Tải bản đầy đủ (.pdf) (5 trang)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (133.7 KB, 5 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

<i>DOI: 10.22144/ctu.jen.2018.050 </i>


<b>New bounds on poisson approximation for random sums of independent </b>


<b>negative-binomial randomvariables </b>



Le Truong Giang

1*

<sub> and Trinh Huu Nghiem</sub>

2


<i>1<sub>University of Finance - Marketing, Vietnam </sub></i>
<i>2<sub>Nam Can Tho University, Vietnam </sub></i>


<i>*<sub>Correspondence: Le Truong Giang (email: ) </sub></i>
<b>Article info. </b> <b> ABSTRACT </b>


<i>Received 11 Feb 2018 </i>
<i>Revised 04 Jun 2018 </i>
<i>Accepted 30 Nov 2018</i>


<i><b> The aim of this paper is to establish new bounds on Poisson </b></i>


<i>approxima-tion for random sums of independent negative-binomial random </i>
<i>varia-bles. The bounds showed in current paper are a uniform bound and a </i>
<i>non-uniform bound. The received results in this paper are extensions and </i>
<i>generalizations of known results. </i>


<i><b>Keywords </b></i>


<i>Negative - binomial variable, </i>
<i>Poisson approximation, </i>
<i>ran-dom sums, total variation </i>
<i>distance, uniform and </i>
<i><b>non-uniform bound </b></i>



Cited as: Giang, L.T. and Nghiem, T.H., 2018. New bounds on poisson approximation for random sums of
independent negative-binomial randomvariables. Can Tho University Journal of Science. 54(8):
<i>149-153. </i>


<b>1 INTRODUCTION </b>


In recent times, Poisson approximation problem for
random sums of discrete random variables has
at-tracted the attention of mathematicians. Several
interesting results can be found in Yannaros
(1991), Vellaisamy and Upadhye (2009),
Kongudomthrap and Chaidee (2012),
Teerapabo-larn (2013a), TeerapaboTeerapabo-larn (2014), Tran Loc
Hung and Le Truong Giang (2014), Tran Loc Hung
and Le Truong Giang (2016a, 2016b), and Le
Tru-ong Giang and Trinh Huu Nghiem (2017).


Let <i>X X </i><sub>1</sub>, <sub>2</sub>, be a sequence of independent
nega-tive-binomial random variables with probabilities


(

)

(

1

)

,


1


<i>r</i>
<i>k</i>


<i>k</i> <i>i</i>



<i>P X<sub>i</sub></i> <i>k</i> <i>C</i> <i>p<sub>i</sub></i> <i>p<sub>i</sub></i>


<i>r k</i>


= = <sub>+ −</sub> −



where

<i>p<sub>i</sub></i>(0,1);<i>r<sub>i</sub></i>=1,2, ; 1,2, ; =<i>i</i>  =<i>k</i> 0,1, .



Let


1


<i>n</i>


<i>W<sub>n</sub></i> <i>X<sub>i</sub></i>


<i>i</i>


= 


= and <i>U</i> be a Poisson random vari-<i>n</i>


able with mean


( )

(

<sub>1</sub>

)

1<sub>.</sub>


1


<i>n</i>



<i>E W</i> <i>r</i> <i>p p</i>


<i>n</i> <i>n</i> <i>i</i> <i>i</i> <i>i</i>


<i>i</i>


 = = − −


=



In addition, throughout this paper, <i><sub>dTV</sub></i> is denoted
a probability distance of total variation, defined by


(

,

)

sup

(

) (

)

,


<i>d<sub>TV</sub></i> <i>X Y</i> <i>P X A</i> <i>P Y A</i>


<i>A</i>


=  − 



</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

A uniform bound and a non-uniform bound for the
distance between the distribution functions of

<i>W</i>

<i><sub>n</sub></i>


and
<i>n</i>


<i>U</i>

<sub></sub> were presented in Tran Loc Hung and Le
Truong Giang (2016a) as follows:



(

<sub>,</sub>

)

<sub>min</sub>

1

(

<sub>1</sub>

)

(

<sub>1</sub>

)

1<sub>,1</sub>

1
1


<i>n</i> <i><sub>r</sub></i> <i><sub>p</sub></i>


<i>i</i>
<i>i</i>
<i>n</i>


<i>d<sub>TV</sub></i> <i>W U<sub>n</sub></i> <i><sub>n</sub></i> <i>e</i> <i>r<sub>i</sub></i> <i>p p<sub>i</sub></i> <i><sub>i</sub></i> <i>p<sub>i</sub></i>


<i>n</i> <i><sub>pi</sub></i>


<i>i</i>





  − −− − − − −


= (0.1)


and


(

)

1

<sub>(</sub>

(

1

<sub>)</sub>

)

1


( <sub>0</sub>) <sub>0</sub> min ,1 ,


1
0


1


<i>n</i>


<i>n</i> <i>r</i> <i>p</i>


<i>e</i> <i>i</i> <i>i</i> <i>ri</i> <i>pi</i>


<i>P W<sub>n</sub></i> <i>w</i> <i>P U</i> <i><sub>n</sub></i> <i>w</i> <i>p<sub>i</sub></i>


<i>w</i> <i>p</i> <i>p</i>


<i>n</i> <i>i</i> <i>i</i> <i>i</i>




 <sub></sub>−  −  −


 −     <sub>+</sub> − 


 


 


= (0.2)


where <i>w </i><sub>0</sub> <sub>+</sub>: {0,1,2, }.= 


Consider the sum



1


<i>N</i>


<i>W<sub>N</sub></i> <i>X<sub>i</sub></i>


<i>i</i>


= 


= , where <i>N</i> is a


non-negative integer valued random variable and
inde-pendent of the <i><sub>Xi</sub></i>'s. The sum is called random
sums of independent negative -binomial random


variables. Let <i>U</i><sub> be a Poisson random variable </sub>


with =<i>E</i>

( )

<i><sub>N</sub></i> , where

(

1

)


1


<i>N</i>


<i>r</i> <i>p</i>


<i>N</i> <i>i</i> <i>i</i>


<i>i</i>


 = −



= .


Teerapabolarn (2014) gave a uniform bound for the
distance between the distribution functions of <i><sub>WN</sub></i>
and <i>U</i><sub> as follows: </sub>


(

)



(

)

(

)



2
, min 1,


2
1
2


1 <sub>1</sub>


min , .


2
1


<i>d</i> <i>W<sub>N</sub></i> <i>U</i> <i>E</i> <i><sub>N</sub></i>


<i>TV</i> <i><sub>e</sub></i>


<i>N r<sub>i</sub></i> <i>p<sub>i</sub></i>



<i>N</i> <i><sub>r</sub></i> <i><sub>p</sub></i> <i><sub>p</sub><sub>i</sub></i>


<i>i</i> <i>i</i> <i>i</i>


<i>E</i> <i>E</i>


<i>p<sub>i</sub></i> <i><sub>e</sub></i>


<i>i</i> <i>N</i>


 


 <sub></sub>




 


   −


 


 <sub></sub> <sub></sub>




 <sub></sub> <sub></sub> <sub></sub>


 



 <sub>−</sub> <sub></sub> <sub></sub>


 <sub></sub> <sub></sub> <sub>=</sub> 


+  <sub></sub>  <sub></sub>  


 <sub></sub> = <sub></sub>  


 <sub></sub> <sub></sub>


  


 


(0.3)


In this paper, some of the bounds on Poisson
ap-proximation for random sums of independent
nega-tive-binomial random variables with mean


( )



<i>E</i> <i><sub>N</sub></i>


=  , where

(

1

)

1


1


<i>N</i>



<i>r</i> <i>p p</i>


<i>N</i> <i>i</i> <i>i</i> <i>i</i>


<i>i</i>


 = − −


= , are


present-ed in Section 2.


<b>2 MAIN RESULTS </b>


The following lemma is necessary to prove the
main result, which is directly obtained from
<i>Bar-bour et al. (1992). </i>


<b>Lemma 2.1. Let </b><i>U</i><sub> and </sub><i><sub>N</sub></i> <i>U</i><sub> denote a Poisson </sub>


random variable with mean  and <i><sub>N</sub></i>  ,
respec-tively. Then, for <i>A</i> <sub>+</sub>, the total variation distance


between the distributions of <i>U</i>
<i>N</i>


 and <i>U</i><sub> </sub>


satis-fies the following inequality:



(

)

2


, min 1, .


<i>d<sub>TV</sub></i> <i>U</i> <i>U</i> <i>E</i> <i><sub>N</sub></i>


<i>N</i> <i><sub>e</sub></i>  


    <sub></sub> −


 


  (0.4)


The following theorems present non-uniform and
uniform bounds for the distance between the
distri-bution functions of <i><sub>WN</sub></i> and <i>U</i><sub> , which are the </sub>


expected results.


<b>2.1 A uniform bound on Poisson </b>


<b>approximation for random sums of independent </b>
<b>negative-binomial random variables </b>


<b>Theorem 2.1. For </b><i>A</i> <sub>+</sub>,


(

<sub>,</sub>

)

<sub>min</sub> 1

(

<sub>1</sub>

)

1<sub>,1</sub>

(

<sub>1</sub>

)

1



1


<i>N</i> <i><sub>e</sub></i> <i>N</i> <i><sub>ri</sub></i>


<i>d</i> <i>W<sub>N</sub>U</i> <i>E</i> <i>r<sub>i</sub></i> <i>p p<sub>i</sub></i> <i><sub>i</sub></i> <i>p<sub>i</sub></i> <i>p p<sub>i</sub></i> <i><sub>i</sub></i>


<i>TV</i>


<i>N</i>
<i>i</i>




 <sub></sub>


 <sub></sub> <sub>−</sub> − <sub>−</sub> <sub></sub> <sub>−</sub> 


 


 <sub></sub>  − −  − <sub></sub>


 


=  


</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

(

)

<sub>1</sub>

(

)

(

)

<sub>1</sub>

1


, min 1 1 ,1 .


1



<i>n</i> <i><sub>r</sub></i> <i><sub>p</sub></i>


<i>i</i>
<i>i</i>
<i>n</i>


<i>d<sub>TV</sub></i> <i>W U<sub>n</sub></i> <i><sub>n</sub></i> <i><sub>n</sub></i> <i>e</i> <i>r<sub>i</sub></i> <i>p p<sub>i</sub></i> <i><sub>i</sub></i> <i>p<sub>i</sub></i>


<i>pi</i>
<i>i</i>





  − − − − − − −


= (0.6)


From the triangular inequality, combining (1.4) and
(1.6), it follows the fact that


(

)

(

)

(

)


(

)

(

)

(

)


(

)

(

)

(

)


(

)

(

)

(

)


(

)

(

)


, ,
1
, ,

1
, ,
1
1 1
1
min ,1
1 1
2
min 1,
1 1


min 1 1 ,1


<i>d</i> <i>W<sub>N</sub></i> <i>U</i> <i>P N n d<sub>TV</sub></i> <i>W U<sub>n</sub></i>


<i>TV</i>


<i>n</i>


<i>P N n d<sub>TV</sub></i> <i>W U<sub>n</sub></i> <i>d<sub>TV</sub></i> <i>U</i> <i>U</i>


<i>n</i> <i>n</i>


<i>n</i>


<i>P N n d<sub>TV</sub></i> <i>W U<sub>n</sub></i> <i>d<sub>TV</sub></i> <i>U</i> <i>U</i>


<i>n</i> <i>N</i>


<i>n</i>



<i>n</i>


<i>e</i> <i>r</i> <i>p</i>


<i>n</i> <i>i</i> <i>i</i> <i><sub>r</sub></i> <i><sub>p</sub></i>


<i>i</i>
<i>i</i>


<i>P N n</i> <i><sub>pi</sub></i>


<i>p</i> <i>p</i>


<i>n i</i> <i>i</i>


<i>n</i> <i>i</i>


<i>E N</i>
<i>e</i>


<i>r</i>
<i>N</i>


<i>E</i> <i><sub>N</sub></i> <i>e</i> <i>r<sub>i</sub></i> <i>p p<sub>i</sub></i> <i><sub>i</sub></i> <i>p<sub>i</sub></i>


 
  
  



 





= =
=

 
  = <sub></sub> + <sub></sub>
=

=  = +
=

 <sub>−</sub> <sub>−</sub> 
 <sub></sub> <sub> −</sub>
  =   − 
 
= =
 
 
 
+ <sub></sub> <sub></sub> −
 
 
− − −



− − −

1


1


2


min 1, .


<i>N</i> <i><sub>pi</sub></i>


<i>i</i>
<i>pi</i>
<i>i</i>


<i>E</i> <i><sub>N</sub></i>


<i>e</i>  



 − 
 
 <sub>=</sub> 
 
 
+   −
 



This finishes the proof.



<b>Remark 2.1. The result of (1.5) is interesting </b>


be-cause of considering

(

1

)

1
1


<i>N</i>


<i>r</i> <i>p p</i>


<i>N</i> <i>i</i> <i>i</i> <i>i</i>


<i>i</i>


 = − −


= instead of


(

1

)



1


<i>N</i>


<i>r</i> <i>p</i>


<i>N</i> <i>i</i> <i>i</i>


<i>i</i>


 = −



= as in Teerapabolarn (2014). It is


easily seen that the (1.1) is a special case of the
(1.5) when <i>N n</i>=  + is fixed.


<b>Corollary 2.1. For </b><i>r r</i><sub>1 2</sub>= = = =... <i><sub>rn</sub></i> 1, then


( <sub>,</sub> ) <sub>min</sub>

1

(

<sub>1</sub>

)

1<sub>,1 1</sub>

( )2 1
1


2


min 1, .


<i>N</i>


<i>N</i>


<i>d</i> <i>W<sub>N</sub>U</i> <i>E</i> <i><sub>N</sub></i> <i>e</i> <i>p<sub>i</sub></i> <i>p<sub>i</sub></i> <i>p<sub>i</sub></i>


<i>TV</i>
<i>i</i>
<i>E</i> <i>N</i>
<i>e</i>



 


 <sub>−</sub> <sub>−</sub> <sub>−</sub> <sub>−</sub> 
 
 <sub></sub> − − <sub></sub>
=
 
 
+   −
 
(0.7)


<b>Remark 2.2. The result (1.7) is a Poisson </b>


approx-imation for the random sums of independent
geo-metric random variables, which is introduced in
Teerapabolarn (2013a).


<b>2.2 A non-uniform bound on Poisson </b>


<b>approximation for random sums of independent </b>
<b>negative-binomial random variables </b>


<b>Theorem </b> <b>2.2. </b> For <i>w </i><sub>0</sub> <sub>+</sub>, we have


(

)



(

)

(

)



(

)

(

)



2 2



( <sub>0</sub>) <sub>0</sub> min ,min 1,


1
0


1


1 <sub>1</sub> <sub>min</sub> <sub>,1</sub> <sub>1</sub> 1 <sub>.</sub>


1
0
1


<i>P W<sub>N</sub></i> <i>w</i> <i>P U</i> <i>w</i> <i>E</i> <i><sub>N</sub></i>


<i>w</i> <i>e</i>


<i>N</i> <i><sub>r</sub><sub>i</sub></i> <i><sub>p</sub><sub>i</sub></i> <i><sub>r</sub></i>


<i>i</i>
<i>N</i>


<i>E</i> <i><sub>N</sub></i> <i>e</i> <i>p<sub>i</sub></i> <i>p p<sub>i</sub></i> <i><sub>i</sub></i>


<i>p w<sub>i</sub></i>
<i>i</i>
 <sub></sub> <sub></sub>
 <sub></sub>



 <sub></sub> <sub></sub> 
   
 −    <sub>+</sub>   − 
 
   
 
 <sub>−</sub> <sub></sub><sub></sub> <sub>−</sub> <sub></sub><sub></sub> <sub>−</sub> 
 
+ <sub></sub> −   <sub>+</sub> −  − <sub></sub>
 
 
=
 
(0.8)


<i>Proof. Applying the corresponding results in Tran </i>


Loc Hung and Le Truong Giang (2016a) and
Teerapabolarn (2013a) yields


(

)



(

1

)



1 1


( <sub>0</sub>) min ,1


! <sub>1</sub> <sub>0</sub> 1



0


<i>ke</i> <i>n</i> <i>e</i> <i>n</i> <i>n</i> <i>ri</i> <i>pi</i> <i>r</i> <i>p</i>


<i>n</i> <i>i</i> <i>i</i>


<i>P W<sub>n</sub></i> <i>w</i> <i>p<sub>i</sub></i>


<i>k</i> <i><sub>n</sub></i> <i>p w<sub>i</sub></i> <i>p<sub>i</sub></i>


<i>k w</i> <i>i</i>


 


− <sub>−</sub> <sub></sub><sub></sub> <sub>−</sub> <sub></sub><sub></sub> <sub>−</sub>
 −     <sub>+</sub> − 
 
 


 = (0.9)


and


(

)

(

)

2 2


min ,min 1, .


0 0



1
0


<i>P U</i> <i>w</i> <i>P U</i> <i>w</i> <i><sub>E N</sub></i>


<i>N</i> <i><sub>w</sub></i> <i><sub>e</sub></i>


 <sub></sub> <sub></sub>


  −    <sub>+</sub>  <sub></sub> − 


 


   


  (0.10)


</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

(

) (

)

(

) (

) (

)



(

) (

)

(

) (

)

(

)



(

) (

)

(

)



(

)

(

)



(

)

(

<sub>(</sub>

)

<sub>)</sub>



0 0 0 0



0


0 0 0 0


0


0 0


0


0 0


1


1 1


min ,1


1
0


0 1


2 2


min ,min 1,
1
0


<i>P W<sub>N</sub></i> <i>w</i> <i>P U</i> <i>w</i> <i>P N n P W<sub>n</sub></i> <i>w</i> <i>P U</i> <i>w</i>



<i>n</i>


<i>P N n</i> <i>P W<sub>n</sub></i> <i>w</i> <i>P U</i> <i><sub>n</sub></i> <i>w</i> <i>P U</i> <i>w</i> <i>P U</i> <i>w</i>


<i>n</i>


<i>P N n P W<sub>n</sub></i> <i>w</i> <i>P U</i> <i>w</i>


<i>n</i>
<i>n</i>


<i>P U</i> <i><sub>N</sub></i> <i>w</i> <i>P U</i> <i>w</i>


<i>n</i>


<i>n</i> <i>r</i> <i>p</i>


<i>e</i> <i>i</i> <i>i</i> <i>ri</i> <i>pi</i>


<i>P N n</i> <i><sub>pi</sub></i>


<i>p w</i> <i>p</i>


<i>n</i> <i>i</i> <i>i</i>


<i>n</i>


<i>n</i>



<i>i</i>


<i>w</i> <i>e</i>


 


  




 












 −   =  − 


=


 <sub></sub> <sub></sub>


  = <sub></sub><sub></sub>  −  +  −  <sub></sub><sub></sub>



=


  =  − 


=


+  − 


 −  −  −


  =   <sub>+</sub> − 


 


 


= =



+


+


(

)

(

)



(

1

)

(

)



1 <sub>1</sub> <sub>min</sub> <sub>,1</sub> <sub>1</sub> 1



1
0
1


2 2


min ,min 1, .


1
0


<i>E N</i>


<i>N</i> <i><sub>r</sub><sub>i</sub></i> <i><sub>p</sub><sub>i</sub></i> <i><sub>r</sub></i>


<i>i</i>
<i>N</i>


<i>E</i> <i><sub>N</sub></i> <i>e</i> <i>p<sub>i</sub></i> <i>p p<sub>i</sub></i> <i><sub>i</sub></i>


<i>p w<sub>i</sub></i>
<i>i</i>


<i>E N</i>


<i>w</i> <i>e</i>


 






 <sub></sub> <sub></sub>




  


   <sub>−</sub> 


   


 


   


 


 −  −  − 


 <sub></sub> −   <sub>+</sub> −  − <sub></sub>


 


 


=


 



 <sub></sub> <sub></sub> 


   


+  <sub>+</sub>   − 


 


   


 


The proof is completed.


<b>Remark 2.3. It is easily to check that the (1.2) is a </b>


special case of the (1.8) when <i>N n</i>=  + is fixed.


<b>Corollary 2.2. For </b><i>r r</i><sub>1 2</sub>= = = =... <i><sub>rn</sub></i> 1, then


(

)



(

)

<sub>(</sub>

<sub>)</sub>

(

)



2 2


( <sub>0</sub>) <sub>0</sub> min ,min 1,


1
0



2
1
1


1 <sub>1</sub> <sub>min</sub> <sub>,1</sub> <sub>.</sub>


1
0
1


<i>P W<sub>N</sub></i> <i>w</i> <i>P U</i> <i>w</i> <i>E</i> <i><sub>N</sub></i>


<i>w</i> <i>e</i>


<i>N</i> <i><sub>pi</sub></i>


<i>N</i>


<i>E</i> <i><sub>N</sub></i> <i>e</i>


<i>p w<sub>i</sub></i> <i>p<sub>i</sub></i>


<i>i</i>


 <sub></sub> <sub></sub>


 <sub></sub>






 <sub></sub> <sub></sub> 


   


 −    <sub>+</sub>   − 


 


   


 


 <sub></sub><sub></sub> <sub> −</sub><sub></sub> 




 


+ <sub></sub> −   <sub>+</sub>  <sub></sub>


 


 


=


 



(0.11)


<b>Remark 2.4. The result (1.11) is a non-uniform </b>


bound on Poisson approximation for the random
sums of independent geometric random variables.


<b>3 CONCLUSIONS </b>


Bounds for the distance between the distribution
function of random sums of independent
negative-binomial random variables and an appropriate
Poisson distribution function were obtained. The
results in this paper are extensions and
generaliza-tions of results in Teerapabolarn (2013a), and
Teerapabolarn (2014), Tran Loc Hung and Le
Tru-ong Giang (2016a, 2016b). The results will be
more interesting and valuable if Poisson
approxi-mation for random sums of dependent negative -


random variables. Journal of Mathematics Research.
4(3): 29-35.


Le Truong Giang and Trinh Huu Nghiem, 2017.
Charac-teristic functions method for some of the limit
theo-rems in probability. Can Tho University Journal of
Science. 53: 88-95.


Teerapabolarn, K., 2013a. Improved bounds on Poisson
approximation for independent binomial random


summands. International Journal of Pure and
Ap-plied Mathematics. 89(1): 29-33.


Teerapabolarn, K., 2013b. Poisson approximation for
random sums of geometric random variables.
Inter-national Journal of Pure and Applied Mathematics.
89(1): 35-39.


</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

ran-Tran Loc Hung and Le Truong Giang, 2016a. On bounds
in Poisson approximation for distributions of
inde-pendent negative-binomial distributed random
varia-bles. SpringerPlus,


Tran Loc Hung and Le Truong Giang, 2016b. On the
bounds in Poisson approximation for independent
ge-ometric distributed random variables. Bulletin of the
Irannian Mathematical Society. 42(5): 1087-1096.


Vellaisamy, P. and Upadhye, S., 2009. Compound
nega-tive binomial approximations for sums of random
variables. Probability and Mathematical
Statis-tics, 29(2): 205 - 226.


</div>

<!--links-->

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×