Tải bản đầy đủ (.pdf) (20 trang)

Lecture Strength of Materials I: Chapter 7 - PhD. Tran Minh Tu

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.46 MB, 20 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1></div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

7



CHAPTER


1/10/2013


</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

Contents


7.1. Introduction



7.2. Bending stress



7.3. Shearing stress in bending


7.4. Strength condition



</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

1/10/2013 4


7.1. Introduction



In previous charters, we considered the stresses in the bars caused
by axial loading and torsion. Here we introduce the third fundamental
loading: bending. When deriving the relationship between the bending
moment and the stresses causes, we find it again necessary to make
certain simplifying assumptions.


</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

7.1. Introduction



</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>

1/10/2013 6


</div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7>

7.1. Introduction



 Segment BC: M<sub>x</sub>≠0, Q<sub>y</sub>=0


=> <b>Pure Bending</b>


</div>
<span class='text_page_counter'>(8)</span><div class='page_container' data-page=8>

1/10/2013 8


7.1. Introduction



</div>
<span class='text_page_counter'>(9)</span><div class='page_container' data-page=9>

7.2. Bending stress



</div>
<span class='text_page_counter'>(10)</span><div class='page_container' data-page=10>

1/10/2013 10


7.2. Bending stress



The positive bending moment causes the
material within the bottom portion of the beam
to <i>stretch</i> and the material within the top portion
to <i>compress</i>. Consequently, between these two
regions there must be a surface, called the


<i>neutral surface</i>, in which longitudinal fibers of
the material will not undergo a change in
length.


</div>
<span class='text_page_counter'>(11)</span><div class='page_container' data-page=11>

7.2. Bending stress



Neutral fiber


c d


a <sub>b</sub>



c <sub>d</sub>


 d


dz
1 2
1 2
1 2
1 2
y


y a b


Due to bending moment M<sub>x</sub> caused
by the applied loading, the
cross-section rotate relatively to each other
by the amount of d.




' ' <i>y d</i> <i>d</i>


<i>dz</i> <i>c d</i> <i>cd</i>     <i>y</i>


        


The Normal strain of the longitudinal
fiber <i>cd</i> that lies distance y below the
neutral surface.
<i>z</i>


<i>y</i>





 Compatibility


</div>
<span class='text_page_counter'>(12)</span><div class='page_container' data-page=12>

1/10/2013


12


7.2. Bending stress



 Equilibrium
<i>z</i>

<i>y</i>


<i>E</i>






Following Hooke’s law, we have.


1


????




y
z
x
dA



x
y
z
K
M<sub>x</sub>
Because of the loads applied in the


plane yOz, thus: N<sub>z</sub>=M<sub>y</sub>=0 and M<sub>x</sub>≠0.


0



<i>z</i> <i>z</i>


<i>A</i> <i>A</i>


<i>E</i>



<i>N</i>

<i>dA</i>

<i>yd A</i>




0



<i>x</i>
<i>A</i>


<i>yd A</i>

<i>S</i>





0




<i>y</i> <i>z</i>


<i>A</i> <i>A</i>


<i>E</i>



<i>M</i>

<i>x</i>

<i>dA</i>

<i>xyd A</i>




0



<i>xy</i>
<i>A</i>


<i>xyd A</i>

<i>I</i>





<i>x</i>

– neutral axis (the neutral axis


passes through the centroid C of the
cross-section).


<i>y - axis</i>

– the axis of symmetry of


</div>
<span class='text_page_counter'>(13)</span><div class='page_container' data-page=13>

7.2. Bending stress



M<sub>x</sub>>0: stretch top portion
M<sub>x</sub><0: compress top portion



y
z
x
dA


x
y
z
K
M<sub>x</sub>
2


<i>x</i> <i>z</i> <i>x</i>


<i>A</i> <i>A</i>


<i>E</i>

<i>E</i>



<i>M</i>

<i>y</i>

<i>dA</i>

<i>y d A</i>

<i>I</i>




1

<i><sub>x</sub></i>
<i>x</i>

<i>M</i>


<i>EI</i>





EI<sub>x</sub> – stiffness of beam



M<sub>x</sub> – internal bending moment


 – radius of neutral longitudinal fiber


<i>x</i>
<i>z</i>
<i>x</i>

<i>M</i>


<i>y</i>


<i>I</i>





y – coordinate of point


<i>M</i>

Belong to tensile zone


</div>
<span class='text_page_counter'>(14)</span><div class='page_container' data-page=14>

7.2. Bending stress



• Stress distribution


- Stresses vary linearly with
the distance y from neutral axis


• Maximum stresses at a cross-section


max max
<i>x</i> <i>t</i>
<i>x</i>

<i>M</i>



<i>y</i>


<i>I</i>


 



min max
<i>x</i> <i>c</i>
<i>x</i>

<i>M</i>


<i>y</i>


<i>I</i>


 



yt


max – the distance from N.A to a point farthest away from N.A in the tensile portion
yc


</div>
<span class='text_page_counter'>(15)</span><div class='page_container' data-page=15>

7.2. Bending stress


x
y
<sub>min</sub>
<sub>max</sub>
h/2
h/2
z
M<sub>x</sub>
max

2


<i>x</i> <i>x</i>
<i>x</i> <i>x</i>


<i>M</i>

<i><sub>h</sub></i>

<i>M</i>



<i>I</i>

<i>W</i>


 


max min


/ 2


<i>x</i>
<i>x</i>

<i>I</i>


<i>W</i>


<i>h</i>



max max

2



<i>t</i> <i>c</i>

<i>h</i>



<i>y</i>

<i>y</i>



min


2



<i>x</i> <i>x</i>


<i>x</i> <i>x</i>


<i>M</i>

<i><sub>h</sub></i>

<i>M</i>




<i>I</i>

<i>W</i>



 

 





</div>
<span class='text_page_counter'>(16)</span><div class='page_container' data-page=16>

1/10/2013 16


</div>
<span class='text_page_counter'>(17)</span><div class='page_container' data-page=17>

7.2. Bending stress



</div>
<span class='text_page_counter'>(18)</span><div class='page_container' data-page=18>

1/10/2013 18


</div>
<span class='text_page_counter'>(19)</span><div class='page_container' data-page=19></div>
<span class='text_page_counter'>(20)</span><div class='page_container' data-page=20>

1/10/2013 20


</div>

<!--links-->

×