<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>
xuflr
siru
rUrgoa
2015
s6
454
r4n cni
nn
xArue
rnArue -
<sub>NAM </sub>
ra052
oArus
cHo
rRUNG
Hoc
pxd
rnOruc
vA
rnuruc
xoc co s6
Tru s6: 187B Gi6ng V6, Ha Ndi.
DT Bi6n tdp: (04) 35121607; DT - Fax Ph6t hdnh, Tri su: (04) 35121606
</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>
4?'F:'i,
-jl:ii..,. <sub>t:-r,</sub>
a.,- 1 .. ',
.i. .
?
fts6ff
€'E
E
E
EEg € €
E_F <sub>-E-i A_a</sub>
Gi6o
su
Ld Vdn Thi6m
::
(1918
-
1991)
;iti:ir:r.. .l
i'i.',so
LUo.
c
vE
ctnt
rHU'oNG
LE VAN THIEM
Gido su LO Vdn Thiemld Ch0 tich ddu ti0n
.
c0a Hoi Toan hoc Vi0t Nam. Ong ld nhd todn
'hqc..n6i ti5ng, co nhung dong gop lon trong
nghiOn cuu vd ung dung Todn hoc. Ong c0ng
ld mot trong nh0ng nguoi ddt ndn mong cho
'r gido dqc dai hoc
0
nuoc ta, nguoi thAy c0a
nhi6u thd he cdc nhd to6n hoc Vi6t Nam. GidLo
su LO Vdn Thiemluon ddnh sU quan tAm ddc
bi6t ddn viec gidng dqy todn hoc d cdc truong
pnd tnOng. Ong
la
mot trong nhting nguoi
sdng lAp h6 th6ng phd thOng chuy6n todn vd
Tap chi Toan hoc va Tudi tr6.
Gidi thudng
L€
Vdn Thi6m do Hdi Toan hoc
Viet Nam
ddt ra
nhdm g6p phdLn
ghi
nhAn
nh0ng thdnh tich xudt sdc c0a nhung thdy c0
gido vd hoc sinh phd thOng da khdc phuc kho
khan dd dqy vd hoc to6n gr6i, dong vien hoc
sinh di sAu vdo mon hoc co vai tro dac bi6t
quan trong trong su phdt tridn lAu ddi c0a n6n
khoa hoc nuoc nhd. Gidi thuilng LO Van Thi€m
cring ld su ghi nhfn cong lao crla Gido su
ld
Vdn Thi6m, mOt nhd todn hoc l6n, m6t nguoi
thdy da h6t long vi su nghiOp giAo duc.
HFgAI#'ruGLE
YAN
TTITEM
ruA&€
E#E€
HA
HUY
KHOAI (Vi6n
Todn
hqc
Viat Nam)
Tu khi ra dai, Giei thuhng Le Van Thi€m dd nhAn dugc su 0ng h0 to lon vd
tinh thdn vdr vAt chdt c0a cQng ddng toAn hoc vd xA hQi. Dac biQt, sau dip kjt
ni6m 40 ndm Vi6t Nam tham gia Olympic To6n hoc Qu6c t5, mot cuu hQc sinh
chuyen toAn
(di
dd nghi khOng n6u t6n) da 0ng ho Quy gi6i thuo'ng s5 ti6n
1 tyi ddng.
II.
GIAITHU'ONG
LE
VANITI{IEIVI 2014
Hoi Todn hqc Vi6t Nam quydi dinh trao Gidi thudng
L€
Van Thi6m ndm
2014 cho c6c nhd gi6o vd hoc sinh sau dAy:
'1.
<sub>Co gido </sub>
<sub>Nguyen Ngoc </sub>
<sub>Xu&n, </sub>
<sub>THFT </sub>
<sub>chuyen Hodng </sub>
<sub>Vdm </sub><sub>T'hu,</sub>
hloa tsinh
*
Sinh nam 1981.
*
Tham gia dEy ToAn ho'n 1 1 ndm, trong d6 dqy chuy6n Todn 10 ndm.
*
C6ng tdc trong mot truo'ng
gip
nhi6u kho khdn,
a Trong 3 ldn phu tr6ch chinh Doi tuydn dA c6 11 hoc sinh doat gidi Qudc
gia, 2 hoc sinh doat Huy chuong Bac Olympic To6n Singapore mo r6ng.
o Nhidu bdi vi6t, chuyen d6 cho ciic hOi thiio.
o 9 ndm ld gido vi6n dqy gi6i, chi6n si thi dua cdp Tinh nam hoc2013-2014,
giAo vi6n ti6u bidu kh6i THPT chuy6n tinh Hoa Binh.
a Khi ld hoc sinh dd tung doat gidi trong ky thi hgc sinh gi6i Qu6c gia,
2, Vu'ong Nguy0n Thuy Duong,
hoc sinh
THPT
chuydn
LO
<sub>Qu!'00n,</sub>
Dd
Nang
*
Huy chucrng Vdng Olympic 30/4 todn midn Nam.
*
GiAi Ba hQc sinh gi6iToan Qudc gia nam 2013.
*
Gitii Nhdt hQc sinh gi6iTo6n Qudc gia
nim2014.
a Huy chuong Bac Olympic Todn Qu6c td ndm 2014.
3. NguyOn The
Hodn, hoc sinh
THPT
chuy6n
KHTN-DHQG Ha NOi
a Gidi Nhl hQc sinh
gi6iTodn
Qudc gia nam 2014.
*
Huy chuong
Viing
Olympic Todn Qu6c td ndm 2014.
o Guong mat tr6 tieu bidu DHQG Ha NOi.
o Guong
mit
tr6 tieu bidu th0 do Ha N6i ndm 2014.
4.
Trdn
H0ng Qudn,
hoc
sinh
THPT
chuy€n Thdi
Binh
*
GiAi Ba hoc sinh gi6i To6n Qu6c gia ndm 2013.
o GiAi Nhl hQc sinh gi6iToiin Qudc gia ndm 2014.
*
Huy chuong Vdrng Olympic Toan Qu6c t6 ndm 20'14.
5. Vo Quang Hung,
hoc
sinh
THPT
chuyOn ltlguy6n
Binh
Khi0m,
Quang
Nam
o Gidi Nhi Olympic Todn Hd Noi mo rong (2013).
o Huy chuong Bac Otympic Todn Duy6n hdi dOng
bing
Bdc BQ.
r
Giai Nhdt ky thi hoc sinh gioi Qu6c Gia ndm hgc 2013
<sub>- </sub>
2014.
L6 trao gi6i da ctugc td chuc tai cu6c Gdp
m{t
ddu xudn
cta-H6i
Todn
hoc Vi6t Nam
tai
He N0i.
ngiy
71312015.
na.
</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>
BHr
rEHn
rinH
r6ns
<sub>ELrEn</sub>
ruu0E
vH
URE
rrunE
$^"ddy
chirng
t6i xin
minh hoa
mQt
sii
bai
to6n
tinh tdng
quen
thu6c
vi
img
dung
cta
chfng.
OBii
todn
l.
Tfnh cac tdng
sau:
A
=
1.2 + 2.3 + ... + n.(n + 1)
B =
1.2.3 + 2.3.4 + ... +
n(n
+
l)(n
+
2)
OBii
torin
2.
Tinh cdc t6ng
sau:
C
<sub>=12 +22 +32 </sub>
+...+
n2
(n
e
N-).
D
=13
+23
+33
I
...+
n3
(n
e
N.).
ViQc
tinh
c6c
tdng
quen thuQc
tr6n khdng kh6
AOi
vOi
c6c
bpn hoc to6n. Ta
c6
ngay
ki5t qu6:
A
=
1.2 + 2.3 + ... + n.(n +
l)
_
n(n+t)(n+z)
<sub>(n </sub>
<sub>e </sub>
<sub>N_) </sub>
<sub>(1)</sub>
-1
B
:1.2.3+2.3.4+
...+
n(n+1)(n+2)
_
n(n
+ l)(n +2)(n
+3)
<sub>/ </sub><sub>n </sub>
<sub>c </sub>
<sub>N* </sub>
<sub>\</sub>
4
\"e1\ I
Q)
NhQn
xdt:
CLc
t6ng
o
bii
to6n
1
vd
bdi tobn 2
c6
mOi
li€n
h0
v6i
nhau,
cU thi5
nhu
sau:
A
<sub>=1.2+23+ </sub>
...+
n.(n+1) =
n(n+1)(n+2)
<+
1(1+l)+2(2+
1)+...+
n.(n+l)
_
n(n+l)(n+2)
3
e
(12
+22
+
...+
n2) +
(l +2 +...+
n)
_
n(n+l)(n+2)
3
^
12
,
.2
,
,
.^,
_n(n+l)(n+2)
n(n+l)
v r TL T...Tr' <sub>- </sub>
3-- 2
_
n(n+l)(2n+l)
6
VAy
C
=12
+22
+...+
n2
*
n(n+I)(2n+t)
6
(n
e
N.)
(n
e
N-).
PHAN
DINH
ANH
(GV THCS
Thqch
Kim, L6c Hd,
Hd
TTnh)
B
<sub>= </sub>
1.2.3 + 2.3.4 + ... + n(n +
l)(n
+
2)
_
n(n+l)(n+2)(n+3)
4
e
(2
<sub>-r)2(2+ </sub>
1) + (3
<sub>- </sub>
1)3(3 + 1)
+...
+(n+l-l)(n+l)(n+
1+1)
*
n(n+l)(n+2)(n+3)
4
e2(22
<sub>-l)+3(32 -1)+...+(n </sub>
+1)[(n
+1)'-1]
_
n(n+l)(n+2)(n+3)
4
a(23
+33
+...+
n3)*(2+3+...+n+l)
_
n(n+l)(n+2)(n+3)
4
e
(13
+23
+33 +
...+
n3
)-
(1
+2 +3 +...+
n
+l)
_
n(n+l)(n+2)(n+3)
e13
+23 +33
+...+nt
:n(n
(n+l)(n
2
YA,y:
D
<sub>- </sub>
13
+23
+33
+...+
n3
=(1+2+...+n)z
(ne
Sau
clAy
li
mdt
vdi img
dung
(4)
que
tr6n:
Bitil.
Cho
S
=
1.2.3
+2.3.4
+...
+ n(n
+1)(n
+2)
(n
e
N-).
Ch{rng
minh rdng
J4S
+T
td
s6
n
nhi€n.
Ldi
gidi.
Theo
kt5t qurb
(2),
ta
c6:
45 + 1
=
n(n
+l)(n
+2Xn
+ 3) + 1
=(nz +3n)(n2
+3n+2)+t
=(nz
+3n+l)2
3Ja5a1
=n2+3n+1eN*
Vav
J+S+t
lds6qrnhi6nv6i
n
eN*.
n+
n+
T
rl'
t<ct
)(r'
9
1)
4
(n+2)(r
4
t
ln@
-=L
<sub>'</sub>
n(n+1)
2
)
ta
chc
\
lXtr
2)
ln
L-I.)
cta
+
+
=
1\
3)
!)l'
n(n+l)
2
+
1)l'
l
(n
e
N.)
(3)
TOAN
HOC
Sd
asa
ta-zorsl
o
q,rdita
</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>
Bili
2.
Tim sd ttr nhi€n n bi€t
rdng:
I
Jlr+2'
Lbi
gidi.
Theo
k€t
quA
(4), ta
c6:
11
-:-l
JF
+F Jilri+3t
"
1
Ldi
gi,fii
SO
hinh vudng
c6
c4nh
bing
8
ld
1.2
56
hinh ru6ng
c6 cpnh
bitgT lir
2.3
SO
hinh vu6ng
c6
canh bing 6
ld:
3.4
SO
hinh vu6ng
c6 canh
bing2ld:
7.8
SO
trintr
vudng
c6
cpnh
bing
1
td: 8.9
.
VQy 1u6i 6
vu6ng
d6
co tdt cit
1.2+2.3+...+7.8+
8.g'n":t"
-3
8'9:
l0
=
240
(hinh ru6ng).
Bni 5.
MAt
kh6i
ldp
phtrtmg
c:rj
th€
tich 8
x
8
x
8
:
512
hinh liip phrumg
do'n vi
bdng nhau xdp
khit
nhau.
Hoi kh6i
lap phucmg
dt)
c6 bao
nhiAu
hinh
lqp
phu'crng?
Ldi
gi,fii
(h.2)
SO
trintr
lQp
phucrng
c6
c4nh
bing8lA: 1:13.
SO
hinh
lfp
phucrng
c6
c4nh
bingT
ld:8:23.
SO
ninn l6p phuong c6
cqnh
bing
6
lit:27
:33.
56
hinh lflp phuong
c6 cpnh
bing2ld:343
:73
.
SO
hinh
lpp
phucrng
c6
cpnh
bing
i
ld:
512
:
83.
Vfy
khOi
lip
phuong
<16 c6:
theo(4) l- q 612
13
+23 +33
+...+83
+93
=
I
=
|
=1296
12
)
(hinh
lfp
phuong).
D0
luyQn
tQp, citc
em
c6
th6
Dm
c6c
bdi tf,p
sau:
BAI TAP
1.
Mot
minh lu6i
hinh
cht
nhat c6 kich thu6c
ld
8
x
10
:
80 6
vuOng clon
vi bing
nhau.
H6i
minh 1u6i
<16 c6 bao
nhi6u
hinh
vudng?
2.
MOt
ttrOi
frop
cht
nhat
c6 the
tich ld 8
x
9
x
10:720
hinh
lap
phuong tlon
vi bing
nhau
xi5p
khit
nhau.
H6i
kh6i
hQp
cht
nhat
d6
c6
bao
nhi6u
hinh
l{p
phuong?
2013
2015
20t3
20t5
JF-+-FIT*.-*d
11
22
20t3
2C;|5
2
2013
a
<sub>u+ </sub>
<sub>3g+"'+ </sub>
<sub>r,r1t; </sub>
=
<sub>zol5</sub>
,222
2 2
2013
A I- r
--l
r---vr
<sub>3'3 4'"'' n </sub>
<sub>n+l-2015</sub>
n-l
2013
,^--
n+1-
2Ol5
e
n=2014.
Bni 3.
M\t
ban cr|
vua
<sub>Qu6c t€ </sub>
co 8
x
8:
64
6
vudng
dctn
vi.
Hoi
bdn
cd'vua tt6 crj tdt ca
mi1,
hinh
vudng?
Ldi gidi
(h.1)
S5 ninn
vu6ng
c6
cpnh
bing8ld:1:12.
SO
hinh
vu6ng
c6
cpnh
bingT
l*4:22.
^.(
,.
,
So hinh
vu6ng
c6
canh
bing
6
ld:9:32.
Hink
1
SO
trintr
vu6ng
c6 cpnh
bing}lir
49
:72.
SO
trintr
vudng
c6
cpnh
bing
I
ld:
64
:
82.
.!
Vav
co
tat
ca:
lz
+22 +32
+
...+72+
82 'h"g3) 8(8 + 1X2'8 + 1)
6
=
204 (hinh
vu6ng).
Bni 4.
Mil
n)n
nhd
hinh chir nhdt
c6
kich
thacrc
8
x
9 6
vu6ng
do.n
vi
(g6m
cdc,
vi\n
gach lat
hinh
vu6ng
bing
nhau).
Hoi
nin
nhd
d6 cd
bao
nhiAtr
hinh
vu6ng'l
^
TOnN
HQC
Z
t
<sub>cfrOifta </sub>
<sub>ss </sub>
</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>
Hudng
dAn
giei
sf
T[rr
rrturu
Hfir
srfrrlr
Grdt
tlnsru
T$fiH
Lffp
s
TP.
ET
6
'0,
),b
<0
,bc
€r
CEilfi
W[TI$E:[
NArra
2At4
-
2015
+a+b=a+c+z@ffill+u+,
+
u + b
:(,[ai
*.[ni
)'
>,[a
+b
=
{Ai
*,luiV.
Bli
2. a)
Pr (;r+t)(-r+z)(x+3)(.r+6)=3x,
e
<sub>[(, </sub>
+
r)(x
+
o)][(r
+
z)(
x
+z)]=zp
o
(*'
+7
x
+6)(x,
+5-r+
A)
:Zx,
o
(r'
+6x+6)2
<sub>- </sub>
xz =3xz
o
(r'+
6-r +
6)'
=
4*,
*l:::2::2=?r,
Tim duoc
nghiOm
cia phucrng
trinh
dd
cho
ld
x
=
Jlo
-4;
x
=
_Jlo
<sub>-4.</sub>
b)
Tu PT
ZQ+y-xz
<sub>=1a!</sub>
12Q-
ya2y-
yz=
*1
I
=ZpiW-*)-
x+l
x
I\
/\
<sub>' </sub>
<sub>x</sub>
=
a(x
+t)
(z_4
<sub>1+)' </sub>
=(,.
t)
[#-
+
<sub>e- *))=o</sub>
=(x+
1) (,,r+1
*8f,
+4xz)
=O
=
(x+1)
(ax z
-)az
-$yz
q3 x
-2x
+l)=O
>
(x
+t)(zx -t)(zx,
*zx-l)=o
(*)
ciai
PT
(*)
vd
thri
l4i
tathSy
1
3
+Jt7
,,
,
=
<sub>t </sub>
ld
ciic
nghiQm
cua
(
<sub>\/ </sub>
\
thi6t =l
L-O,4ll {+Z,S
<sub>l=0.</sub>
\y
/\y
)
Ddp
s6: (*;
<sub>y) e {(2; </sub>
5);
(-2;
<sub>-5)} </sub>
.
Bii
4.
Ta
c6
0<r<
j.
o"
d6
1
<sub>- </sub>
2x>
0,3x >
0.
Ap
dgng
BDT
Cauchy cho
hai
sd
duong, ta
c6
n_
2-x
,1+2x
_
4-2x
, l+2x
n- r-zxa-- 2p:$t u
(t-zx)+:,t+2x
<sub>I </sub>
<sub>3 </sub>
<sub>r.2</sub>
-
<sub>ZU-[- </sub>
<sub>3* </sub>
=r-
<sub>211-u1+ </sub>
<sub></sub>
u+-_L/
r
_,\,r/r_r\-ro
-r\t-2x-
<sub>'/-3\;-'l- </sub>
<sub>3</sub>
3x
,
l-2x
,
l0-"
f
Zx
t-Zx
.
lO
16
- t-2*-
*
-T'-ll-2*'
3x
-T:T
Dlng
thric xdy rakhi
vd
chi
khi
,3{
=l
<sub>^2* </sub>
<>3
r-
l-2.r<+5,r=l
e.r=l.
t-zx 5x
)
Vdy
gi6
tri
nho nh6t cua bi€u thric
A
h
+.
Bii
s.
u)
<sub>ryla </sub>
ftt,u
c6
LEBH
c6,ntqi E
=>HBE=BHE.Xdt
AEBC
vd LEAB
c6
BEC
(chung), EBC
=
EAB. Do
cl6
LEBC
a'AEAB
(g.g=6dE=[EE.
Suy
ra
BCE=BHE
(=ABE). Vpy tt?
gi6c
HCEB
ndi
ti6p.
b)
,EAEB
ra
co
<sub>:+ </sub>
=
*
(do
LEBC
a
AEAB
<sub>). </sub>
\ait
EB
:
EM
(do
<sub>E lI-trungdii5m </sub>
cria
MB),
do
d,o
r+c
)
0.
r=c<0.
Tt
gid
'-l
<sub>ac + </sub>
<sub>ab </sub>
<sub>=0</sub>
cr=(a+c)(U+c)
fi)t
,>
<sub>0,</sub>
t)
u)'
)=l
ab<
),
b:
-c)
t)
'u)
0=
+ah
,0,
l+(
1
-+
7
-(
:a+
b+,
7)
,a
(t
[;
1
C
+Ct
W
oa
=0,
'-[
t
;*-),
bc+
q
Bdi
1"
Ta
co
=
L--!+2,1=o
=[l)'
*2,
I
[t']-
r
:o
y x
<sub>\y, </sub>
<sub>\y/</sub>
111
abc
1
Do
d6
:=
11
ta
c6:
:+i
ab
)52-621
+0,
y
*0.
\/\
{
<sub>l-[ </sub>
<sub>," </sub>
_
ll=2.1
v/
\"
x)
(,-x=-l;x=
PT
dd cho.
Bii
3.DK:
EM
EC
EA_EM
Ta
c6:
us
nrn,n-ror'
T?8ilrHE[
<sub>S</sub>
</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>
Thdi gian ldm bdi:
150
<sub>Phrtt</sub>
C0u 1
(2
dihd.
Cho bi6u
thirc
P=(rv-,)(#.r)[*)',
v6i
x>0,x*1.
1)
Rtit
gen
P.
')
2) Tim sii
chinh phuong
x
sao
cho
<sub>f </sub>
h
s0
nguy6n.
Ceu 2
Q dih@
1).
Cho c6c
s6
thgc
<sub>x, Y, </sub>
z,
a,
b,
c
th6a
mdn
c6c
di6u
ki€n
<sub>'obc</sub>
*
+!
<sub>+' =l </sub>
vi
o
*b
*'
=
o
.
Chimg minh
ring
xyz
x2 "2
-2
:;+1.
+:r=1-D'
('.'
2)
Tim
c5c
s6
nguy6n
a
d6
phu<rng trinh:
x2
<sub>-(3+2a)x+40-a=0 </sub>
c6
nghiQm
nguy6n.
H6y tim
c6c nghiQm nguYdn <16.
Cflu 3
(1,5
di€m).1)
Cho
hQ phucrng
trinh
(
)x+mY
=3Y11
l*-Y
=m2
-2
v\i
x,y
lir
dn,
m
lir
tham s6.
tim
m
aC
tQ
phucrng
trinh
c6
nghiQm
duy
nh6t
(x;y)
thoa
mdn
x2
-2x-y>0.
2)
Cho
o,
b,
c
la.
d0
d}ri
ei6c thoa mdn di0u kiqn
iri
nho nh6t
cria
bi6u thuc
" b+c-a c+a-b
a+b-c
Ciu
4
(3
diim).
Cho
tam
gigc AB-C
c6
<sub>!a </sub>
g6c
nhen, n6i ti6p
cluong
trdn
(O)
<sub>.(AB < </sub>
AO.
Cic
ti6p tuy6n
vO
(O) t4i B
vi
C cdt nhau
t4i N. Vc
aaj,
dU
song song
vbi
BC. Dudng thdng
MN
cdt
dudng trdn (O)
tqi
Mvd
P.
1)
cho
ai6t
<sub>fir+ftr=fi, </sub>
tintr
<10
ddi doan
BC.
2) chung minh
ring
<sub># =#</sub>
3) Chrmg
minh
ring
ile
,
ounelP
<l6ng
quy.
Ciu
5
(1,5
di€m).1)
Cho cluong
trdn
t6m
O <sub>Q6n</sub>
kinh
1, tam
gi6c
ABC c6
c6c
<linh
A, B, C ndm
trong
ducrng
trdn vd
c6.diQn
tich lon
hon ho{c
bAng
1..
Chung
minh
rdng
tli6m
O
ndm trong
ho{c
ndm
trdn c4nh
cira
tam
gi6c
ABC.
2)
Cho
tfp
6={t;2;3;...;t6\.
HaY
tim
s6
nguydn ducrng
k
<sub>.nhd nh6t sao.cho trong m5i</sub>
tfll
lon
gOm E
phin
tu
c;ua
A
dAut6n tai
hai.s6
phdn
biQt
a,b
md
a2
+bz
li
mdt
sd
nguy6n t6.
NGUYEN VAN XA
(GV THPT Yan Phong s6 2,
Bdc
Ninh)
Sru
tdm
ba canh cria
mQt
tam
2c+b=abc.
Tim
gi5
7
<sub>xe, </sub>
<sub>LECM </sub>
vir
a,EMA c(:
Ciil
<sub>"",, ";: </sub>
chuns, EM
=E-.
EA
EM.
Do
d6 A,ECM
a
LEMA
(c.g.c)
+EMC=EAM.
Mit
iAil=6a,
ne"
ifri=6i
+AD
llBM=5h=614=fiA.
Vpy
tam
gi6c
ABD
c6n tPi.B.
c)
Gqi N=BJ\AD
thl
BJL
AD
tai
N
<sub>= </sub>
N
h
trung
di6m
cin
AD
<sub>=AN=DN=S-. </sub>
y61
6fgy
2
c6
NKttBM
_BM
<sub>-N{=4. </sub>
Ta
c6
ffu=B=+ffy.
JB.
2
^e
frN=!frE
2^
ncn
fifi=frds.
X6t
AA,IN
vd
LMBO
c6
AJN=MOB,
suy ra
AAJN
A
LMOB
(g.g)
./N
AN
.,TN
AN
<sub>-.JN- </sub>
AN
.=
oB=
MB-
2oB=
zMB'
JB-
2MB
laco
NK
<sub>- </sub>
AN
(-l{\=rvr=4{
<sub>+ex=NK=A! </sub>
<sub>.</sub>
MB
2MB\
JBl
2
)
Ti
AK:
NKvd AN
:
DN
<sub>= </sub>
KD
:
3KA,
rnd6
<sub>#=+.</sub>
Bii
6.
Gie
sir
n=ab
(a, b ldc6c
cht
s6, a
I
0)
Theo
diu
bdi, ta
c6:
U+O.aUiaU+(lOa+b)ia+bt
a.
Ddt
b=ma(meN.,mcl0).
Tt
d6
;=10
a+b=l}a+ma
chia h6t
cho zaz.
N€n
1O at ma
=10
i
m>
m
e{t;
Z;
5\.
o
Nliu rr
:
1
thi
b:
a.Ta c6:llat
az*lli
a*a=7.
Dodoa:b:1,tac6
ab=17.
o N6u
z
:
2
rhl b
:
2a.Ta
c6 c6c s6
tZ
zq;
36. Cdc
s6
n;zq;36
th6a man dA bdi.
o Ntiu
z
:
5 ta c6
b:
5a
+bi.5.
NCn b
:
5, suY ra
a:
1.
56
oU=tS
(th6a mdn Ad Ua1l.
Vay c6
nlm
s6 thoa mdn d6u bdi, d6 ld:
ll;
12;
15;24;36.
NGUYEN
OTIC
TAN
gP.
HA
chi
Minh)
.
TONN
HOC
</div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7>
Chui'n
[i
cho lrilhi
tdt ns[i0p illPT
vi
thi uio
Oai hoc
trinlr
Q
hu.ng ta thdy rang trong
di
thi
Dai
hpc cdc ndm
v
<sub>gdn ddy, cac bdi </sub>
<sub>phuong </sub>
<sub>trinh </sub>
<sub>(P7), </sub>
<sub>bdt</sub>
phtrong
trinh
(BPT),
h€
phuong trinh
(HPT)
duoc
gidi
bdng cdch nhdn
luctng hAn <sub>,hW, </sub>
<sub>.ddt,nhdn </sub>
ta
chung
dua
,i
pr,
BPT
tich ld riit phii
bi€n.
Nhiiu
bqn dqc thudng ddt cdu
hdi:
Co
sd
dO c6 cdch
gidi
nhu vQy ld
gi?
De
giilp
cdc em hoc sinh c6 co sd
dii
tim duqc
ldi gidi
bdi
todn bdng cach nhdn luqng
li€n
hqp, c[ing nhu
d6n
dau
cdu,v€
PT, BPT,,HPT
trong d€
thi
THPT
<sub>Qu6c </sub>
gia
sdp
tbi
bdi
viAt. ndy
trinh
bdy
cct
sd dd
c6 ldi giai
cho cac cdu
vi
PT,
BPT,
HPT
trong.di
thi
Dai
hoc cdc ndm
trudc
ddy
th6ng quc mQt s6
thi
dq sau
Thi
dy
1.
(EH
kh6i
A
<sub>- </sub>
2014)
Gidi he
phaong
Cdch 2. Ta
c6:
(1)e
<sub>li(r:fl=tz-x,lrfi</sub>
)
y(12-
*')=Aa-2ax.tD1
+
x'?(tz-y)
o
lTy
<sub>-144 </sub>
+24x$2J
<sub>-12x2 </sub>
= 0
e
llxz -
zax
<sub>"lnj </sub>
+
D(12
<sub>- </sub>
y)
=
o
<+
l2(x
-JO))'z
<sub>=o </sub>
<+
*=,12-t
[x>o
o<
<sub>' </sub>
|.Y
=
12-
x2'
Thay y
<sub>=12- </sub>
x2
vio
PT
(2)
ta
iluoc
x3
<sub>-8x -l=2JT6-x'z</sub>
<> x3
<sub>-8x </sub>
<sub>-z </sub>
=z(Jto-V
-t)
<+(.r-3)(,r2+3x+1=p\
'
Jlo-
xz
+l
*
(,,-3)[(
x2
+3x
+l
y*Sf.l
=
o
' 'L'
'
Jto-xz
+tl
<)
x=3>
<sub>J </sub>
=3
.
Thu lai
ta
dugc
nghigm
cira
HPT
U
(:;:).
Cach 3. DAt
;
<sub>= </sub>
(x;
Jn:F),i,
=
(,ln
t
;
<sub>Ji).</sub>
ra
c6
l;l
=lil=
Jo
Pr
(1)
ez(x.{rz-y
+$@-q)=z.tz
-, -, -r2
e2.a.b=a
+b'
<sub>e\a-b) =0e </sub>
a-
b
*x-JO).rl'>o
rhay
y
<sub>=12- xz"uY#bjf, </sub>
u-n"
xj_gx_l=2,1T0_x,
<)
x3
-8x-l
<sub>= </sub>
z(Jio-7-t)
<+(x-3)(x:*:r*l;=ffi
. t
2(x$\
1
e(x-s)l
<sub>' 'L' </sub>
(x:+3x+
l)+$!
<sub>' </sub>
l=6
Jl0-xz+l-l
ta nrn,n-roru,
T?EI#8E
<sub>5</sub>
Lrri
gi,rti
Cach
t.sr,
[-2$
t
x
<2Ji
-vuLtt
t'-tt'
l, <y<12'
laco:
.[*=*?,a,p@:fl=':+t-Do
d6
x,!tz-
y
+r5(u:*t)
. x2
+12-
y
<sub>*y </sub>
+12-
<sub>x2 _ </sub>
<sub>r,</sub>
22--'
vdv
i'J--\
PT
(1)
e
"
l'=
o
ly=12_x2'
Thay y
<sub>=12- </sub>
x2
vdo
PT
(2)
ta clugc:
x3
<sub>-8x </sub>
_
t=2,[19-*z
<=) x3
<sub>-8.r- </sub>
z+z(t-JiO-r,
<sub>)= </sub>
o
(
<sub>z(x+3) </sub>
<sub>)</sub>
<+
(-r-:)l
\ /(
x2
+3x
+;
a-
-1]
<sub>l= </sub>
0
(3).
1+J1o-x2
<sub>)</sub>
Do
x >
o
suy
ra xz
+3x
+11-2('I1)-
,
g.
1+
J10-
x2
NCn
PT
(3)
<+
x:3
.YOi
x
=3
ta
<sub>dugc y = </sub>
3.
Vfly
h0
phuong trinh
c6 m6t nghiCm
ta
(:;
:).
</div>
<span class='text_page_counter'>(8)</span><div class='page_container' data-page=8>
<>J=3-y=3.
Thir lai
ta
dugc
nghiQm cira
HPT
U
(:;3)
.
t
Binh
luQn: Qua ba"c6ch
gi6i
tr6n
ta
th6y
ring,
phuong
trinh
(l)
c6 th6
tlugc
su
lf
bang nhi6u crich
kh6c nhau, nhung sau
khi
thay y=12-xz
viro
phucrng
trinh
(2) ta dugc PT
p _gy_1=2[g_yz
(3).
Thi
PT (3) ttuqc gi6i
bing
c6ch nhdn
luqng
li6n hqp,
d4t nhAn tu chung dua v6
tich
ld tlon gian nhat.
Tuy
nhi6n
cin cir
niro
d6
ta
bii5n
d6i
PT
p
_gy-1=2$$*yz
(3)
thdnhPT
xr-8x4:2([6A-t)t
Xin
dugc
trinh
bdy
c[n
cf
d6 nhu sau:
-
Ddu
ti6n ta
dirng
M6y tinh b6
flii
(MTBT)
dC
tht
nghiQm, ta
th6y
PT (3)
c6 hai
nghiQm
ld x=-1
vd
x=3.
Tuy
nhi6n
ta chi
quan
tdm
t6i
nghiQm
x:3
md
kh6ng
quan t6m
t6i
nghiQm
x=-1
vi di6u
kiQn
c6
nghi6m
li
x>0
.
Nhu
vfy
ta
phii
ldm xudt
hiQn
d4i
lucrng
x-3
<16
dat
nh6n
tu chung,
nghia
ld
ta
phii
dua
PT (3)
.r,4
dang
(x-a)7(x)=o.
Mu6n vfly
ta phAi
tim s6
a
sao cho bi6u
thtc
ZJTO
<sub>- </sub>
x'z
<sub>- </sub>
a
sau
khi
nhdn
lugng li6n hqp xu6t
hiQn
dai
luqng
x=3.
- Do
PT (3)
chi
c6 rnQt nghiQm
x=3 n6n
cdch dcrn
gi6n nh6t dC
tim
a
ld ta
thay
x=3
vdo PT
2[g-x2
-a=0
ta
tim
dugc
a=2.
(Luu
y
ld
do PT
(3) c6 duy nh6t m6t nghiQm nguy6n n6n ta
mdi
ding
c6ch
tr6n,
nt5u
PT (3)
c6
hai
nghiQm nguy6n
ho{c
kh6ng
nguy6n
ta
sE
ding c6ch
kh5c
sE
dugc trinh
bdy 6 phdn sau).
- Do tl6 ta c6
PT
x3
<sub>-8x-1 =2JT6:P</sub>
<+x3-8x-3=zJtO-x'-2.
Thi
dqt
2.
(DH
kh6i
8-2014)
Gidi
h€
phactng
trinh
f(t-.v,1/,.-,
+x:z+(x-y-t).F
(1)
fzy,
-:r+6)+
t
=ZJi2
-
J4x
-srt
Q)
Ldi
gidi.
DK:
(*).
Ta
c6
:
o
V6i
y = L, thay vdo
PT (2)
ta
tlugc
:
9-3x=0<>x=3.
o
<sub>V6i </sub>
y
<sub>= </sub>
x-1,
DK
(*)e
1 <
x
a2.PT
(2)
trd
thdnh:2x2-x-3=Jr-e
2(x2
<sub>- </sub>
x
<sub>- </sub>
1) +
(x
-r-
J2
<sub>- </sub>
x)
=
o
r
<sub>1 </sub>
<sub>)^</sub>
o(.r2
<sub>. </sub>
_x_l)l
<sub>,\ </sub>
2*-.
_
t=n
x-l
+,12-x
<sub>)</sub>
<> -r2
--r-1 -
0
:--,
'-)^- 2
<sub>" </sub>
=
I
tJ5
'
Tt
d6
ta
tim
dugc
nghiOm
ctra hQ
phuong
trinh
td:
(3rr;,I
l*-6,-tI6)
\-
2
)
l
Binh lufln:
o
Khi
dgc
ldi
gi6i
HPT h6n,
chlc chin
nhi6u ban sE
d[t
c6u
h6i:
"Co
sd ndo AC Uii5n
d6i
PT (1) thenh PT
(3)?".
Sau il6y ld mQt cSch tt6
tri
ldi
c6u
h6i
tr6n.
-
Thay
x=3
vdo PT
(l)
tadugc:
(t-y)J:-y
+3=2+(2-y)Jy
(a).
Dirng
MrBr
tim
dugc nghiQm ctra
PT
(a)
ld
y=t
vit
y=/
.
-
Thay
x=4
vito PT (1) ta dugc:
(r-r)!4_)
+4=2+(z-y)J,
(b).
Dune
MrBr
tim
dugc nghiQm
cta
PT
(b)
ld
y=I
vd
y=3
.
-
Nhu v4y
h
rhdy
ring
v6i
x=3 hoic
x=4
thi
PT
(1)
1u6n 1u6n c6 nghiQm
y=l
. Ta dq do6n PT
(1)
c6
th6 dua dusc v6 apng
<sub>(y-1)/(r;r)=o </sub>
.
-
Mat
kh6c
ta thiy ring
khi x=3
thi
PT (1)
c6
nghiQm
y=2 .Y-hi
x=4
thl
PT
(1)
c6 nghiOm
y=3.
Nhu
vfy
m6i
quan hQ
gita
x
vit
y
ld y=l"-1.
7u
dqr do6n
PT
(1)
c6
ttr6 dua
dugc
vd
dang
(x-y-t)s(x;r)=o
.
-
Tri
c6c nhfln x6t tr€n, ta dU do6n
rlng
PT (1) c6 th6
dua dusc vc aang
(r
-
t)(x
<sub>-, </sub>
<sub>-r)n(x;r) </sub>
= o .
Tri
d6
cho
ta dinh hu6ng
eC Uirin
d6i
PT (1)
thanh
Pr
(3).
-
Tuy
nhi6n, ntiu bdi niro cflng
phii
lQp lufln nhu h6n
thi
sE r6t m6t
thdi
gian, c6 16
t5t
hcrn h6t
le
c6c ban
phii
chiu
kh6 gi6i
nhiAu
bdi
tQp, d6
bi6n
k!
ndng
thdnh
ky
x6o,
sao
cho
"nhin
vdo
bdi
todn
ta
thiy"
ngay c6ch gi6i.
r Ngodi
ra, trong
khi
gi6i HPT tr6n
thi
d6n d6n PT:
2*z-*4=$-i
19.
Ta c6: PT (4) tuong duong
v6i
[v=o
lx -2y
>0
lax
-5y
-3
>
0
pr
(1)
o(1-y)(,*E-y-r)+("r-y-t)(t-fr)=o
1a;
(
,---L)=o
t-v)(x-v-t)t51;I
t+ly)
l=l
!:x-I'
<+(
*[
,.
TONN
H9C
</div>
<span class='text_page_counter'>(9)</span><div class='page_container' data-page=9>
z(x2
<sub>-x-t)+(x:-Jf-)=o </sub>
(5)
C6c ban sE d6t c6u
h6i
tl6u
ld co
sd AC UlCn
d6i
PT
(4)
thenh
PT (5).
Xin
dusc
hinh
bdy co
sd
d6
nhu
sau:
- DAu ti6n ta dirng
MTBT
dC
thir
nghiQm, ta th6y PT
(4)
c6 nghiQm (gAn dung)
ld
x=1,618033989...Ni5u
nhAm nhanh ta th6y
ring
x=1,6180:agSg...=l+J5
.
2
Me
x=1+6
ld nshidm cria
PT
fl-x-l=0
ho[c
ld
2"
nghiQm
PT
<sub>-xz+x+1=0. </sub>
Nhu
vQy
chring
ta
ph6i
ldm xu6t hiQn dai
lugng
fl-x-l
ho[c
<sub>-*+x+l </sub>
d6
d[t
nhan tu chung.
- Do
PT
(4) chi
chria mQt cdn
thirc
n6n
ta
lQp lufln
ngin
ggn
nhu
sau:
Trong
PT
2*z-v-3=$4
ta
cAn
hm
xu6t hiQn bi6u
thirc
x2
-x-l
OC e6t
nlan tu
chung n6n ta bir5n AOi
pnan
2P-x-3
trudc vd
lim
xu6t hiQn
2(xz-x-l),
nghia
ld
ta
bi6n
d6i
PT
2az
<sub>-y-3=Q-a </sub>
thinh
2(*-x-t)+(x-t-,0-x)=o
.
Nhmg
ntiu PT
chria nhi6u
hon
mQt
cin
thric
thi
ta
kh6ng thd ldm nhu tr6n dugc.
Xin
trinh
bdy phuong
ph6p t6ng qu6t nhu sau:
-
Trong PT
(4)
chfta
.84,
khi
d6 ta phdi th6m bort
mQt i14i
luqng
a
, nghia
ld
ta
biiln
OOi
<sub>1D-x </sub>
tnanfr
Q-x-a
sao
cho
sau
khi
nhdn
lugng
1i6n
hqp
thi
xu6t hi6n bi6u
thric
xz
-x-l
ho(c
<sub>-fl </sub>
+x+1
.
Luu
f
ld biilu thric
cAn ,,rr6t
hi6n ld
bQc
hai
n6n
a
khdng
ph6i ld mQt si5
md
a
phbic6 dpng
d=ax+b
.
-
Khi
d6
Jz-r
<sub>-a=Jz-, </sub>
-(o,r+b)=
=9+\
-'-'"/
"lr-x+(ax+b)
Sau
khi
nh6n 1i6n
hqp
xong xudt hiQn
<sub>-axz </sub>
ndnta
sE
cho
2-x-(ax+bf
<sub>=-vra*a1</sub>
e(ax+b)z
= xz
<sub>-2x </sub>
+1
>
ax+b= x
*l
.
- Nhu
vfy
ta phii th6m
vot
m6t dai luqng
ld x+l
vdo
pT 2xz_y_3=E_x
.
- Voi
phuonC ph6p ti5ng qu6t
tr6n,
c5c ban
c6
th€
gi6i ttuqc c6c PT, BPT chila
cln
thric bdng c6ch
nhAn luqng li6n hgrp mQt c5ch dE ddng.
- D6n d6y c6 16 c5c b4n sE th6y
ring
d6
giei
mQt PT
chria cdn
thirc
bing
cdch nhdn
luqng
li6n
hqp
don
giin
nhu th6 ndo.
Thl
dyt
3.
(DH
kh6i
D
<sub>- </sub>
2014)
Giai
bdt phutrng
trinh
;
(.r +
t)'[i
+2
+(x
+6),[i +7
> rz +7 -r + t
2
(l).
Ldi gidi.
EK:
x
>
<sub>-2.</sub>
V6i
di6u
kiQn
tr6n,
BPT (1) tuong
duong
v6i
(x
+
r)(J
x.+
z
<sub>- </sub>
2) +
(x
+
6)(,En
<sub>- </sub>
3)
-(x'z+2x-B)>0
<> ( <sub>-r </sub><sub>+ </sub>
l\-E-
<sub>+ </sub>( <sub>.r + </sub>
o\-E-\
/Jx+2+2
\
/Jx+1+3
-(x-z)(x+4)
> o
<+(*-zt[#
_
+4
<sub>--(..++)l </sub>
>oe)
'
'l,lx+2+2
,lx+1
+3
'
'-l
(^
Do
x)
<sub>-2 </sub>
n€n
)x+2-0.
suuru
[x+6>0
"
x+l
x+6 / ,\
x+2
_r r,-I4r=_
Jx+2+2'
Jx+1
+3
\^
'
'/
Jx+2+2
x+2 x+6 x+6
I
^
--r---/ll
2
'
Jx+1
+3 2
Jx+2+2
Do
cl6
BPT
(2)
a
x-2
< 0
<>
x<2.
So
s6nh
v6i
tli6u
kiQn
ta
dugc
nghiQm cira
BPT
ld
<sub>-2<x<2.</sub>
t
Binh
luQn: Ta th6y
ring
bu6c
bitin d6i
BPT
(1)
thdnh BPT
(x +
r)(,{i
+Z <sub>- </sub>z) + (x +
e)(8
+f
4)
<sub>- </sub>(xz + 2 x <sub>-8 </sub>
) >
0
(3 )
h
m6u ch6t cria bdi gi6i.
Vfly
co s& 6 tl6u d6 c6 dugc
bu6c biiSn dOi trenZ
Xin
trinh
bdy
nhu
sau:
Diu
ti6n
ta
thay d5u "
)
"
bdi
d6u
":".
Nghia ld
ta thay BPT
bing
PT. Dung
MTBT
d6
tim
nghiQm ta th6y PT
(x+t).{i+T+(x+6)Jii=xz
+7
x+12
c6
mQt
nghiQm
duy nh6t
x=2.
Nhu vfly
ta
ph6i
ldm
xu6t
hiQn
dai lugng
x-2
A6 Aat nnan
trl
chung.
Khi
tl6 ta
can
tim hai sri
a
vd
<sub>B </sub>
sao cho
HPT
<sub>{E-"=o</sub>
llx+l
-B=0
c6 nghiQm
x=2
.
Thay
x=2
viro hg trCn ta
tim
dugc
1"^=:
Ddy chinh ld co so o,i ui6n aoi
ser
1t;
lF=3
thenh BPT (3).
Thi
d1r
4. (DH
khii
B
<sub>- </sub>
2013)
Giai
hQ phao'ng
trinh
l2rt
+
yt
<sub>-3ry </sub>
+3x
<sub>-2y </sub>
+l=0
(1)
1
\+r'
-r'
+x+4=,{Tx+y
+,tx;$
Q)'
</div>
<span class='text_page_counter'>(10)</span><div class='page_container' data-page=10>
Liri
sidlr".
<sub>"'-' </sub>
{2x+r
> o
l.x+4y
>
0'
Ta c6:
PT (1)
tucrng <luong
vdi
[--.-o-.,
r
(x+r-y)(zx+
I
<sub>-y) </sub>
=
o
<)
l'
-
"^
:'
.
LY='+1
o
Vdi
<sub>Y </sub>
<sub>=2x* </sub>
1 <sub>, </sub>thaY
vio
PT
(2)
ta
clugc
:
.[4x
+
|
+
<sub>Jrx </sub>
+
4
=
3-3x
(3).
Ta
c6
<sub>/(x) </sub>
=
J4x
+r
+
<sub>Jgx </sub>
+
4
tl6ng
bir5n.
s(r)=3-3x
nghfchbi6n'
NOn
PT (3)
ntiu c6
nghiQm
thi
ld
nghiQm duy
nrr6t.
Ua /(o)=s(O)=3
nen PT (3) c6
nghiQm
duynh6t
x=0=)=1.
o
V6i
y
=
x+1,
thay vdo
PT
(2)
ta <lugc
PT
$i+l+J5x+4
=3x2
-x+3
(4)
<=
[#;;f
<sub>-(.r </sub>
+
r)]
*
<sub>[Js, </sub>
+a
<sub>-(x </sub>
+
z)]
=3(x-1)x
(s)
^
-x2+x -
-xz+x
_
-al-:_,\
-.l3rTT+(x+l)
'
,[ix+++(x+2)
-\"
o(
.c
<sub>-."\( </sub>
J-*..:l--
*:) =
o
'
'IJ3r*l
+(x+l)
<sub>^l5x+4+(x+2) )</sub>
lx2-x=0
el
" l
II
- <sub>I </sub> - rI-A
LJ3*+t
+tr+l)
'
..6Lx+4
+(x+2\
T
e
x2
<sub>-x=o<+l </sub>
'[x=l'
*=o
Tt
d6
ta
tim
cluqc nghiQm cira
hQ
phucmg
trinh
u
(o;t),(t;z).
0 Binh lu$n:
Dring
MTCT
di5
tim
nghiQm, ta th6y
PT (4) c6 hai nghiQm
ld
r=0
vi
x=1
.
Md
x=0 vd
x=l h
nghiQm
ctra
PT
fl-x:O
ho{c
PT
-x2+x:0.
Tt
d6 ta c6 co
sO <tC Uitin
d6i PT
(4)
thAnh PT (5)
bing
mQt trong hai c6ch nhu sau
o
Cdch 1.
Ta
cAn
tim
hai
sii
a
vd
<sub>B </sub>
sao cho PT
.$x+t-(ax+f)=O 61
c6 hai
nghiQm
ld x=0
vd
x=l
.
Thay
x=0
vd .r=1
vlro PT
(6)
ta dugc hQ PT
theo
a
vd
<sub>B.Gi6i </sub>
HPTtheo
a,
<sub>B </sub>
ta
dugc
a=1
vd p=1.
Tuong
t.u
ta
cdn
tim hai s5
a
vd
b
sao
cho
PT
$*aa-(ax+b)=g
0)
c6 hai nghiQm ld
r=0
vd
r=1.
Thay
x=0 vli
x=l
viro
PT (7)
ta
tluqc
hQ
theo
a
vd
b.
Gi6i
h0
HPT
theo
a
,
b
ta
dugc a=1 vir b=2
.
o
Cdch2.Tac6
$r
ar
<sub>-(a </sub>
x+
A=-:(?!:
P):,
-'
$x+t+(a**9)
Cho
3;+1-(
ax+
p)2 =-1s2
+.r
ta dugc
(ax+
<sub>B)' </sub>
=x2
+2x+l+qx+
B
=x+1
.
(Luu
y
ld
cho 3x+7-(ax+Bf
=-*'**
chir
kh6ng
ph6i
cho
3x+l-(ax+Pf
=x'-*1.
Tucrng t.u ta c6
5
* +4
<sub>-(,x </sub>
+
d=Y!,
't
(?'.bl,
.7sx+++(ax+b)'
Cho
5x+4-(
ax+b)' =-vz
'"x
ta du-o. c
(ax+b)2
=7'
a4x+4>ax+b=x*2
.
Chirng
tdi
hy
vgng
ring
qua nhirng
thi
du
vd
nhimg
binh lufln tr6n
phAn
nio
sE
girip
c6c
em
hgc
sinh
t.u
tin khi g{p
c5c
bdi
to6n v€,PT,
BPT,
HPT trong
ki
thi
THPT Qu6c Gia
sdp
t6i.
DC
thdnh thao
phucrng
ph6p nh6n
lugng
li6n
hqp,
c6c em
hdy
thir ldm
c6c
bdi
tflp
sau
BAI
TAP
Gi6i
c6c
PT,
BPT, HPT
sau
t.
31,1V +
JV
+8
-z
=
Jx\r5.
2.
J,
a2',
J5*
a
+zJBx
+9
=
4x2.
n-1
-2
:.
Vzx-S *
rl-f
=
*.
4.
6x3
<sub>-5xz </sub>
-l}x-tO+JZx-z+Jlx+z
<0.
s.
z.lr'**ll
+_r2
_4<-L.
1l x+4
,l*r+l
6.
<sub>JTx+4-zJ2-x </sub>
rH.
J9x2 +16
(_
,
.
),tiltn
+ t=
4(x
+
t)'
+
Ji
^[*
+,
(fi
+a
+,tS
+5 =
J2
x, + J-2 xz +
4JIy
4A
.
N
TO6N
HOC
I
icruaEA
<sub>s"tttt-"'o</sub>
-
|
Jix,
+txylry
+,{T*TIxyTff
=3(x+y)
.i.<_
</div>
<!--links-->