Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (273.57 KB, 6 trang )
<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>
<b>Dinh Van Tiep*, Pham Thi Thu Hang </b>
<i>College of Technology-TNU </i>
ABSTRACT
When studying the convergence of a numeric series, one important technique we often use is to
compare that series with a series whose each term is a power of the reciprocal of an integer. We
sometimes call this technique p-test. In general, we often estimate that series with one of sub-series
(these are series whose each term is an integer) of the harmonic series. Besides, to test the
convergence of Riemann Zeta function at a given point, by comparing this series with a such
sub-series, since then we may know whether the function is defined at this point or not. Therefore,
finding the conditions in which such sub-series converges becomes a meaningful work. This
article aims to present new result for this problem.
<i><b>Keyword: sub-series of the harmonic series, Riemann Zeta function, convergent, numeric series, </b></i>
<i>the reciprocal of an integer.</i>
INTRODUCTION*
We know that the harmonic series
1
1
<i>n</i> <i>n</i>
1 1
1 1
, .
<i>k</i> <i>k</i> <i>k</i> <i>k</i>
general and useful result which we often
consider to use first to test the convergence of
a given series, namely, the series
1
1
<i>p</i>
<i>k</i> <i>k</i>
converges if and only if
1
1
<i>k</i> <i>nk</i>
1
<i>k</i>
1
<i>k</i>
1
1
<i>k</i> <i>k</i>
THE RATE OF THE INCREASING OF
TERMS FOR A DIVERGENT SUB
-SERIES
We first consider
1
<i>k</i> <i><sub>k</sub></i>
1
<i>k</i> <i>nk</i>
1
1
<i>k</i> <i>k</i>
<b>Proposition 1. If the series </b>
1
<i>k</i>
This statement is easy to verify. Indeed, we
suppose by contradiction that there exist
0
<i>k</i>
<i>k</i>
0
However, this statement only includes one
<i>k</i>
: (ln ) , ( 1)
<i>k</i>
<i>n</i> <sub></sub><i>k</i> <i>k</i> <sub></sub>
1
(ln )
lim <i>k</i> lim 0, 1.
<i>k</i> <i>k</i>
<i>n</i> <i>k</i>
<i>k</i> <i>k</i>
However, by using the integral test, we can
see that the series
1
1
(ln )
<i>k</i> <i>k</i> <i>k</i>
In the above counter-example, we use the
floor function
<i>sequence </i>
1
1
<i>k</i> <i>ak</i>
1
<i>diverge. This fact can be implied easily by </i>
applying the comparison test from the
observation that
<i>k</i>
For another counter-example, let us consider
the series <sub>1</sub>
1
1
1
<i>n</i> <i><sub>n</sub></i>
<i>n</i>
1
1
1
1
<i>n</i>
<i>n</i> <i>n</i>
<i>n</i>
<sub></sub>
1
1
2
1
ln
<i>n</i> <i>n</i> <i>n</i>
<b>Proposition </b> <b>2 </b> <b>(Tiep’s </b> <b>Test). </b> Let
2
1
<i>n</i> <i>n</i>
<i>Proof. </i> Firstly, if
2
1
ln
<i>n</i> <i>n</i> <i>n</i>
2
1
<i>n</i> <i>n</i>
comparing the series <sub>(n)</sub>
2
1
<i>n</i> <i>n</i>
2
1
ln
<i>n</i> <i>n</i> <i>n</i>
<b>Example 1. The series </b> <sub>1</sub>
1
2 <sub>ln ln</sub>
1
ln
<i>n</i> <i><sub>n</sub></i>
<i>n</i> <i>n</i>
converges.
• Indeed, set
1
1
(n) ln ln<i>n</i>
Hence,
2
ln
1 lim .
(ln ln )
<i>n</i>
<i>n</i>
<i>n</i>
By the above test,
<b>Example 2. The series </b> <sub>1</sub>
1
2 <sub>ln</sub>
1
ln
<i>n</i> <i><sub>n</sub></i>
<i>n</i> <i>n</i>
diverges.
• Indeed, by taking
1
1
(n) ln<i>n</i>
have
efore, the series diverges.
<b>Example 3. The series </b>
2
1
(ln )
<i>n</i> <i>n</i>
lnln ln
lim 1
ln ln ln
<i>n</i>
<i>n</i> <i>n</i>
<i>n</i> <i>n</i>
<sub></sub> <sub></sub>
. So, the
series diverges. □
<b>Example </b> <b>4. </b> Consider the series
ln
2
<i>n</i>
<b>Case 1: </b>
1
<b>Case 2: </b>
1
( )<i>n</i> (ln <i>n</i>)(ln ln )<i>n</i>
, so
. Therefore, the series
converges.
<b>The limit series for sequence of increasing </b>
<b>series </b>
Let
<i>k</i> <i>k</i>
than
<i>k</i>
<i>k</i>
<i>a</i>
<i>b</i>
Denote
1
ln <i>x</i>: ln , <i>x</i> ln<sub>2</sub><i>x</i>: ln ln ,... <i>x</i> ,
1
ln<i><sub>m</sub>x</i>: ln(ln <i><sub>m</sub></i><sub></sub> <i>x</i>). Using these notations,
we have an order sequence of sequences as
<b>follows: </b>
We see that for any sequence on the left of
(*), the series whose each term is the
reciprocal of its corresponding term is
divergent. However, for any sequence on the
right of (*), the series whose each term is the
reciprocal of its corresponding term is
convergent. All of these sequences satisfy the
1 2
1 2
(ln )(ln )...(ln )
{ } (ln )(ln )...(ln )
<i>m</i> <i><sub>n</sub></i>
<i>n</i> <i>n</i> <i>m</i> <i><sub>n</sub></i>
<i>n</i> <i>n</i> <i>n</i> <i>n</i>
<i>k</i> <i>n</i> <i>n</i> <i>n</i> <i>n</i>
for all <i>m</i>1, and for every sequence
{ }<i>a<sub>n n</sub></i> { }<i>k<sub>n n</sub></i> { }<i>b<sub>n n</sub></i>, the series 1
1
<i>n</i>
<i>n</i>
<i>a</i>
diverges, but 1
1
<i>n</i>
<i>b</i>
1
1
<i>n</i> <i>kn</i>
Consider another sequence lying somewhere
at the position of (*) in the following
example. Then, since this, we will
immediately figure out that there does not
exist such limit sequence as expected.
<b>Example 5 [2]. Let </b>
each n. The series
2 1 2 ( )
Indeed, set
( )
1 2 ( )
<i>n</i>
( )
3
2 ln ln
ln
( ) 1 ... .
ln ln ln
<i>n</i> <i>n</i>
<i>n</i>
<i>n</i>
<i>n</i> <i>n</i> <i>n</i>
Therefore,
( )
3
2 2 2
ln
ln
[ ( ) 1] ln
lim lim 1 ... .
ln ln ln
<i>n</i>
<i>n</i> <i>n</i>
<i>n</i>
<i>n</i>
<i>n</i> <i>n</i>
<i>n</i> <i>n</i> <i>n</i>
<sub></sub> <sub></sub> <sub> </sub>
We now prove that this limit is 1. In fact,
because 1ln<sub>( )</sub><i>n</i> <i>n</i><i>e</i>, we have
( ) 1
( ) 2 ( ) 1
2
<i>n</i> <i>n</i>
1 2 1
: , : ,..., : .
<i>k</i>
<i>k</i>
<i>e</i> <i>e</i>
<i>e</i> <i>e e</i> <i>e</i> <i>e</i> <i>e</i> We can prove
by induction that
<i>k</i>
<i>k</i>
( )
3
2 2
ln
ln
...
ln ln
<i>n</i> <i>n</i>
<i>n</i>
<i>n</i> <i>n</i>
3
2
ln
( ( ) 2)
ln
<i>n</i>
<i>n</i>
<i>n</i>
2
( ) 2
2
2
ln(ln )
( ( ) 2)
ln
<i>n</i>
<i>n</i>
<i>n</i>
<i>n</i>
<i>e</i>
with <sub>( ) 2</sub>
2
( ( ) 2)
lim <i><sub>n</sub></i> 0
<i>n</i>
<i>n</i>
<i>e</i>
and
2
ln(ln )
lim 0.
ln
<i>n</i>
<i>n</i>
<i>n</i>
Therefore, since the
previous arguments, we conclude that
2
[ ( ) 1] ln
lim 1.
ln
<i>n</i>
<i>n</i> <i>n</i>
<i>n</i>
This shows that the
series diverges.
We also can verify that
<i>n</i> <i>n</i>
for all
Indeed, we have
( ) 1
1 2 (n) <sub>2</sub>
1
1 1
ln ln ...ln <sub>ln</sub>
0
ln ln
<i>n</i>
<i>n</i> <i>n</i> <i>n</i> <i><sub>n</sub></i>
<i>n</i> <i>n</i>
. By
setting <i>xn</i>: ln <sub>2</sub><i>n</i>, we have
( ) 1
( ) 1
2
( 1)
1
1
ln
lim lim 0.
ln <i>n</i>
<i>n</i>
<i>n</i>
<i>n</i>
<i>x</i>
<i>n</i> <i>n</i>
<i>x</i>
<i>n</i>
<i>n</i> <i>e</i>
This
completes the proof of the observation.
<b>The series of the reciprocals of primes </b>
We have a famous result in [1], which said
that the sum of reciprocals of all prime
2
<i>k</i>
<i>p</i> <i>prime</i>
diverges. Hence, by
Proposition 1, we have
1.
Another corollary is directly implied from the
fact that the sum of reciprocals of all primes
diverges, which says that the series
1
where
2
<i>k</i>
<i>p</i> <i>prime</i>
this sum is obviously less
than the sum we want to study. It diverges, so
the first series diverges, too.
<b>The conditions on distance between </b>
<b>consecutive terms </b>
<b>Theorem 1 (Tiep). If there exists a real </b>
number
converges.
In this theorem, because
1
(k 1)
lim 1
<i>k</i>
<i>k</i>
<i>k</i>
<sub></sub>
, so the theorem is
<i>equivalent to the following theorem: If there </i>
<i>exists a positive number </i>
this theorem, we need the following lemma.
<b>Lemma. Let </b>
1
<i>k</i>
<i>k</i>
<i>q</i>
1
<i>k</i>
<i>S</i>
Indeed, because
1
1 1
1
<i>k</i> <i>k</i>
<i>k</i> <i>k</i>
<sub></sub>
, so by Stolz-Cesàro theorem, we have
1
1
lim
1
<i>k</i>
<i>k</i>
<i>S</i>
<i>k</i>
. Therefore, we only need to
take
2( 1)
, then the
lemma is proved. □
<i>The proof of Theorem 1: We are going to </i>
prove the equivalent form of Theorem 1, i.e
with the hypothesis that
<i>k</i>
some
Firstly, from this hypothesis, there exist
0
<i>k</i>
for all
0 0
1
1 1
1 1
,
<i>k</i> <i>k</i> <i>k</i>
<i>n</i> <sub></sub> <i>n</i>
0
1
0 0 0
1
1
1
<i>k k</i> <i>nk</i> <i>Sk</i> <i>k</i>
<b>(1) converges. </b>
From Theorem 1, we have the following
simple remark: if
is bounded for some positive
number
We now generalize Theorem 1 by using a
<b>general series to compare with (1). </b>
<b>Theorem 2 (Tiep). Suppose that the sequence </b>
of positive numbers
1
<i>k</i>
<i>k</i>
<i>a</i>
1
1 1
:
<i>k</i>
<i>k</i> <i>k</i>
<i>a</i> <i>a</i>
<b>, then the series (1) converges </b>
if lim inf <i>k</i> 0.
<i>k</i>
<i>k</i>
<sub></sub>
<i>Proof. Assume that </i> lim inf <i>k</i> 0
<i>k</i>
<i>k</i>
<sub> </sub>
, so
there exists an integer <i>k</i><sub>0</sub> 1 such that
<i>k</i>
for all
1 1 1 1
1 ( 1 ) 1 ( 1 1)
<i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i>
<i>n</i> <i>n</i>
0 0
1 1
1
<i>k</i> <i>k</i> <i>k</i>
0 0 0 0
1
1 1 1
1 1 1
1 1
( ) ( )
<i>k</i>
<i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i>
<i>a</i>
<i>n</i> <i>n</i>
index
0 0
1
1
<i>k</i> <i>k</i> <i>k</i>
1
2
1 <i>k</i>
<i>k</i>
<i>a</i>
<i>n</i>
for all
0 1
max{ , }
<i>k</i> <i>k k</i> . This shows that the series
<b>(1) converges by the comparison test. </b>
By the same technique, we also can prove the
following result, which is quite interesting.
<b>Theorem 3. Let </b>
1
<i>k</i>
<i>k</i>
<i>a</i>
1
1 1
:
<i>k</i>
<i>k</i> <i>k</i>
<i>a</i> <i>a</i>
, then the series
<b>(1) also diverges if </b>lim inf <i>k</i> 0
<i>k</i>
<i>k</i>
.
REFERRENCE
<i>1. Roman J. Dwilewicz, Jan Minac, Values of the </i>
<i>Riemann zeta function at integers, Materials </i>
<i>Mathematics. ISSN: 1887-1097. </i>
<i>2. W. J. Kaczor, M. T. Nowak, Problems in </i>
<i>Mathematical Analysis I, </i> ISBN:
978-0-8218-2050-6.
<i>3. T. Thanh Nguyen, Fundamental Theory of </i>
<i>Functions of a complex variable, Vietnam </i>
National University Hanoi Publisher, 2006.
<i>4. Elias M. Stein, Rami Shakarchi, Complex </i>
<i>Analysis, Princeton University Press, </i>
New Jersey, 2003.
<i>5. Nick Lork (2015), Quick proofs that certain </i>
<i>sums of fractions are not integers, The </i>
Mathematical Gazette Vol. 99.
<i>6. William Dunham (1999). Euler The Master of </i>
<i>Us All, Vol. 22, MAA. ISBN 0-88385-328-0.</i>
TÓM TẮT
<b>SỰ HỘI TỤ CỦA MỘT CHUỖI CON CỦA CHUỖI ĐIỀU HÒA </b>
<b>Đinh Văn Tiệp*<sub>, Phạm Thị Thu Hằng </sub></b>
<i>Trường Đại học Kỹ thuật Công Nghiệp – ĐH Thái Nguyên </i>
Khi xem xét sự hội tụ của một chuỗi số, một phương pháp quan trọng hay được cân nhắc trước
tiên là so sánh chuỗi đó với một chuỗi số với các số hạng là lũy thừa của nghịch đảo các số
nguyên. Một cách tổng quát, ta thường so sánh chuỗi số với một chuỗi con của chuỗi điều hịa.
Ngồi ra, để xem xét sự tồn tại của hàm Riemann Zeta tại một điểm cho trước, bằng cách so sánh
giá trị chuỗi tại điểm đó với một chuỗi con như thế, từ đó ta có thể biết hàm số có xác định tại
điểm đó hay khơng. Do vậy, việc tìm điều kiện để biết chuỗi con của chuỗi điều hòa hội tụ hay
phân kỳ trở thành một điều rất có ý nghĩa. Bài báo sẽ đưa ra một số kết quả mới cho vấn đề này.
<i><b>Từ khóa: Chuỗi con của chuỗi điều hòa, hàm Riemann Zeta, hội tụ, chuỗi số, nghịch đảo của một </b></i>
<i>số nguyên </i>
<i> </i>