Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (80.46 KB, 3 trang )
<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>
Onthionline.net
§. SỐ CHĨNH HƠP-SỐ TỔ HỢP
A. <i><b>Số CHĨNH HỢP</b></i>
Số chĩnh hợp chập k của N ;Kí hiệu : A
Đôi khi chúng ta giải các bài toán chưng minh bằng các phép chứng minh
thông thường không mang lại hiệu quả. Nhưng chúng ta có một phép chứng
minh mới : phép chứng minh đó là <b>QUY NẠP.</b>
Các bước của phép chứng minh quy nạp : ( Bài tốn phải có điếu kiện thuộc
tập số ngun dương. )
Bước 1: Chứng minh <b>mệnh đề</b> đúng với n = 1;
Bước 2: Từ giả thiết, giả sử <b>mệnh đề</b> đúng với n = k (k≥1)( n là số tự nhiên ).
Từ đó chứng minh <b>mệnh đề</b> đúng với n = k+1.
Bước 3: Kết luận <b>mệnh đề</b> đứng với mọi số nguyên đương n.
<b>Ví dụ:</b> Chứng minh: A= 1+2+3+4+...+N ; với N là số nguyên.
Thông thường, chúng ta chứng minh một bài tốn nào đó bằng các phép
chứng minh thông thường. Nhưng đôi khi chúng ta gặp các bài toán chứng
minh mà ta chứng minh bằng các phép chứng minh thông thường không mang
lại hiêu quả kể cả quy nạp. Thì chúng ta phải sử dụng một phép chứng minh
khác, đó là: <b>phép phản chứng.</b> Sau đây là một số <b>ví dụ</b> minh hoạ:
<b>Ví dụ 1:</b> Chứng minh rằng: Tích của ba số tự nhiên liên tiếp chia hết cho
6.
<b>Giải:</b> Giả sử ba số tự nhiên liên tiếp không chia hết cho 6. Gọi ba số tự
nhiên liên tiếp đó là: 2<b>n; 2n+1; 2n+2.</b>
Tích của ba số tự nhiên liên tiếp: <b>T=</b>2<b>n.(2n+1).(2n+2). </b>Nhận thấy <b>T</b> luôn
luôn chia hết cho 2,và luôn luôn chia hết cho 3. Suy ra <b>T</b> luôn luôn chia hết cho
6. Trái với giả thiết. Vậy tích của ba số tự nhiên liên tiếp ln chia hết cho 6.
<b>Ví dụ 2:</b> Chứng minh rằng: Nếu <b>n</b> là số tự nhiên và <b>n2</b><sub>chia hết cho 5 thì </sub>
<b>n </b>chia hết cho 5.
Ta có: n2<sub>= ( 5k+k’)</sub>2<sub>=25k</sub>2<sub>+10k.k’+k’</sub>2<sub> .Nhận thấy: (25k</sub>2<sub>+10k.k’) </sub>
ln chia hết cho 5; k’2<sub> không chia hết cho5. Suy ra n</sub>2<sub> không chia hết cho 5. </sub>
Điều này trái với giả thiết. Vậy n chia hết cho5.
<b>Ví dụ 3:</b> Chứng minh rằng : Nếu A(A là số tự nhiên.) chia hết cho n và
đồng thời cũng chia hết cho m (m,n ìa số tự nhiên.). Thì A chia hết cho tích của
m và n .
<b>Giải: </b> Giả sử A không chia hết cho tích của m và n.
Nhận thấy A vừa là bội của m, vừa là bội của n. Suy ra A là bội của (m.n)
hay Achia hết cho tích của m và n. Điều này trái với giả thiết. Suy ra: A chia
hết cho tích của m và n.
Qua nhưng ví dụ trên ta có thể rút ra các bước chứng minh bài tốn bàng
phép phản chứng:
Xét mệnh đề: <b> x X, P(x) Q(x)</b>