=2+(2-y)Jy

(a).

Dirng

MrBr


tim

dugc nghiQm ctra

PT

(a)

ld

y=t

vit

y=/

.


-

Thay

x=4

vito PT (1) ta dugc:


(r-r)!4_)

+4=2+(z-y)J,

(b).

Dune

MrBr


tim

dugc nghiQm

cta

PT

(b)

ld

y=I

vd

y=3

.


-

Nhu v4y

h

rhdy

ring

v6i

x=3 hoic

x=4

thi

PT


(1)

1u6n 1u6n c6 nghiQm

y=l

. Ta dq do6n PT

(1)

c6

th6 dua dusc v6 apng

<sub>(y-1)/(r;r)=o </sub>

.


-

Mat

kh6c

ta thiy ring

khi x=3

thi

PT (1)

c6
nghiQm

y=2 .Y-hi

x=4

thl

PT

(1)

c6 nghiOm

y=3.


Nhu

vfy

m6i

quan hQ

gita

x

vit

y

ld y=l"-1.

7u

dqr do6n

PT

(1)

c6

ttr6 dua

dugc

vd

dang


(x-y-t)s(x;r)=o

.


-

Tri

c6c nhfln x6t tr€n, ta dU do6n

rlng

PT (1) c6 th6
dua dusc vc aang

(r

-

t)(x

<sub>-, </sub>

<sub>-r)n(x;r) </sub>

= o .


Tri

d6

cho

ta dinh hu6ng

eC Uirin

d6i

PT (1)

thanh

Pr

(3).


-

Tuy

nhi6n, ntiu bdi niro cflng

phii

lQp lufln nhu h6n

thi

sE r6t m6t

thdi

gian, c6 16

t5t

hcrn h6t

le

c6c ban


phii

chiu

kh6 gi6i

nhiAu

bdi

tQp, d6

bi6n

k!

ndng
thdnh

ky

x6o,

sao

cho

"nhin

vdo

bdi

todn

ta

thiy"


ngay c6ch gi6i.


r Ngodi

ra, trong

khi

gi6i HPT tr6n

thi

d6n d6n PT:


2*z-*4=$-i

19.


Ta c6: PT (4) tuong duong

v6i



[v=o


lx -2y

>0




lax

-5y

-3

>

0


pr

(1)

o(1-y)(,*E-y-r)+("r-y-t)(t-fr)=o

1a;


(



,---L)=o



t-v)(x-v-t)t51;I



t+ly)



l=l


!:x-I'



<+(


*[



,.

TONN

H9C



</div>
<span class='text_page_counter'>(9)</span><div class='page_container' data-page=9>

z(x2

<sub>-x-t)+(x:-Jf-)=o </sub>

(5)
C6c ban sE d6t c6u

h6i

tl6u

ld co

sd AC UlCn

d6i

PT


(4)

thenh

PT (5).

Xin

dusc

hinh

bdy co

sd

d6

nhu


sau:


- DAu ti6n ta dirng

MTBT

dC

thir

nghiQm, ta th6y PT

(4)

c6 nghiQm (gAn dung)

ld

x=1,618033989...Ni5u

nhAm nhanh ta th6y

ring

x=1,6180:agSg...=l+J5

.


2

Me

x=1+6

ld nshidm cria

PT

fl-x-l=0

ho[c

ld


2"



nghiQm

PT

<sub>-xz+x+1=0. </sub>

Nhu

vQy

chring

ta

ph6i
ldm xu6t hiQn dai

lugng

fl-x-l

ho[c

<sub>-*+x+l </sub>

d6

d[t

nhan tu chung.


- Do

PT

(4) chi

chria mQt cdn

thirc

n6n

ta

lQp lufln

ngin

ggn

nhu

sau:

Trong

PT

2*z-v-3=$4

ta
cAn

hm

xu6t hiQn bi6u

thirc

x2

-x-l

OC e6t

nlan tu


chung n6n ta bir5n AOi

pnan

2P-x-3

trudc vd

lim



xu6t hiQn

2(xz-x-l),

nghia

ld

ta

bi6n

d6i

PT
2az

<sub>-y-3=Q-a </sub>

thinh

2(*-x-t)+(x-t-,0-x)=o

.

Nhmg

ntiu PT

chria nhi6u

hon

mQt

cin

thric

thi

ta
kh6ng thd ldm nhu tr6n dugc.

Xin

trinh

bdy phuong
ph6p t6ng qu6t nhu sau:


-

Trong PT

(4)

chfta

.84,

khi

d6 ta phdi th6m bort


mQt i14i

luqng

a

, nghia

ld

ta

biiln

OOi

<sub>1D-x </sub>

tnanfr


Q-x-a

sao

cho

sau

khi

nhdn

lugng

1i6n

hqp

thi


xu6t hi6n bi6u

thric

xz

-x-l

ho(c

<sub>-fl </sub>

+x+1

.

Luu

f


ld biilu thric

cAn ,,rr6t

hi6n ld

bQc

hai

n6n

a

khdng
ph6i ld mQt si5

md

a

phbic6 dpng

d=ax+b

.


-

Khi

d6


Jz-r

<sub>-a=Jz-, </sub>

-(o,r+b)=



=9+\



-'-'"/



"lr-x+(ax+b)



Sau

khi

nh6n 1i6n

hqp

xong xudt hiQn

<sub>-axz </sub>

ndnta



sE

cho

2-x-(ax+bf

<sub>=-vra*a1</sub>



e(ax+b)z

= xz

<sub>-2x </sub>

+1

>

ax+b= x

*l

.


- Nhu

vfy

ta phii th6m

vot

m6t dai luqng

ld x+l



vdo

pT 2xz_y_3=E_x

.


- Voi

phuonC ph6p ti5ng qu6t

tr6n,

c5c ban

c6

th€
gi6i ttuqc c6c PT, BPT chila

cln

thric bdng c6ch
nhAn luqng li6n hgrp mQt c5ch dE ddng.


- D6n d6y c6 16 c5c b4n sE th6y

ring

d6

giei

mQt PT
chria cdn

thirc

bing

cdch nhdn

luqng

li6n

hqp

don

giin

nhu th6 ndo.


Thl

dyt

3.

(DH

kh6i

D

<sub>- </sub>

2014)

Giai

bdt phutrng




trinh

;

(.r +

t)'[i

+2

+(x

+6),[i +7

> rz +7 -r + t

2

(l).



Ldi gidi.

EK:

x

>

<sub>-2.</sub>



V6i

di6u

kiQn

tr6n,

BPT (1) tuong

duong

v6i


(x

+

r)(J

x.+

z

<sub>- </sub>

2) +

(x

+

6)(,En

<sub>- </sub>

3)



-(x'z+2x-B)>0



<> ( <sub>-r </sub><sub>+ </sub>

l\-E-

<sub>+ </sub>( <sub>.r + </sub>



o\-E-\

/Jx+2+2

\

/Jx+1+3



-(x-z)(x+4)

> o


<+(*-zt[#

_

+4

<sub>--(..++)l </sub>

>oe)



'

'l,lx+2+2

,lx+1

+3

'

'-l



(^



Do

x)

<sub>-2 </sub>

n€n

)x+2-0.

suuru



[x+6>0

"


x+l

x+6 / ,\

x+2



_r r,-I4r=_



Jx+2+2'

Jx+1

+3

\^

'

'/

Jx+2+2



x+2 x+6 x+6

I

^


--r---/ll

2

'



Jx+1

+3 2

Jx+2+2



Do

cl6

BPT

(2)

a

x-2

< 0

<>

x<2.



So

s6nh

v6i

tli6u

kiQn

ta

dugc

nghiQm cira

BPT


ld

<sub>-2<x<2.</sub>



t

Binh

luQn: Ta th6y

ring

bu6c

bitin d6i

BPT

(1)
thdnh BPT


(x +

r)(,{i

+Z <sub>- </sub>z) + (x +

e)(8

+f

4)

<sub>- </sub>(xz + 2 x <sub>-8 </sub>


) >

0

(3 )

h

m6u ch6t cria bdi gi6i.

Vfly

co s& 6 tl6u d6 c6 dugc
bu6c biiSn dOi trenZ

Xin

trinh

bdy

nhu

sau:

Diu

ti6n

ta

thay d5u "

)

"

bdi

d6u

":".

Nghia ld

ta thay BPT

bing

PT. Dung

MTBT

d6

tim

nghiQm ta th6y PT


(x+t).{i+T+(x+6)Jii=xz

+7

x+12

c6

mQt
nghiQm

duy nh6t

x=2.

Nhu vfly

ta

ph6i

ldm

xu6t
hiQn

dai lugng

x-2

A6 Aat nnan

trl

chung.

Khi

tl6 ta
can

tim hai sri

a

vd

<sub>B </sub>

sao cho

HPT

<sub>{E-"=o</sub>



llx+l

-B=0



c6 nghiQm

x=2

.

Thay

x=2

viro hg trCn ta

tim

dugc


1"^=:

Ddy chinh ld co so o,i ui6n aoi

ser

1t;



lF=3



thenh BPT (3).


Thi

d1r

4. (DH

khii

B

<sub>- </sub>

2013)

Giai

hQ phao'ng

trinh



l2rt

+

yt

<sub>-3ry </sub>

+3x

<sub>-2y </sub>

+l=0

(1)
1


\+r'

-r'

+x+4=,{Tx+y

+,tx;$

Q)'



</div>
<span class='text_page_counter'>(10)</span><div class='page_container' data-page=10>

Liri

sidlr".

<sub>"'-' </sub>

{2x+r

> o


l.x+4y

>

0'



Ta c6:

PT (1)

tucrng <luong

vdi



[--.-o-.,

r


(x+r-y)(zx+

I

<sub>-y) </sub>

=

o

<)

l'

-

"^

:'

.


LY='+1



o

Vdi

<sub>Y </sub>

<sub>=2x* </sub>

1 <sub>, </sub>thaY

vio

PT

(2)

ta

clugc

:


.[4x

+

|

+

<sub>Jrx </sub>

+

4

=

3-3x

(3).


Ta

c6

<sub>/(x) </sub>

=

J4x

+r

+

<sub>Jgx </sub>

+

4

tl6ng

bir5n.


s(r)=3-3x

nghfchbi6n'



NOn

PT (3)

ntiu c6

nghiQm

thi

ld

nghiQm duy


nrr6t.

Ua /(o)=s(O)=3

nen PT (3) c6

nghiQm

duynh6t

x=0=)=1.



o

V6i

y

=

x+1,

thay vdo

PT

(2)

ta <lugc

PT



$i+l+J5x+4

=3x2

-x+3

(4)


<=

[#;;f

<sub>-(.r </sub>

+

r)]

*

<sub>[Js, </sub>

+a

<sub>-(x </sub>

+

z)]



=3(x-1)x

(s)



^

-x2+x -

-xz+x

_

-al-:_,\



-.l3rTT+(x+l)

'

,[ix+++(x+2)

-\"


o(

.c

<sub>-."\( </sub>

J-*..:l--

*:) =

o


'

'IJ3r*l

+(x+l)

<sub>^l5x+4+(x+2) )</sub>



lx2-x=0



el

" l

II

- <sub>I </sub> - rI-A


LJ3*+t

+tr+l)

'

..6Lx+4

+(x+2\



T



e

x2

<sub>-x=o<+l </sub>

'[x=l'

*=o



Tt

d6

ta

tim

cluqc nghiQm cira

hQ

phucmg

trinh


u

(o;t),(t;z).



0 Binh lu$n:

Dring

MTCT

di5

tim

nghiQm, ta th6y
PT (4) c6 hai nghiQm

ld

r=0

vi

x=1

.

Md

x=0 vd



x=l h

nghiQm

ctra

PT

fl-x:O

ho{c

PT


-x2+x:0.

Tt

d6 ta c6 co

sO <tC Uitin

d6i PT

(4)
thAnh PT (5)

bing

mQt trong hai c6ch nhu sau

o

Cdch 1.

Ta

cAn

tim

hai

sii

a

vd

<sub>B </sub>

sao cho PT


.$x+t-(ax+f)=O 61

c6 hai

nghiQm

ld x=0

vd

x=l

.

Thay

x=0

vd .r=1

vlro PT

(6)

ta dugc hQ PT


theo

a

vd

<sub>B.Gi6i </sub>

HPTtheo

a,

<sub>B </sub>

ta

dugc

a=1



vd p=1.

Tuong

t.u

ta

cdn

tim hai s5

a

vd

b

sao


cho

PT

$*aa-(ax+b)=g

0)

c6 hai nghiQm ld


r=0

vd

r=1.

Thay

x=0 vli

x=l

viro

PT (7)

ta


tluqc

hQ

theo

a

vd

b.

Gi6i

h0

HPT

theo

a

,

b

ta


dugc a=1 vir b=2

.



o

Cdch2.Tac6



$r

ar

<sub>-(a </sub>

x+

A=-:(?!:

P):,



-'

$x+t+(a**9)



Cho

3;+1-(

ax+

p)2 =-1s2

+.r

ta dugc


(ax+

<sub>B)' </sub>

=x2

+2x+l+qx+

B

=x+1

.


(Luu

y

ld

cho 3x+7-(ax+Bf

=-*'**

chir

kh6ng
ph6i

cho

3x+l-(ax+Pf

=x'-*1.



Tucrng t.u ta c6


5

* +4

<sub>-(,x </sub>

+

d=Y!,

't

(?'.bl,



.7sx+++(ax+b)'



Cho

5x+4-(

ax+b)' =-vz

'"x

ta du-o. c
(ax+b)2

=7'

a4x+4>ax+b=x*2

.


Chirng

tdi

hy

vgng

ring

qua nhirng

thi

du

vd



nhimg

binh lufln tr6n

phAn

nio

sE

girip

c6c

em

hgc

sinh

t.u

tin khi g{p

c5c

bdi

to6n v€,PT,

BPT,


HPT trong

ki

thi

THPT Qu6c Gia

sdp

t6i.

DC

thdnh thao

phucrng

ph6p nh6n

lugng

li6n

hqp,



c6c em

hdy

thir ldm

c6c

bdi

tflp

sau


BAI

TAP



Gi6i

c6c

PT,

BPT, HPT

sau


t.

31,1V +

JV

+8

-z

=

Jx\r5.



2.

J,

a2',

J5*

a

+zJBx

+9

=

4x2.



n-1

-2


:.

Vzx-S *

rl-f

=

*.



4.

6x3

<sub>-5xz </sub>

-l}x-tO+JZx-z+Jlx+z

<0.



s.

z.lr'**ll

+_r2

_4<-L.



1l x+4

,l*r+l



6.

<sub>JTx+4-zJ2-x </sub>

rH.


J9x2 +16



(_



,

.

),tiltn

+ t=

4(x

+

t)'

+

Ji

^[*

+,



(fi

+a

+,tS

+5 =

J2

x, + J-2 xz +

4JIy

4A

.


N

TO6N

HOC




I

icruaEA

<sub>s"tttt-"'o</sub>



-

|

Jix,

+txylry

+,{T*TIxyTff

=3(x+y)


.i.<_


</div>

<!--links-->

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×