Tải bản đầy đủ (.pdf) (7 trang)

Toán học lớp 9 Đại số 9 CHỦ ĐỀ 8- PHƯƠNG TRÌNH CHỨA CĂN.pdf download

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (586.9 KB, 7 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

DẠY THÊM – ĐẠI SỐ 8


<b>1 </b>


<b>CHUYÊN ĐỀ 8 </b>



<b>PHƯƠNG TRÌNH CHỨA CĂN BẬC HAI </b>


<b>I/ DẠNG 1: </b> f(x) e<b> với e ≥ 0 là hằng số. </b>
<b>1/ Trường hợp: f(x) = ax + b hoặc f(x) = </b>ax b


cx d




 <b> thì: </b>


<b>Bước 1: Giải điều kiện f(x) ≥ 0 để tìm điều kiện của x </b>
<b>Bước 2: Bình phương 2 vế phương trình (để làm mất căn). </b>
<b>Bước 3: Giải phương trình để tìm nghiệm x thỏa mãn điều kiện. </b>
<b>Ví dụ 1: Giải các phương trình sau: </b>


a) 2x 1 3 b) x 1 6


2x 3


 <sub></sub>


 c)


2x 3


2
x 1


 <sub></sub>


 d)


2x 3
2
x 1


 <sub></sub>


<b>2/ Trường hợp: f(x) = ax</b>2<b><sub> + bx + c thì kiểm tra biểu thức f(x) </sub></b>


<b>* Nếu f(x) = ax</b>2<sub> + bx + c = (Ax ± B)</sub>2<sub> tức là có dạng hằng đẳng thức thì: KHAI CĂN. </sub>


Phương trình  Ax B e Ax B e


Ax B e


 


    <sub>  </sub>


 => Tìm x


<b>Ví dụ 2: Giải các phương trình sau: </b> 2



x 4x 4 3


Hướng dẫn
Vì x2 – 4x + 4 = (x – 2)2, ta có


PT 

x 2

2 3  x 2 3 x 2 3 x 5


x 2 3 x 1


  


 


  <sub></sub> <sub></sub>


    


 


<b>* Nếu f(x) = ax</b>2<sub> + bx + c khơng có dạng hằng đẳng thức thì: BÌNH PHƯƠNG 2 VẾ. </sub>


<b>Bước 1: Viết điều kiện f(x) ≥ 0. </b>


<b>Bước 2: Bình phương 2 vế phương trình (để làm mất căn). </b>


<b>Bước 3: Giải phương trình bậc hai có được bằng cách: Phân tích thành nhân tử, đưa về </b>


phương trình tích.



<b>Ví dụ 3: Giải phương trình sau: </b> 2


x 4x 6  15


Hướng dẫn


Nhận xét: x2<sub> – 4x – 6 khơng có dạng (Ax ± B)</sub>2<sub> nên ta khơng đưa được về phương trình trị </sub>


</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

DẠY THÊM – ĐẠI SỐ 8


<b>2 </b>


Điều kiện: x2<sub> – 4x – 6 ≥ 0 </sub>


Bình phương hai vế phương trình ta được:


x2 – 4x – 6 = 15  x2 – 4x – 21 = 0  (x – 7) (x + 3) = 0
 x = 7 hoặc x = - 3


Thay x tìm được vào điều kiện ta thấy cả x = 7 và x = - 3 đều thỏa mãn
Vậy phương trình có nghiệm x = 7 ; x = - 3


<b> Ví dụ 4: Giải phương trình sau: </b> (x 2)(x 3)  5


Hướng dẫn


Nhận xét: Nhìn Ví dụ 4 có vẻ khác với dạng Ví dụ 3 nhưng thực ra là cùng một dạng
Vì f(x) = (x – 2)(x + 3) = x2 + x - 6


Do đó cách giải tương tự Ví dụ 3:



Điều kiện: (x – 2)(x + 3) ≥ 0


x 2 0 x 2


x 3 0 x 3 x 2


x 3


x 2 0 x 2


x 3 0 x 3


    


 


 <sub> </sub>  <sub> </sub> <sub></sub>




 


 


<sub></sub> <sub></sub> <sub> </sub>


 


  



  


<sub></sub> <sub></sub>


   


 


 


Bình phương hai vế phương trình ta được:


(x – 2)(x + 3) = 25  x2<sub> + x - 6 = 25  x</sub>2<sub> + x – 31 = 0 </sub>
 (x2<sub> + x + </sub>1


4 ) -
1


4 – 31 = 0 


2


1
x


2


 <sub></sub> 



 


  ) -


125


4 = 0




  


 <sub></sub> <sub></sub>


 <sub></sub>  <sub></sub> <sub></sub><sub></sub> <sub></sub>


  <sub>  </sub>


  <sub>   </sub> 





2


1 15


x


x 7 (t / m)



1 125 <sub>2</sub> <sub>2</sub>


x


2 4 1 15 x 8 (t / m)


x


2 2


Vậy phương trình có nghiệm x = 7 ; x = - 8
<b>II/ DẠNG 2: </b> f(x)g(x)<b>. </b>


<b>1/ Phương pháp. </b>


<b>Bước 1: Viết điều kiện của phương trình: </b> f(x) 0


g(x) 0





 <sub></sub>




Nếu f(x) có dạng (Ax ± B)2<sub> thì chỉ cần điều kiện </sub><sub>g(x)</sub><sub></sub><sub>0</sub>


</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

DẠY THÊM – ĐẠI SỐ 8



<b>3 </b>


<b>* LOẠI 1: Nếu f(x) có dạng hằng đẳng thức (Ax ± B)</b>2<b><sub> thì KHAI CĂN đưa về phương </sub></b>
trình trị tuyệt đối để giải.


<b>* LOẠI 2: Nếu f(x) = Ax ± B và g(x) = Ex ± D thì dùng phương pháp BÌNH PHƯƠNG </b>


<b>HAI VẾ. </b>


<b>* LOẠI 3: Nếu f(x) = Ax</b>2<sub> + Bx + C (khơng có dạng hằng đẳng thức (Ax ± B)</sub>2<sub> ) và g(x) = </sub>
Ex ± D thì dùng phương pháp BÌNH PHƯƠNG HAI VẾ.


<b>* LOẠI 4: Nếu f(x) = Ax</b>2<sub> + Bx + C và g(x) = Ex</sub>2<sub> + Dx + F thì thử phân tích f(x) và g(x) </sub>
thành nhân tử, nếu chúng có nhân tử chung thì đặt nhân tử chung đưa về phương trình tích.


<b>Bước 3: Kiểm tra nghiệm tìm được xem có thỏa mãn điều kiện không, rối kết luận nghiệm. </b>


<b>2/ Các ví dụ. </b>


<b>Ví dụ 5: Giải phương trình: </b>

2x 3

2  x 5


Hướng dẫn
Điều kiện: x 5 0   x 5


PT 


x 8


2x 3 x 5



2x 3 x 5 <sub>2</sub>


2x 3 (x 5) x


3


 


  


 <sub></sub>


   <sub></sub> 




    


 <sub></sub>


Kết hợp điều kiện => Phương trình vơ nghiệm.


<b>Ví dụ 6: Giải phương trình: </b> 2


x 6x  9 x 7


Hướng dẫn


Nhận xét: x2 – 6x + 9 = (x – 3)2 dạng bình phương một hiệu.


Điều kiện: x 7    0 x 7


PT  x 3 x 7 x 3 x 5 x


x 3 (x 5) x 1


   


 


   <sub></sub> <sub></sub>


     


 


Kết hợp điều kiện => Phương trình có nghiệm x = - 1.


<b>Ví dụ 7: Giải phương trình: </b> 2x 3  x 1


Hướng dẫn
Điều kiện:


3


2x 3 0 x 3


x
2



x 1 0 2


x 1




  


 <sub></sub> <sub> </sub>


 <sub> </sub> 


 <sub> </sub><sub></sub>


</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

DẠY THÊM – ĐẠI SỐ 8


<b>4 </b>


2


2 2


2x 3 x 2x 1 x 4x  4 0 x 2   0 x 2


Theo điều kiện => Phương trình có nghiệm x = 2.


<b>Ví dụ 8: Giải phương trình: </b> 2


x 5x 6  x 2



Hướng dẫn


Nhận xét: f(x) = x2 - 5x – 6 khơng có dạng hằng đẳng thức (Ax ± B)2<sub> nên để phá căn ta </sub>


<b>dùng phương pháp BÌNH PHƯƠNG HAI VẾ. </b>


Điều kiện: x2 5x 6 0


x 2 0


   



 


PT  2 2


x 5x 6 x 4x 4   x 10


Thay x = - 10 vào điều kiện thấy khơng thỏa mãn
Vậy phương trình vơ nghiệm.


<b>3/ Bài tập vận dụng: Giải các phương trình sau: </b>


a) 2


x 8x 16  4 x


b) 2



x 2x 2 x


c) 2x 27  6 x


<b>III/ DẠNG 3: </b>

f(x)

2 

h(x)

2 g(x)<b>. </b>


<b>Bước 1: Nếu bản thân f(x) và g(x) có chứa căn bậc hai thì có điều kiện trong căn. </b>
<b>Bước 2: Đưa phương trình về dạng phương trình trị tuyệt đối. </b>


f(x)  h(x) g(x)


<b>Bước 3: Xét dấu trị tuyệt đối và giải phương trình. </b>
<b>Ví dụ 9: Giải phương trình </b> x 4 4 x   x 9 6 x  1


Hướng dẫn
Điều kiện: x ≥ 0


Với phương trình này ta dễ dàng nhận thấy:


2


x 4 4 x  x2 x 9 6 x 

x3

2


</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

DẠY THÊM – ĐẠI SỐ 8


<b>5 </b>
<b>TH1: Nếu </b> x 2 0 x 3 x 9


x 3 0



 <sub> </sub>


 <sub></sub> <sub>  </sub>




 


 ta có


0. x = 0 => Pt có vơ số nghiệm x ≥ 0


<b>TH2: Nếu </b> x 2 0 x 4


x 9


x 3 0


    


 <sub></sub>


 <sub> </sub>


  


 ta có


x  2

 

3 x

 1 2 x   6 x 9 (Loại)


<b>TH3: Nếu </b> x 2 0 x 4 x


x 9


x 3 0


 <sub> </sub> <sub></sub> <sub></sub>


 <sub></sub> <sub> </sub>


 <sub> </sub>


  





<b>TH4: Nếu </b> x 2 0 x 2 x 4


x 3 0


 <sub> </sub>


 <sub></sub> <sub>  </sub>




 


 ta có



2 x

 

 3 x

 1 0. x2=> Pt có vơ nghiệm


Kết luận: Vậy phương trình có vơ số nghiệm x ≥ 0


<b>Ví dụ 10: (HS tự giải) Giải phương trình: </b> x 3 4 x 1    x 8 6 x 1   4


<b>IV/ PHƯƠNG PHÁP ĐẶC BIỆT TRONG GIẢI PHƯƠNG TRÌNH CHỨA CĂN. </b>


Trong mục này THẦY sẽ lấy ví dụ cụ thể để các em làm quen, từ đó vận dụng cho việc
giải các phương trình tương tự.


<b>1/ PHƯƠNG PHÁP đặt ẩn phụ đưa về phương trình bậc hai hoặc phương trình đơn giản </b>
<b>hơn. </b>


<b>Ví dụ 11: Giải phương trình x - 5</b> x+ 6 = 0
Hướng dẫn
Điều kiện: x ≥ 0


Đặt x = t ≥ 0 => x = t2, ta có phương trình: t2 – 5t + 6 = 0 (Cách giải phương trình bậc
2 chúng ta sẽ được học trong chương sau).


Với phương trình này chúng ta cũng hồn tồn có thể phân tích vế trái thành nhân tử để
đưa về phương trình tích.


<b>Ví dụ 12: Giải phương trình: </b> x 1  x 6 5


</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>

DẠY THÊM – ĐẠI SỐ 8


<b>6 </b>



Điều kiện: x 1 0 x 1


x 6 0


 


 <sub>  </sub>


  


Đặt x 1  t 0 => x + 1 = t2<sub>, ta có phương trình </sub>


2 2


t t   5 5 t   5 5 t <sub>(*) </sub>


<b>Phương trình (*) thuộc phương trình LOẠI 3 – DẠNG 2: </b>


Điều kiện (*) là: 5 – t ≥ 0  t ≤ 5, BÌNH PHƯƠNG 2 VẾ của (*) ta có


t2<sub> + 5 = 25 – 10t + t</sub>2<sub>  t = 2 (thỏa mãn điều kiện của 0 ≤ t ≤ 5) </sub>


 x 1      2 x 1 4 x 3


Vậy phương trình có nghiệm x = 3.


<b>Ví dụ 13: Giải phương trình </b> 2 2



x 2x 3 x 2x 3 7


Hướng dẫn
Điều kiện: x2<sub> – 2x – 3 ≥ 0 </sub>


PT  2 2


x 2x 3 3 x  2x 3 10  0


Đặt 2 2 2


t x 2x 3   0 t x 2x 3 <sub> ta có: </sub>


t2 + 3t – 10 = 0  (t – 2)(t + 5) = 0 t 2


t 5




  <sub> </sub>




Với t = - 5 (loại)
Với t = 2 => 2


x 2x 3 4<sub>  x</sub>2 – 2x – 7 = 0  (x2 – 2x + 1) – 8 = 0


 (x - 1)2<sub> = 8 </sub> x 1 2 2 x 1 2 2



x 1 2 2 x 1 2 2


 <sub> </sub>  <sub> </sub>




 


    


 


  (thỏa mãn điều kiện)


<b>Ví dụ 14: (HS tự giải) Giải phương trình: </b> 2 2


x 6x 3 x 6x 7 5


<b>2/ PHƯƠNG PHÁP đánh giá biểu thức dưới dấu căn lớn hơn hoặc nhỏ hơn một hằng số. </b>


<b>Áp dụng với phương trình: </b>

f(x)

2 c

h(x)

2  d

g(x)

2 e<b> với </b>


c 0


d 0


c d e





 

  


Thường thì chúng ta chưa nhìn thấy ngay dạng phương trình này, mà đơi khi tách một hệ
số nào đó mới có [f(x)]2<sub> ; [h(x)]</sub>2<sub> và [g(x)]</sub>2


<b>Ví dụ 15: Giải phương trình </b> 2 4 2


3x 6x 12  5x 10x 308


</div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7>

DẠY THÊM – ĐẠI SỐ 8


<b>7 </b>


Nhận xét:


3x2 + 6x + 12 = 3(x2 + 2x + 1) + 9 = 3(x + 1)2 + 9 ≥ 9 => 2


3x 6x 12 ≥ 3


5x4 - 10x2 + 30 = 5(x2 - 2x + 1) + 25 = 5(x - 1)2 + 25 ≥ 25 => 4 2


5x 10x 30 ≥ 5


Do đó: 2 4 2


3x 6x 12  5x 10x 308



Phương trình thỏa mãn 



 


2
2


2 2


2


4 2


3 x 1 9 = 9 <sub>x 1 0</sub>


3x 6x 12 3


x 1


x -1 0
5 x -1 25= 25


5x 10x 30 5




 <sub></sub> <sub></sub> <sub></sub>   <sub></sub> <sub> </sub>


 <sub></sub> <sub></sub> <sub>  </sub>


  







  


 


 <sub></sub>


Vậy phương trình có nghiệm x = - 1


<b>Ví dụ 16: Giải phương trình: </b> 2 2 2


3x 6x 7  5x 10x 14  4 2x x


Hướng dẫn
Nhận xét:


3x2 + 6x + 7 = 3(x2 + 2x + 1) + 4 = 3(x + 1)2 + 4 ≥ 4 => 2


3x 6x 7 ≥ 2


5x2<sub> + 10x + 14 = 5(x</sub>2<sub> - 2x + 1) + 9 = 5(x + 1)</sub>2<sub> + 9 ≥ 9 => </sub> 2


5x 10x 14 ≥ 3


4 – 2x – x2<sub> = 5 – (x</sub>2<sub> + 2x + 1) = 5 – (x + 1)</sub>2<sub> ≤ 5 </sub>



Khi đó: 2 2


2


3x 6x 7 5x 10x 14 5


4 2x x 5


 <sub></sub> <sub> </sub> <sub></sub> <sub></sub> <sub></sub>





  





Phương trình thỏa mãn 


2


2


2


3x 6x 7 2


5x 10x 14 3 x 1 0 x 1


4 2x x 5



 <sub></sub> <sub> </sub>


 <sub></sub> <sub></sub> <sub>      </sub>




   



</div>

<!--links-->

×