Tải bản đầy đủ (.pdf) (10 trang)

Fast and slow light enhancement using cascaded microring resonators with the Sagnac reflector

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (3.47 MB, 10 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

Fast

and

slow

light

enhancement

using

cascaded

microring



resonators

with

the

Sagnac

reflector



Duy-Tien

Le

a

<sub>,</sub>

<sub>Manh-Cuong</sub>

<sub>Nguyen</sub>

b

<sub>,</sub>

<sub>Trung-Thanh</sub>

<sub>Le</sub>

c,∗


a<sub>Posts</sub><sub>and</sub><sub>Telecommunications</sub><sub>Institute</sub><sub>of</sub><sub>Technology</sub><sub>(PTIT)</sub><sub>and</sub><sub>Finance-Banking</sub><sub>University,</sub><sub>Hanoi,</sub><sub>Viet</sub><sub>Nam</sub>
b<sub>Le</sub><sub>Quy</sub><sub>Don</sub><sub>Technical</sub><sub>University,</sub><sub>Hanoi,</sub><sub>Viet</sub><sub>Nam</sub>


c<sub>International</sub><sub>School</sub><sub>(IS-VNU),</sub><sub>Vietnam</sub><sub>National</sub><sub>University</sub><sub>(VNU),</sub><sub>Hanoi,</sub><sub>Viet</sub><sub>Nam</sub>


a

r

t

i

c

l

e

i

n

f

o



Articlehistory:


Received3September2015


Receivedinrevisedform31October2016
Accepted7November2016


Keywords:
Microringresonator
Fastlight
Slowlight
Siliconwaveguides
FDTD


Transfermatrixmethod
Multimodeinterference(MMI)
Microresonators



a

b

s

t

r

a

c

t



AcascadedmicroringresonatorbasedonsiliconwaveguideswithanMMI(Multimode
Interference)basedSagnacreectorisproposedinthisstudy.Bycontrollingthecoupling
coefcientswiththeusedoftheMMIbasedSagnacreector,thedoubleofbothpulse
delayandadvancementfortheslowandfastlightcanbeachieved.Thenewstructurecan
producethefastandslowlightphenomenonononechipwithadoubleofthetimedelay
andpulseadvancement.ByusingtheSagnacreector,thedeviceisverycompact.Transfer
matrixmethodandFDTD(FiniteDifferenceTimeDomain)simulationareusedtoobtainthe
characteristicsofthedevice.Thetransmission,phase,groupdelayandpulsepropagation
areanalyzedindetail.OurFDTDsimulationsshowagoodagreementwiththeanalytical
theory.


â2016ElsevierGmbH.Allrightsreserved.


<b>1.</b> <b>Introduction</b>


Inrecentyears,opticalmicroringresonatorshavebeenofgreatinterestforapplicationsinopticalcommunicationssuchas
opticaldelaylines,opticalswitches,modulators,lters,dispersioncompensatorsetc.[1,2].Micro-ringresonatorstructures
consistsofanumberofsinglemicro-ringresonatorscascadedinseriesorinparallelcanbeusedforhigherorderlterswith
extendedfreespectralratios[3]orswitching[4],modulatingapplications[5],fastandslowlight[6].


Analysisofthegroupdelayandtransmissioncharacteristicsofcascadedmicroringresonatorsusedforopticalltersand
dispersioncompensatorshavebeenstudied[79].However,thesestructureshavepositivegroupdelayandmainlydesigned
forpulsedelayapplications.Slowandfastlightgenerationareemergingasaveryattractiveresearchtopic.Varioustechniques
havebeendevelopedtorealizefastlightandslowlightinatomicvaporsandsolid-statematerials[10].Oneapplicationamong
thesetechniquesistocontrolthegroupvelocity

<i>v</i>

goflightpulsestomakethempropagateeitherveryslow(

<i>v</i>

g<c)orvery
fast(

<i>v</i>

g>cor

<i>v</i>

gisnegative),wherecisthevelocityoflight.


Inthisstudy,weproposeanewcascadedmicroringstructurebasedonsiliconwaveguideswithaSagnacloopreector.


TheSagnacloopreectorhasbeenappliedtomanyapplicationstructuressuchaslteringandfastlightstructures[11,12].
Bycontrollingthecouplingcoefcientsofthecouplerusedinmicroringresonatorsintheproposedstructure,negativeand
positivegroupdelaycanbeobtained.Thismeansthatthelightvelocitycanbecontrolledandthereforethefastandslow


Correspondingauthor.


E-mailaddresses:,(T.-T.Le).


</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

<b>Fig.2.</b>Transmission,phaseandgroupdelaycharacteristicsofthesinglemicroringresonator.


lightcanbeinducedbythestructure[1315].Here,weuseaSagnacloopreectorbasedonan1ì2MMI(Multimode
Interferencecoupler)attheendofthestructuretoenhancethefastandslowlight.TheuseofanMMIbasedreectorforthe
reectiontodoublethepulsedelayandpulseadvancement.Itisshownthatthegroupdelay,timedelayandadvancement
aredoubledcomparedtothecasewithoutusingtheMMISagnacloopreector.Weusesiliconmicroringresonatorsbecause
ofhighqualityoffabricationbyusingCMOScompatibleprocessanddevicecompactnesswithahighindexcontrastsystem.


<b>2.</b> <b>Design</b>


</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

<b>Fig.3.</b> Inputandoutputpulsesatthesinglemicroringresonator.


2.1. Singlemicroringresonator


ForasinglemicroringresonatorasshowninFig.1(b),theoutputfieldcanberelatedtotheinputfieldbytheexpression
[16]


H1=
E2
E1 =


1−˛1exp







j1






1−˛11exp






j1




(1)


whereE1,E2arethefieldamplitudeattheinputandoutput;1 and1=






1−|1|2arethetransmissionandcoupling
coefficientsofthecoupler;˛1 isthelossfactorintheringwaveguideand1=2<sub></sub>NeffLR1istheaccumulatedphaseshift
overtheringwaveguide.Neff istheeffectiverefractiveindexofthewaveguide,isthewavelengthandLR1=2R1isthe
circumferenceoftheringwaveguide.


Theeffectivephaseshiftofthemicroringresonatorcanbedefinedby


single=arg




<sub>E</sub>
2

E1




=artan





˛12sin (ω)






1<sub>+</sub>˛12






<sub>−</sub>(1<sub>+</sub>2<sub>)˛</sub>
1cos (ω)






(2)


Thenormalizedgroupdelayisgivenbyn=−
dsingle


dω .Theabsolutegroupdelayisd=Tn,whereTistheunitdelayofthe
signalpropagatingoverthemicroringwaveguide.Theresonanceisoccurredatthephase1=2m,wheremisaninteger.
Atresonance,1>˛1theringresonatorandwaveguideisunder-coupledandleadingtopulseadvancementorfastlight;
when1<˛1,theyareover-coupledandleadingtopulsedelayorslowlight;thecriticalcouplingoccurswhen1=˛1.


The transmission, phase and group delay of the single microring resonator at the transmission coefficients 1=
0.9975,0.9966and0.99respectivelyareshowninFig.2.Theparametersaresetasfollows:thelossfactorofthewaveguide


˛1=1dB/cm,thelengthofthemicroringwaveguideLR1=300␮m.Thesimulationshowsthatthepositiveandnegative
groupdelaycanbeachievedbyadjustingthecouplingcoefficientofthecoupler.Itisassumedthatasiliconwaveguidewith
aheightof220nmandwidthof400nmandrefractiveindexNeff =2.25.


Wenowinvestigatethepulsepropagationoverthesingleringresonator.ItisassumedthattheinputpulseisGaussian
andcanbeexpressedas[17]


</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

<b>Fig.4.</b>Transmissioncharacteristicsofthecascadedmicroringresonators(a)=1=0.99and(b)=1=0.9975.


where0istheresonancewavelengthofthesinglemicroringresonator,THW=Tb/2isthebithalfwidthat1/e2intensityand
Tbisthebitperiod.FromthesimulationsofFig.2,theresonancewavelengthis0=1.54817␮m.Theinputandcorresponding
outputpulseswiththetransmissioncoefficients1=0.9975, 0.9966and0.99areshowninFig.3,wheretheinputpulse
widthTp=50ps[18].Thesimulationsshowthatpulsedelayof20pscanbeobtainedwhen1=0.99andwhen1=0.9975
thepulseadvancementof12psisobtained.


2.2. Cascadedmicroringresonators


</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

<b>Fig.5.</b>Inputandoutputpulsesatthecascadedmicroringresonatorstructure.


lightcanbeobtained.Here,weconsideraSCISSORasshowninFig.1withaSagnacloopreflector.Forsimplicity,weassume
thatNringresonatorsareidentical.Asaresult,thetransferfunctionoftheSCISSORcanbewrittenby


HSCISSOR=H1H2...HN=(
E2
E1
)
N
=






−˛exp



j




1<sub>−</sub>˛exp



j







N


(4)


Here=1and˛=˛1isthelossfactorintheringwaveguideand=2<sub></sub>NeffLR.


Thetransmission,phaseandgroupdelayofthecascadedmicroringresonatorforN=1,2,3areshowninFigs.4and5.It
isassumedthatthetransmissioncoefficientofthecoupleris1=0.99and0.9975.Thesimulationresultsshowthatslow
andfastlightareinducedbyadjustingthecouplingcoefficients.Inaddition,thepulsedelayandpulseadvancementare
increasedbyNtimescomparedwiththesinglemicroringresonator.


2.3. CascadedmicroringresonatorswiththeSagnacreflector


Fig.1showsthecascadedmicroringresonatorwiththeSagnacreflector.Inthisstudy,weusean1×2MMIcouplerin
theSagnacreflector.Asaresult,thetransferfunctionoftheproposedstructureinFig.1canbeexpressedby


H=(2j˛sss)






−˛exp



j




1−˛exp



j







2N


(5)



wheresands=






1−|s|2arethetransmissionandcouplingcoefficientsofthecoupleroftheSagnacreflectorand˛sis
thelossfactorintheringwaveguideoftheSagnacreflector.


Fig.6(a)and(b)showsthetransmission,phase,groupdelayandoutputpulsespropagatingoverthestructurewithand
withoutSagnacreflector.ItisassumedthatthestructureconsistingofNidenticalmicroringresonators(N=1and2)with
thetransmissioncoefficientof1=0.99.ByusingtheSagnacreflector,weobtainthepulsedelaysof43psand83psfor
N=1and2respectively,comparedwith20psand40pswithoutusingtheSagnacreflector.


When1=0.9975,theundercoupledconditionoccurs.Therefore,thefastlightcanbeinducedbyusingtheproposed
structure.Fig.7(a)and(b)showsthetransmissioncharacteristicsandoutputpulsespropagatingoverthestructurewithand
withoutSagnacreflector.Itisshownthatpulseadvancementsof25psand50psareachievedwhentheSagnacreflectoris
used(comparedwith12psand24pswithouttheSagnacreflector).


Bycontrollingthecouplingcoefficientsofringresonators,thefastandslowlightcanbeachieved.Thepulsedelayand
advancementcanbeincreasedbyNtimesifNidenticalringresonatorsareused.Fig.8showsthetimedelayandadvancement
ofthepulsepropagatingthroughourprosedstructure.WecanseethatbyusingtheSagnacreflector,thepulsedelayand
advancementcanbedoubledcomparedwiththeconventionalSCISSORstructure.


Toverifytheaccuracyofthetransfermatrixanalysis,wecomparetheresultsobtainedwiththeFDTD.ForourFDTD
simulations,theradiusofthemicroringresonatoristobeR=5␮m,thewaveguidewidthisWa=400nm,thegapbetween
themicroringwaveguideandthestraightwaveguideischosentobeg=160nminorderforthepowertransmissioncoupling
(||2<sub>)</sub><sub>to</sub><sub>be</sub><sub>||</sub>2<sub>=</sub><sub>0.9</sub><sub>as</sub><sub>shown</sub><sub>in</sub><sub>Fig.</sub><sub>10</sub><sub>(a).</sub><sub>Here</sub><sub>we</sub><sub>take</sub><sub>into</sub><sub>account</sub><sub>the</sub><sub>wavelength</sub><sub>dispersion</sub><sub>of</sub><sub>the</sub><sub>silicon</sub><sub>waveguide</sub>
usingtheexpressionNeff(␭)=4.7020−1.6667for=1.5−1.6␮m(Fig.10(b)).


</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6></div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7></div>
<span class='text_page_counter'>(8)</span><div class='page_container' data-page=8>

<b>Fig.8.</b>TimedelayandadvancementwithandwithouttheSagnacreflector.



<b>Fig.9.</b>Directionalcouplerusedformicroringresonator.


<b>Fig.10.</b> FDTDsimulations(a)transmissioncoefficientatdifferentgapand(b)wavelengthdispersionofthesiliconwaveguidewithawidthof400nm(the
insetshowsthefieldat=1.55␮m).


tothetransmissioncalculatedbytheanalyticaltheory.Figs.11(b)and12(b)showtheFDTDfielddistributionsatonand
off-resonances.


</div>
<span class='text_page_counter'>(9)</span><div class='page_container' data-page=9>

<b>Fig.11.</b>FDTDsimulationoftheproposedstructurewithoneringresonatorandSagnacreflector.


<b>Fig.12.</b>FDTDsimulationoftheproposedstructurewithtworingresonatorsandSagnacreflector.


</div>
<span class='text_page_counter'>(10)</span><div class='page_container' data-page=10>

grantnumber“103.02-2013.72”andVietnamNationalUniversity,Hanoi(VNU)underprojectnumberQG.15.30.
<b>References</b>


[1]J.Heebner,R.Grover,T.Ibrahim,OpticalMicroresonators:Theory,FabricationandApplications,Springer,2008.


[2]IoannisChremmos,OttoSchwelb,in:NikolaosUzunoglu(Ed.),PhotonicMicroresonatorResearchandApplications,Springer,2010.
[3]JianyiYang,QingjunZhou,FengZhao,etal.,Characteristicsofopticalbandpassfiltersemployingseries-cascadeddouble-ringresonators,Opt.


Commun.228(2003)91–98.


[4]Sang-YeonCho,RichardSoref,Interferometricmicroring-resonant2×2opticalswitches,Opt.Express16(2008)13304–13314.


[5]YingtaoHu,XiXiao,HaoXu,etal.,High-speedsiliconmodulatorbasedoncascadedmicroringresonators,Opt.Express20(2012)15079–15085.
[6]TaoWang,FangfeiLiu,JingWang,etal.,PulsedelayandadvancementinSOImicroringresonatorswithmutualmodecoupling,J.LightwaveTechnol.


27(2009),p.4734.


[7]HaoShen,Jian-PingChen,Xin-WanLi,etal.,Groupdelayanddispersionanalysisofcompoundhighordermicroringresonatorall-passfilter,Opt.


Commun.262(2006)200–205.


[8]ChindaChaichuay,PreechaP.Yupapin,PrajakSaeung,Multi-stageringresonatorall-passfiltersfordispersioncompensation,Opt.Appl.XXXIX
(2009)277–286.


[9]JingyaXie,LinjieZhou,ZhiZou,etal.,Continuouslytunablereflective-typeopticaldelaylinesusingmicroringresonators,Opt.Express22(2014)
817–823.


[10]RobertW.Boyd,DanielJ.Gauthier,Controllingthevelocityoflightpulses,Science326(November)(2009)1074–1077.


[11]SalvadorVargas,CarmenVázquez,Synthesisofopticalfiltersusingsagnacinterferometerinringresonator,IEEEPhotonicsTechnol.Lett.19(2007),
p.1877.


[12]TaoWang,XiaohuiLi,FangfeiLiu,etal.,EnhancedfastlightinmicrofiberringresonatorwithaSagnacloopreflector,Opt.Express18(2010)
16156–16161.


[13]M.JavedAkram,M.MiskeenKhan,FarhanSaif,Tunablefastandslowlightinahybridoptomechanicalsystem,Phys.Rev.A92(2015),pp.023846-.
[14]HivaShahoei,Dan-XiaXu,JensH.Schmid,etal.,Continuousslowandfastlightgenerationusingasilicon-on-insulatormicroringresonator


incorporatingamultimodeinterferencecoupler,J.LightwaveTechnol.32(2014).


[15]LingLi,WenjieNie,AixiChen,Transparencyandtunableslowandfastlightinanonlinearoptomechanicalcavity,Sci.Rep.6(2016),Articlenumber:
35090.


[16]A.Yariv,Universalrelationsforcouplingofopticalpowerbetweenmicroresonatorsanddielectricwaveguides,Electron.Lett.36(2000)321–322.
[17]XinLiu,MeiKong,HeFeng,Transmissionanddispersionofcoupleddouble-ringresonators,J.Opt.Soc.Am.B29(2012)68–74.


[18]MyungjunLee,MichaelEGehm,MarkA.Neifeld,Systematicdesignstudyofall-opticaldelaylinebasedonBrillouinscatteringenhancedcascade
coupledringresonators,J.Opt.12(2010)1–10.



[19]JohnHeebner,RobertBoyd,‘Slow’and‘fast’lightinresonator-coupledwaveguides,J.Mod.Opt.2636(2002)2629–2636.


</div>

<!--links-->
<a href=' /> Tài liệu The Acquisition of Drugs and Biologics for Chemical and Biological Warfare Defense - Department of Defense Interactions with the Food and Drug Administration doc
  • 99
  • 600
  • 0
  • ×