Tải bản đầy đủ (.pdf) (6 trang)

SỰ HỘI TỤ CỦA MỘT CHUỖI CON CỦA CHUỖI ĐIỀU HÒA

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (273.57 KB, 6 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

<b>THE CONVERGENCE OF A SUB-SERIES OF HARMONIC SERIES </b>



<b>Dinh Van Tiep*, Pham Thi Thu Hang </b>


<i>College of Technology-TNU </i>


ABSTRACT


When studying the convergence of a numeric series, one important technique we often use is to
compare that series with a series whose each term is a power of the reciprocal of an integer. We
sometimes call this technique p-test. In general, we often estimate that series with one of sub-series
(these are series whose each term is an integer) of the harmonic series. Besides, to test the
convergence of Riemann Zeta function at a given point, by comparing this series with a such
sub-series, since then we may know whether the function is defined at this point or not. Therefore,
finding the conditions in which such sub-series converges becomes a meaningful work. This
article aims to present new result for this problem.


<i><b>Keyword: sub-series of the harmonic series, Riemann Zeta function, convergent, numeric series, </b></i>


<i>the reciprocal of an integer.</i>


INTRODUCTION*


We know that the harmonic series


1
1


<i>n</i> <i>n</i>





is
divergent. However, there are its convergent
sub-series, such as <sub>2</sub> <sub>3</sub>


1 1


1 1


, .


<i>k</i> <i>k</i> <i>k</i> <i>k</i>




 

We have a


general and useful result which we often
consider to use first to test the convergence of
a given series, namely, the series


1
1


<i>p</i>
<i>k</i> <i>k</i>





converges if and only if

<i>p</i>

1

and diverges if

1



<i>p</i>

. This method is called the p-test. Now,
consider a sub-series


1
1


<i>k</i> <i>nk</i>


of the harmonic
series. If this series converges, whether the
sequence

 

<i>n</i>

<i><sub>k</sub></i> <i><sub>k</sub></i><sub></sub><sub>1</sub> increases at a higher speed
than some sequence

 



1

, (

1)



<i>k</i>

<i>k</i>



 

does.
This question is answered in Proposition 1
below. Besides, if we look at the distance of
two consecutive denominators,


1

:



<i>k</i>

<i>n</i>

<i>k</i>

<i>n</i>

<i>k</i>


 

, we also want to know how
different it is between this distance with that
distance of the series


1
1


<i>k</i> <i>k</i>



, the main result
is stated in Theorem 1.


THE RATE OF THE INCREASING OF
TERMS FOR A DIVERGENT SUB
-SERIES


We first consider

 



1


<i>k</i> <i><sub>k</sub></i>


<i>n</i>

<sub></sub> to be an increasing
sequence of positive integers. It naturally
establishes the series


1


1


<i>k</i> <i>nk</i>


, we index this by
<b>(1). To find out the rate at which each term </b>
increases, we compare this series with
convergent series in the form


1
1


<i>k</i> <i>k</i>





(

1)

, and we get the following statement.


<b>Proposition 1. If the series </b>


1

1


<i>k</i>

<i>n</i>

<i>k</i>


diverges,
then

lim inf

<i>k</i>

0



<i>k</i>



<i>n</i>


<i>k</i>





for all

1.


This statement is easy to verify. Indeed, we
suppose by contradiction that there exist


0


 and

1 such that


lim inf

<i>k</i>

0



<i>k</i>


<i>n</i>


<i>k</i>





 

. This means, there has an
index <i>k</i><sub>0</sub> 1 such that

1

1

,



<i>k</i>


<i>n</i>

<i>k</i>

 for all


0


</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

However, this statement only includes one


direction, i.e if

lim inf

<i>k</i>

0



<i>k</i>


<i>n</i>


<i>k</i>





(

 

1)

, we
<b>do not know whether (1) diverges or not. For </b>
<b>example, consider the series (1) with </b>


: (ln ) , ( 1)


<i>k</i>


<i>n</i> <sub></sub><i>k</i> <i>k</i> <sub></sub> 

 . We have


1
(ln )


lim <i>k</i> lim 0, 1.


<i>k</i> <i>k</i>


<i>n</i> <i>k</i>


<i>k</i> <i>k</i>





 



     


However, by using the integral test, we can
see that the series


1
1
(ln )


<i>k</i> <i>k</i> <i>k</i>



converges,
<b>and so does (1). </b>


In the above counter-example, we use the
floor function

 

<sub> </sub>

.

and apply the following
<i>fact, which said that for an increasing </i>


<i>sequence </i>

 

<i>a</i>

<i><sub>k</sub></i> <i><sub>k</sub></i><sub></sub><sub>1</sub><i> of real number, either both </i>
<i>series </i>


1
1


<i>k</i> <i>ak</i>



<i> and </i>


1

1


<i>k</i>

 

 

<i>a</i>

<i>k</i>


<i> converge or </i>


<i>diverge. This fact can be implied easily by </i>


applying the comparison test from the
observation that

1

<i>k</i>

2, (

1).



<i>k</i>

<i>a</i>



<i>k</i>


<i>a</i>



 



 


 



For another counter-example, let us consider
the series <sub>1</sub>


1
1



1


<i>n</i> <i><sub>n</sub></i>


<i>n</i>


. It is clear that


1
1


1
1

1



lim

lim

0



<i>n</i>


<i>n</i> <i>n</i>


<i>n</i>

<i>n</i>



<i>n</i>



<i>n</i>



 <sub></sub>







  

for all

1.
However, this series diverges because


1
1


ln


<i>n</i>


<i>n</i>

<i>n</i>

<i>n</i>

for all <i>n</i>5 and the series


2
1
ln


<i>n</i> <i>n</i> <i>n</i>


diverges, which can be seen by
applying the integral test.


<b>Proposition </b> <b>2 </b> <b>(Tiep’s </b> <b>Test). </b> Let


:

(0, )



be an increasing function
defined on the set of all natural numbers .
Then, the series <sub>(n)</sub>


2
1


<i>n</i> <i>n</i>



converges if


[ (n) 1] ln



lim inf

1



ln ln


<i>n</i>


<i>n</i>


<i>n</i>








  




 

, and it diverges if


[ (n) 1] ln




lim sup

1.



ln ln


<i>n</i>


<i>n</i>


<i>n</i>








  



 



<i>Proof. </i> Firstly, if


[ (n) 1] ln



lim inf

1



ln ln


<i>n</i>


<i>n</i>


<i>n</i>



<sub></sub>







  

<sub> </sub>



 

, we have


ln ln


(n) 1



ln


<i>n</i>


<i>n</i>



 



for all n large enough.
So,

<i>n</i>

(n)

<i>n</i>

ln

<i>n</i>

. By the integral test, we
can see that the series


2
1
ln


<i>n</i> <i>n</i> <i>n</i>



converges.
Therefore, <sub>(n)</sub>


2
1


<i>n</i> <i>n</i>



converges, too.
Finally, if

lim sup

[ (n) 1] ln

1



ln ln


<i>n</i>


<i>n</i>


<i>n</i>








  

<sub></sub>



 

, by


comparing the series <sub>(n)</sub>


2
1



<i>n</i> <i>n</i>



with the series


2
1
ln


<i>n</i> <i>n</i> <i>n</i>


, which diverges, we can see that
our series diverges, too.
We now illustrate the use of this test to some
following examples.


<b>Example 1. The series </b> <sub>1</sub>


1
2 <sub>ln ln</sub>


1
ln


<i>n</i> <i><sub>n</sub></i>


<i>n</i> <i>n</i>







converges.
• Indeed, set


1
1
(n) ln ln<i>n</i>

<sub>ln</sub>



<i>n</i>

<i>n</i>

<i>n</i>

, then

1

ln ln



( ) 1



ln ln

ln


<i>n</i>


<i>n</i>



<i>n</i>

<i>n</i>



 

.


Hence,

lim

[ ( ) 1] ln


ln ln


<i>n</i>


<i>n</i>

<i>n</i>



<i>n</i>









  



2
ln


1 lim .


(ln ln )


<i>n</i>


<i>n</i>
<i>n</i>



    By the above test,


</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

<b>Example 2. The series </b> <sub>1</sub>


1
2 <sub>ln</sub>


1
ln



<i>n</i> <i><sub>n</sub></i>


<i>n</i> <i>n</i>




diverges.


• Indeed, by taking


1
1
(n) ln<i>n</i>

<sub>ln</sub>



<i>n</i>

<i>n</i>

<i>n</i>

, we


have

( ) 1

1

ln ln



ln

ln



<i>n</i>


<i>n</i>



<i>n</i>

<i>n</i>



 

, and

[ ( ) 1] ln



lim




ln ln


<i>n</i>


<i>n</i>

<i>n</i>



<i>n</i>








  

1



1 lim

1.



ln ln


<i>n</i>

<i><sub>n</sub></i>



 

Ther


efore, the series diverges.


<b>Example 3. The series </b>


2
1
(ln )


<i>n</i> <i>n</i>






diverges.
• Indeed, by setting ( )


(ln )


<i>n</i>


<i>n</i>

<i>n</i>

, we get

ln ln



( )



ln


<i>n</i>


<i>n</i>



<i>n</i>



. Therefore,


[ ( ) 1] ln


lim



ln ln


<i>n</i>


<i>n</i>

<i>n</i>




<i>n</i>








  



lnln ln


lim 1


ln ln ln


<i>n</i>


<i>n</i> <i>n</i>


<i>n</i> <i>n</i>






 


 <sub></sub>  <sub></sub>  


  . So, the



series diverges. □


<b>Example </b> <b>4. </b> Consider the series


ln
2


1


(ln )

<i>n</i>


<i>n</i>

<i>n</i>







, where

0.



<b>Case 1: </b>

0

 

1,

if

<i>n</i>

( )<i>n</i>

(ln )

<i>n</i>

ln<i>n</i>, then


1

ln ln


( )



ln


<i>n</i>


<i>n</i>



<i>n</i>






<sub></sub> , so

lim

[ ( ) 1] ln


ln ln


<i>n</i>


<i>n</i>

<i>n</i>



<i>n</i>








  



 

.
Hence, the series diverges.


<b>Case 2: </b>

1

, if

<i>n</i>

( )<i>n</i>

(ln )

<i>n</i>

ln<i>n</i>, we have


1


( )<i>n</i> (ln <i>n</i>)(ln ln )<i>n</i>


<sub></sub> 


, so


[ ( ) 1] ln



lim



ln ln


<i>n</i>


<i>n</i>

<i>n</i>



<i>n</i>








  

<sub> </sub>



. Therefore, the series
converges.


<b>The limit series for sequence of increasing </b>
<b>series </b>


Let

   

<i><sub>k</sub></i> <sub>1</sub>

,

<i><sub>k</sub></i> <sub>1</sub>


<i>k</i> <i>k</i>


<i>a</i>

<sub></sub>

<i>b</i>

<sub></sub> be two sequences of
positive numbers. We denote


 

<i>a</i>

<i>k</i> <i><sub>k</sub></i><sub></sub><sub>1</sub>

 

<i>b</i>

<i>k</i> <i><sub>k</sub></i><sub></sub><sub>1</sub> to mean that the sequence



 

<i>a</i>

<i>k</i> <i>k</i>1 is an infinitesimal of a higher order


than

 

<i>b</i>

<i><sub>k</sub></i> <i><sub>k</sub></i><sub></sub><sub>1</sub>

.

That is, lim <i>k</i> 0.


<i>k</i>
<i>k</i>
<i>a</i>
<i>b</i>


  Denote


1


ln <i>x</i>: ln , <i>x</i> ln<sub>2</sub><i>x</i>: ln ln ,... <i>x</i> ,


1


ln<i><sub>m</sub>x</i>: ln(ln <i><sub>m</sub></i><sub></sub> <i>x</i>). Using these notations,
we have an order sequence of sequences as
<b>follows: </b>


<i>n</i>

ln

1

<i>n</i>

 

<i><sub>n</sub></i>

<i>n</i>

(ln

1

<i>n</i>

)(ln

2

<i>n</i>

)

<i><sub>n</sub></i>


 


1 2



...

(ln

)(ln

)...(ln

<i><sub>m</sub></i>

)

...

(*)


<i>n</i>



<i>n</i>

<i>n</i>

<i>n</i>

<i>n</i>



1 2



...

(ln

)(ln

)...(ln

<i><sub>m</sub></i>

)


<i>n</i>


<i>n</i>

<i>n</i>

<i>n</i>

<i>n</i>



1 2



...

(ln

)(ln

)


<i>n</i>

<i>n</i>

<i>n</i>

<i>n</i>



1



...

(ln

)


<i>n</i>


<i>n</i>

<i>n</i>

 

<i>n</i>
for all

 

1

 

, ,

and <i>m</i>1.


We see that for any sequence on the left of
(*), the series whose each term is the
reciprocal of its corresponding term is
divergent. However, for any sequence on the
right of (*), the series whose each term is the
reciprocal of its corresponding term is
convergent. All of these sequences satisfy the


necessary condition in Proposition 1, that is


lim

<i>n</i>

0.


<i>n</i>


<i>u</i>


<i>n</i>





It is natural to ask that whether
exists the limit sequence

{ }

<i>k</i>

<i>n n</i> for the
sequence of sequences on the left of (*) (this
means that such sequence satisfies






1 2


1 2


(ln )(ln )...(ln )


{ } (ln )(ln )...(ln )


<i>m</i> <i><sub>n</sub></i>


<i>n</i> <i>n</i> <i>m</i> <i><sub>n</sub></i>


<i>n</i> <i>n</i> <i>n</i> <i>n</i>



<i>k</i> <i>n</i> <i>n</i> <i>n</i> <i>n</i>










for all <i>m</i>1, and for every sequence


</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

{ }<i>a<sub>n n</sub></i> { }<i>k<sub>n n</sub></i> { }<i>b<sub>n n</sub></i>, the series 1


1


<i>n</i>
<i>n</i>


<i>a</i> 




diverges, but 1


1


<i>n</i>


<i>n</i>


<i>b</i> 


converges), and does
the series


1
1


<i>n</i> <i>kn</i>


still diverge?


Consider another sequence lying somewhere
at the position of (*) in the following
example. Then, since this, we will
immediately figure out that there does not
exist such limit sequence as expected.


<b>Example 5 [2]. Let </b>

( )

<i>n</i>

be the smallest
positive integer such that 1ln<sub>( )</sub><i>n</i> <i>n</i><i>e</i> for


each n. The series


2 1 2 ( )


1




(ln

)(ln

)...(ln

)


<i>n</i>

<i>n</i>

<i>n</i>

<i>n</i>

 <i>n</i>

<i>n</i>



diverges.


Indeed, set


( )


1 2 ( )


(ln

)(ln

)...(ln

)


<i>n</i>


<i>n</i>


<i>n</i>

<i>n</i>

<i>n</i>

<i>n</i>

<sub></sub>

<i>n</i>

, then


( )
3


2 ln ln


ln


( ) 1 ... .


ln ln ln


<i>n</i> <i>n</i>


<i>n</i>


<i>n</i>
<i>n</i>


<i>n</i> <i>n</i> <i>n</i>




    


Therefore,


( )
3


2 2 2


ln
ln


[ ( ) 1] ln


lim lim 1 ... .


ln ln ln


<i>n</i>


<i>n</i> <i>n</i>



<i>n</i>
<i>n</i>


<i>n</i> <i>n</i>


<i>n</i> <i>n</i> <i>n</i>





 


 


   <sub></sub> <sub></sub> <sub> </sub>


 


 


We now prove that this limit is 1. In fact,
because 1ln<sub>( )</sub><i>n</i> <i>n</i><i>e</i>, we have


( ) 1


ln

<i><sub>n</sub></i> <i>e</i>

,



<i>e</i>

<sub></sub> <sub></sub>

<i>n</i>

<i>e</i>

and so on,



( ) 2 ( ) 1


2


ln

,



<i>n</i> <i>n</i>


<i>e</i>

 

<i>n</i>

<i>e</i>

  where we denote


1 2 1


: , : ,..., : .


<i>k</i>
<i>k</i>


<i>e</i> <i>e</i>


<i>e</i> <i>e e</i> <i>e</i> <i>e</i>  <i>e</i> We can prove
by induction that


<i>k</i>
<i>k</i>


<i>e</i>

<i>e</i>

for all integers k.
Hence,


( )
3



2 2


ln
ln


...


ln ln


<i>n</i> <i>n</i>
<i>n</i>


<i>n</i> <i>n</i>




  3


2
ln
( ( ) 2)


ln


<i>n</i>
<i>n</i>


<i>n</i>




 


2
( ) 2


2
2


ln(ln )
( ( ) 2)


ln


<i>n</i>


<i>n</i>
<i>n</i>


<i>n</i>
<i>e</i>











with <sub>( ) 2</sub>


2
( ( ) 2)


lim <i><sub>n</sub></i> 0


<i>n</i>


<i>n</i>


<i>e</i>









 and


2
ln(ln )


lim 0.


ln


<i>n</i>



<i>n</i>
<i>n</i>


  Therefore, since the


previous arguments, we conclude that


2
[ ( ) 1] ln


lim 1.


ln


<i>n</i>


<i>n</i> <i>n</i>


<i>n</i>





  


 This shows that the
series diverges.


We also can verify that



<i>n</i>

(ln

1

<i>n</i>

)(ln

2

<i>n</i>

)...(ln

( )<i>n</i>

<i>n</i>

)

<i><sub>n</sub></i><sub></sub><sub>2</sub>

ln

<sub>2</sub>

 

<sub>1</sub>


<i>n</i> <i>n</i>


<i>n</i>

<i>n</i>

<i>n</i>



  for all

 

,

 

1.



Indeed, we have


( ) 1


1 2 (n) <sub>2</sub>


1


1 1


ln ln ...ln <sub>ln</sub>


0


ln ln


<i>n</i>


<i>n</i> <i>n</i> <i>n</i> <i><sub>n</sub></i>


<i>n</i> <i>n</i>






 





  . By


setting <i>xn</i>: ln <sub>2</sub><i>n</i>, we have
( ) 1


( ) 1
2


( 1)
1


1
ln


lim lim 0.


ln <i>n</i>


<i>n</i>
<i>n</i>



<i>n</i>
<i>x</i>


<i>n</i> <i>n</i>


<i>x</i>
<i>n</i>


<i>n</i> <i>e</i>














    This


completes the proof of the observation.


<b>The series of the reciprocals of primes </b>


We have a famous result in [1], which said
that the sum of reciprocals of all prime


numbers


2


1



<i>k</i>


<i>p</i> <i>prime</i>

<i>p</i>

<i>k</i>
 



diverges. Hence, by


Proposition 1, we have

lim inf

<i>k</i>

0


<i>k</i>


<i>p</i>


<i>k</i>





for all


1.


 This is a simple corollary.


Another corollary is directly implied from the
fact that the sum of reciprocals of all primes
diverges, which says that the series


1


1



,


<i>k</i>

<i>q</i>

<i>k</i>




where

<i>q k</i>

<i><sub>k</sub></i>

(

1, 2,...)

are all composite
numbers, is divergent. Indeed, to see this
point, we only take the sum of the
type


2


1


,


2



<i>k</i>


<i>p</i> <i>prime</i>

<i>p</i>

<i>k</i>
 



this sum is obviously less
than the sum we want to study. It diverges, so
the first series diverges, too.


<b>The conditions on distance between </b>
<b>consecutive terms </b>



</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

<b>Theorem 1 (Tiep). If there exists a real </b>


number

1 such that


lim inf

0



(k 1)


<i>k</i>
<i>k</i> 

<i><sub>k</sub></i>



<sub></sub>



, then <b>(1) </b>


converges.


In this theorem, because


1
(k 1)


lim 1


<i>k</i>


<i>k</i>
<i>k</i>


 






  <sub></sub>


, so the theorem is
<i>equivalent to the following theorem: If there </i>


<i>exists a positive number </i>

<i> such that </i>


lim inf

<i>k</i>

0


<i>k</i>

<i><sub>k</sub></i>





<i><b>, then (1) converges. To prove </b></i>


this theorem, we need the following lemma.


<b>Lemma. Let </b>


1


<i>k</i>
<i>k</i>


<i>q</i>

<i>S</i>

<i>q</i>






with

0, then
there exists a constant

0 such that


1


<i>k</i>


<i>S</i> 

<i>k</i> for all <i>k</i> large enough.


Indeed, because


1


1 1


1


(k 1)

1



lim

lim



(

1)



(

1)

1



<i>k</i> <i>k</i>


<i>k</i> <i>k</i>



<i>S</i>

<i>S</i>



<i>k</i>

<i>k</i>



<i>k</i>


<i>k</i>




 






 


  <sub></sub>


<sub></sub>

<sub></sub>







, so by Stolz-Cesàro theorem, we have


1
1
lim



1


<i>k</i>
<i>k</i>


<i>S</i>
<i>k</i>



   . Therefore, we only need to
take

to be a positive number less than this
limit, for example, 1


2( 1)







 , then the


lemma is proved. □


<i>The proof of Theorem 1: We are going to </i>


prove the equivalent form of Theorem 1, i.e
with the hypothesis that

lim inf

<i>k</i>

0



<i>k</i>

<i><sub>k</sub></i>





for


some

0.



Firstly, from this hypothesis, there exist


0


 and an integer <i>k</i><sub>0</sub> 1 such that


,

.



<i>k</i>


<i>k</i>

<i>k</i>







  

1  1


for all

<i>k</i>

<i>k</i>

<sub>0</sub>

.

So,


0 0


1


1 1



1 1


,


<i>k</i> <i>k</i> <i>k</i>


<i>n</i> <sub></sub>  <i>n</i> 

<i>S</i> <sub></sub> 



<i>k</i> for all

<i>k</i>

<i>k</i>

0

.


However, the series


0


1

1


<i>k k</i>

<i>k</i>










converges
and therefore so does the series


0 0 0


1
1


1



<i>k k</i> <i>nk</i> <i>Sk</i> <i>k</i>






   


. This shows that


<b>(1) converges. </b>


From Theorem 1, we have the following
simple remark: if

<i><sub>k</sub></i> is bounded, or even the
ratio


(ln )


<i>k</i>

<i>k</i>




is bounded for some positive
number

<b>, then (1) diverges. </b>


We now generalize Theorem 1 by using a
<b>general series to compare with (1). </b>


<b>Theorem 2 (Tiep). Suppose that the sequence </b>


of positive numbers

{ }

<i>a</i>

<i><sub>k</sub></i> <i><sub>k</sub></i><sub></sub><sub>1</sub> is decreasing,

and the series


1


<i>k</i>
<i>k</i>


<i>a</i>


converges. Set


1


1 1


:


<i>k</i>


<i>k</i> <i>k</i>


<i>a</i> <i>a</i>






  <b>, then the series (1) converges </b>



if lim inf <i>k</i> 0.


<i>k</i>


<i>k</i>





 <sub></sub>


<i>Proof. Assume that </i> lim inf <i>k</i> 0


<i>k</i>


<i>k</i>






 <sub> </sub>


, so
there exists an integer <i>k</i><sub>0</sub> 1 such that


<i>k</i>



<i>k</i>


  for all

<i>k</i>

<i>k</i>

<sub>0</sub>

.

Therefore,


1 1 1 1



1 ( 1 ) 1 ( 1 1)


<i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i>


<i>n</i> <i>n</i> 

<i>a</i> <i>a</i> <i>n</i>  

<i>a</i> <i>a</i>


0 0


1 1


1


(

).



<i>k</i> <i>k</i> <i>k</i>


<i>n</i>

<i>a</i>

<sub></sub>

<i>a</i>



So,


0 0 0 0


1


1 1 1


1 1 1


1 1



( ) ( )


<i>k</i>


<i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i>


<i>a</i>


<i>n</i> <i>n</i>

<i>a</i> <i>a</i> <i>a</i> <i>n</i>

<i>a</i>





  


  


 


   


</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>

index

<i>k</i>

<sub>1</sub>

1

such that


0 0


1


1

(

)



2




<i>k</i> <i>k</i> <i>k</i>


<i>a</i>

<sub></sub>

<i>n</i>

<i>a</i>


for all <i>k</i><i>k</i><sub>1</sub>. Hence, 1


1
2


1 <i>k</i>


<i>k</i>


<i>a</i>


<i>n</i>






 for all


0 1
max{ , }


<i>k</i>  <i>k k</i> . This shows that the series
<b>(1) converges by the comparison test. </b>


By the same technique, we also can prove the
following result, which is quite interesting.



<b>Theorem 3. Let </b>


1


<i>k</i>
<i>k</i>


<i>a</i>


diverge, whose terms
establish a decreasing sequence of positive
numbers. Set


1


1 1


:


<i>k</i>


<i>k</i> <i>k</i>


<i>a</i> <i>a</i>







  , then the series


<b>(1) also diverges if </b>lim inf <i>k</i> 0


<i>k</i>


<i>k</i>






 .


REFERRENCE


<i>1. Roman J. Dwilewicz, Jan Minac, Values of the </i>
<i>Riemann zeta function at integers, Materials </i>
<i>Mathematics. ISSN: 1887-1097. </i>


<i>2. W. J. Kaczor, M. T. Nowak, Problems in </i>
<i>Mathematical Analysis I, </i> ISBN:
978-0-8218-2050-6.


<i>3. T. Thanh Nguyen, Fundamental Theory of </i>


<i>Functions of a complex variable, Vietnam </i>


National University Hanoi Publisher, 2006.
<i>4. Elias M. Stein, Rami Shakarchi, Complex </i>



<i>Analysis, Princeton University Press, </i>


New Jersey, 2003.


<i>5. Nick Lork (2015), Quick proofs that certain </i>
<i>sums of fractions are not integers, The </i>
Mathematical Gazette Vol. 99.


<i>6. William Dunham (1999). Euler The Master of </i>
<i>Us All, Vol. 22, MAA. ISBN 0-88385-328-0.</i>


TÓM TẮT


<b>SỰ HỘI TỤ CỦA MỘT CHUỖI CON CỦA CHUỖI ĐIỀU HÒA </b>


<b>Đinh Văn Tiệp*<sub>, Phạm Thị Thu Hằng </sub></b>
<i>Trường Đại học Kỹ thuật Công Nghiệp – ĐH Thái Nguyên </i>
Khi xem xét sự hội tụ của một chuỗi số, một phương pháp quan trọng hay được cân nhắc trước
tiên là so sánh chuỗi đó với một chuỗi số với các số hạng là lũy thừa của nghịch đảo các số
nguyên. Một cách tổng quát, ta thường so sánh chuỗi số với một chuỗi con của chuỗi điều hịa.
Ngồi ra, để xem xét sự tồn tại của hàm Riemann Zeta tại một điểm cho trước, bằng cách so sánh
giá trị chuỗi tại điểm đó với một chuỗi con như thế, từ đó ta có thể biết hàm số có xác định tại
điểm đó hay khơng. Do vậy, việc tìm điều kiện để biết chuỗi con của chuỗi điều hòa hội tụ hay
phân kỳ trở thành một điều rất có ý nghĩa. Bài báo sẽ đưa ra một số kết quả mới cho vấn đề này.


<i><b>Từ khóa: Chuỗi con của chuỗi điều hòa, hàm Riemann Zeta, hội tụ, chuỗi số, nghịch đảo của một </b></i>


<i>số nguyên </i>


<i> </i>



</div>

<!--links-->

×