Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (133.7 KB, 5 trang )
<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>
<i>DOI: 10.22144/ctu.jen.2018.050 </i>
<i>1<sub>University of Finance - Marketing, Vietnam </sub></i>
<i>2<sub>Nam Can Tho University, Vietnam </sub></i>
<i>*<sub>Correspondence: Le Truong Giang (email: ) </sub></i>
<b>Article info. </b> <b> ABSTRACT </b>
<i>Received 11 Feb 2018 </i>
<i>Revised 04 Jun 2018 </i>
<i>Accepted 30 Nov 2018</i>
<i><b> The aim of this paper is to establish new bounds on Poisson </b></i>
<i>approxima-tion for random sums of independent negative-binomial random </i>
<i>varia-bles. The bounds showed in current paper are a uniform bound and a </i>
<i>non-uniform bound. The received results in this paper are extensions and </i>
<i>generalizations of known results. </i>
<i><b>Keywords </b></i>
<i>Negative - binomial variable, </i>
<i>Poisson approximation, </i>
<i>ran-dom sums, total variation </i>
<i>distance, uniform and </i>
<i><b>non-uniform bound </b></i>
Cited as: Giang, L.T. and Nghiem, T.H., 2018. New bounds on poisson approximation for random sums of
independent negative-binomial randomvariables. Can Tho University Journal of Science. 54(8):
<i>149-153. </i>
<b>1 INTRODUCTION </b>
In recent times, Poisson approximation problem for
random sums of discrete random variables has
at-tracted the attention of mathematicians. Several
interesting results can be found in Yannaros
(1991), Vellaisamy and Upadhye (2009),
Kongudomthrap and Chaidee (2012),
Teerapabo-larn (2013a), TeerapaboTeerapabo-larn (2014), Tran Loc
Hung and Le Truong Giang (2014), Tran Loc Hung
and Le Truong Giang (2016a, 2016b), and Le
Tru-ong Giang and Trinh Huu Nghiem (2017).
Let <i>X X </i><sub>1</sub>, <sub>2</sub>, be a sequence of independent
nega-tive-binomial random variables with probabilities
1
<i>r</i>
<i>k</i>
<i>k</i> <i>i</i>
<i>P X<sub>i</sub></i> <i>k</i> <i>C</i> <i>p<sub>i</sub></i> <i>p<sub>i</sub></i>
<i>r k</i>
= = <sub>+ −</sub> −
Let
1
<i>n</i>
<i>W<sub>n</sub></i> <i>X<sub>i</sub></i>
<i>i</i>
=
= and <i>U</i> be a Poisson random vari-<i>n</i>
able with mean
1
<i>n</i>
<i>E W</i> <i>r</i> <i>p p</i>
<i>n</i> <i>n</i> <i>i</i> <i>i</i> <i>i</i>
<i>i</i>
= = − −
=
In addition, throughout this paper, <i><sub>dTV</sub></i> is denoted
a probability distance of total variation, defined by
<i>d<sub>TV</sub></i> <i>X Y</i> <i>P X A</i> <i>P Y A</i>
<i>A</i>
= −
A uniform bound and a non-uniform bound for the
distance between the distribution functions of
and
<i>n</i>
<i>n</i> <i><sub>r</sub></i> <i><sub>p</sub></i>
<i>i</i>
<i>i</i>
<i>n</i>
<i>d<sub>TV</sub></i> <i>W U<sub>n</sub></i> <i><sub>n</sub></i> <i>e</i> <i>r<sub>i</sub></i> <i>p p<sub>i</sub></i> <i><sub>i</sub></i> <i>p<sub>i</sub></i>
<i>n</i> <i><sub>pi</sub></i>
<i>i</i>
− −− − − − −
= (0.1)
and
( <sub>0</sub>) <sub>0</sub> min ,1 ,
1
0
<i>n</i>
<i>n</i> <i>r</i> <i>p</i>
<i>e</i> <i>i</i> <i>i</i> <i>ri</i> <i>pi</i>
<i>P W<sub>n</sub></i> <i>w</i> <i>P U</i> <i><sub>n</sub></i> <i>w</i> <i>p<sub>i</sub></i>
<i>w</i> <i>p</i> <i>p</i>
<i>n</i> <i>i</i> <i>i</i> <i>i</i>
<sub></sub>− − −
− <sub>+</sub> −
= (0.2)
where <i>w </i><sub>0</sub> <sub>+</sub>: {0,1,2, }.=
Consider the sum
1
<i>N</i>
<i>W<sub>N</sub></i> <i>X<sub>i</sub></i>
<i>i</i>
=
= , where <i>N</i> is a
non-negative integer valued random variable and
inde-pendent of the <i><sub>Xi</sub></i>'s. The sum is called random
sums of independent negative -binomial random
variables. Let <i>U</i><sub> be a Poisson random variable </sub>
with =<i>E</i>
<i>N</i>
<i>r</i> <i>p</i>
<i>N</i> <i>i</i> <i>i</i>
<i>i</i>
= −
= .
Teerapabolarn (2014) gave a uniform bound for the
distance between the distribution functions of <i><sub>WN</sub></i>
and <i>U</i><sub> as follows: </sub>
2
, min 1,
2
1
2
1 <sub>1</sub>
min , .
2
1
<i>d</i> <i>W<sub>N</sub></i> <i>U</i> <i>E</i> <i><sub>N</sub></i>
<i>TV</i> <i><sub>e</sub></i>
<i>N r<sub>i</sub></i> <i>p<sub>i</sub></i>
<i>N</i> <i><sub>r</sub></i> <i><sub>p</sub></i> <i><sub>p</sub><sub>i</sub></i>
<i>i</i> <i>i</i> <i>i</i>
<i>E</i> <i>E</i>
<i>p<sub>i</sub></i> <i><sub>e</sub></i>
<i>i</i> <i>N</i>
<sub></sub>
−
<sub></sub> <sub></sub>
−
<sub></sub> <sub></sub> <sub></sub>
<sub>−</sub> <sub></sub> <sub></sub>
<sub></sub> <sub></sub> <sub>=</sub>
+ <sub></sub> <sub></sub>
<sub></sub> = <sub></sub>
<sub></sub> <sub></sub>
(0.3)
In this paper, some of the bounds on Poisson
ap-proximation for random sums of independent
nega-tive-binomial random variables with mean
<i>E</i> <i><sub>N</sub></i>
= , where
1
<i>N</i>
<i>r</i> <i>p p</i>
<i>N</i> <i>i</i> <i>i</i> <i>i</i>
<i>i</i>
= − −
= , are
present-ed in Section 2.
<b>2 MAIN RESULTS </b>
The following lemma is necessary to prove the
main result, which is directly obtained from
<i>Bar-bour et al. (1992). </i>
<b>Lemma 2.1. Let </b><i>U</i><sub> and </sub><i><sub>N</sub></i> <i>U</i><sub> denote a Poisson </sub>
random variable with mean and <i><sub>N</sub></i> ,
respec-tively. Then, for <i>A</i> <sub>+</sub>, the total variation distance
between the distributions of <i>U</i>
<i>N</i>
and <i>U</i><sub> </sub>
satis-fies the following inequality:
, min 1, .
<i>d<sub>TV</sub></i> <i>U</i> <i>U</i> <i>E</i> <i><sub>N</sub></i>
<i>N</i> <i><sub>e</sub></i>
<sub></sub> −
(0.4)
The following theorems present non-uniform and
uniform bounds for the distance between the
distri-bution functions of <i><sub>WN</sub></i> and <i>U</i><sub> , which are the </sub>
expected results.
<b>2.1 A uniform bound on Poisson </b>
<b>approximation for random sums of independent </b>
<b>negative-binomial random variables </b>
<b>Theorem 2.1. For </b><i>A</i> <sub>+</sub>,
1
<i>N</i> <i><sub>e</sub></i> <i>N</i> <i><sub>ri</sub></i>
<i>d</i> <i>W<sub>N</sub>U</i> <i>E</i> <i>r<sub>i</sub></i> <i>p p<sub>i</sub></i> <i><sub>i</sub></i> <i>p<sub>i</sub></i> <i>p p<sub>i</sub></i> <i><sub>i</sub></i>
<i>TV</i>
<i>N</i>
<i>i</i>
<sub></sub>
<sub></sub> <sub>−</sub> − <sub>−</sub> <sub></sub> <sub>−</sub>
<sub></sub> − − − <sub></sub>
=
, min 1 1 ,1 .
1
<i>n</i> <i><sub>r</sub></i> <i><sub>p</sub></i>
<i>i</i>
<i>i</i>
<i>n</i>
<i>d<sub>TV</sub></i> <i>W U<sub>n</sub></i> <i><sub>n</sub></i> <i><sub>n</sub></i> <i>e</i> <i>r<sub>i</sub></i> <i>p p<sub>i</sub></i> <i><sub>i</sub></i> <i>p<sub>i</sub></i>
<i>pi</i>
<i>i</i>
− − − − − − −
= (0.6)
From the triangular inequality, combining (1.4) and
(1.6), it follows the fact that
min 1 1 ,1
<i>d</i> <i>W<sub>N</sub></i> <i>U</i> <i>P N n d<sub>TV</sub></i> <i>W U<sub>n</sub></i>
<i>TV</i>
<i>n</i>
<i>P N n d<sub>TV</sub></i> <i>W U<sub>n</sub></i> <i>d<sub>TV</sub></i> <i>U</i> <i>U</i>
<i>n</i> <i>n</i>
<i>n</i>
<i>P N n d<sub>TV</sub></i> <i>W U<sub>n</sub></i> <i>d<sub>TV</sub></i> <i>U</i> <i>U</i>
<i>n</i> <i>N</i>
<i>n</i>
<i>n</i>
<i>e</i> <i>r</i> <i>p</i>
<i>n</i> <i>i</i> <i>i</i> <i><sub>r</sub></i> <i><sub>p</sub></i>
<i>i</i>
<i>i</i>
<i>P N n</i> <i><sub>pi</sub></i>
<i>p</i> <i>p</i>
<i>n i</i> <i>i</i>
<i>n</i> <i>i</i>
<i>E N</i>
<i>e</i>
<i>r</i>
<i>N</i>
<i>E</i> <i><sub>N</sub></i> <i>e</i> <i>r<sub>i</sub></i> <i>p p<sub>i</sub></i> <i><sub>i</sub></i> <i>p<sub>i</sub></i>
1
2
min 1, .
<i>N</i> <i><sub>pi</sub></i>
<i>i</i>
<i>pi</i>
<i>i</i>
<i>E</i> <i><sub>N</sub></i>
<i>e</i>
−
<sub>=</sub>
+ −
This finishes the proof.
<b>Remark 2.1. The result of (1.5) is interesting </b>
be-cause of considering
<i>N</i>
<i>r</i> <i>p p</i>
<i>N</i> <i>i</i> <i>i</i> <i>i</i>
<i>i</i>
= − −
= instead of
1
<i>N</i>
<i>r</i> <i>p</i>
<i>N</i> <i>i</i> <i>i</i>
<i>i</i>
= −
= as in Teerapabolarn (2014). It is
easily seen that the (1.1) is a special case of the
(1.5) when <i>N n</i>= + is fixed.
<b>Corollary 2.1. For </b><i>r r</i><sub>1 2</sub>= = = =... <i><sub>rn</sub></i> 1, then
( <sub>,</sub> ) <sub>min</sub>
2
min 1, .
<i>N</i>
<i>N</i>
<i>d</i> <i>W<sub>N</sub>U</i> <i>E</i> <i><sub>N</sub></i> <i>e</i> <i>p<sub>i</sub></i> <i>p<sub>i</sub></i> <i>p<sub>i</sub></i>
<i>TV</i>
<i>i</i>
<i>E</i> <i>N</i>
<i>e</i>
<b>Remark 2.2. The result (1.7) is a Poisson </b>
approx-imation for the random sums of independent
geo-metric random variables, which is introduced in
Teerapabolarn (2013a).
<b>2.2 A non-uniform bound on Poisson </b>
<b>approximation for random sums of independent </b>
<b>negative-binomial random variables </b>
<b>Theorem </b> <b>2.2. </b> For <i>w </i><sub>0</sub> <sub>+</sub>, we have
2 2
( <sub>0</sub>) <sub>0</sub> min ,min 1,
1
0
1
1 <sub>1</sub> <sub>min</sub> <sub>,1</sub> <sub>1</sub> 1 <sub>.</sub>
1
0
1
<i>P W<sub>N</sub></i> <i>w</i> <i>P U</i> <i>w</i> <i>E</i> <i><sub>N</sub></i>
<i>w</i> <i>e</i>
<i>N</i> <i><sub>r</sub><sub>i</sub></i> <i><sub>p</sub><sub>i</sub></i> <i><sub>r</sub></i>
<i>i</i>
<i>N</i>
<i>E</i> <i><sub>N</sub></i> <i>e</i> <i>p<sub>i</sub></i> <i>p p<sub>i</sub></i> <i><sub>i</sub></i>
<i>p w<sub>i</sub></i>
<i>i</i>
<sub></sub> <sub></sub>
<sub></sub>
<i>Proof. Applying the corresponding results in Tran </i>
Loc Hung and Le Truong Giang (2016a) and
Teerapabolarn (2013a) yields
1 1
( <sub>0</sub>) min ,1
! <sub>1</sub> <sub>0</sub> 1
0
<i>ke</i> <i>n</i> <i>e</i> <i>n</i> <i>n</i> <i>ri</i> <i>pi</i> <i>r</i> <i>p</i>
<i>n</i> <i>i</i> <i>i</i>
<i>P W<sub>n</sub></i> <i>w</i> <i>p<sub>i</sub></i>
<i>k</i> <i><sub>n</sub></i> <i>p w<sub>i</sub></i> <i>p<sub>i</sub></i>
<i>k w</i> <i>i</i>
− <sub>−</sub> <sub></sub><sub></sub> <sub>−</sub> <sub></sub><sub></sub> <sub>−</sub>
− <sub>+</sub> −
= (0.9)
and
min ,min 1, .
0 0
1
0
<i>P U</i> <i>w</i> <i>P U</i> <i>w</i> <i><sub>E N</sub></i>
<i>N</i> <i><sub>w</sub></i> <i><sub>e</sub></i>
<sub></sub> <sub></sub>
− <sub>+</sub> <sub></sub> −
(0.10)
0 0 0 0
0
0 0 0 0
0
0 0
0
0 0
1
1 1
min ,1
1
0
0 1
2 2
min ,min 1,
1
0
<i>P W<sub>N</sub></i> <i>w</i> <i>P U</i> <i>w</i> <i>P N n P W<sub>n</sub></i> <i>w</i> <i>P U</i> <i>w</i>
<i>n</i>
<i>P N n</i> <i>P W<sub>n</sub></i> <i>w</i> <i>P U</i> <i><sub>n</sub></i> <i>w</i> <i>P U</i> <i>w</i> <i>P U</i> <i>w</i>
<i>n</i>
<i>P N n P W<sub>n</sub></i> <i>w</i> <i>P U</i> <i>w</i>
<i>n</i>
<i>n</i>
<i>P U</i> <i><sub>N</sub></i> <i>w</i> <i>P U</i> <i>w</i>
<i>n</i>
<i>n</i> <i>r</i> <i>p</i>
<i>e</i> <i>i</i> <i>i</i> <i>ri</i> <i>pi</i>
<i>P N n</i> <i><sub>pi</sub></i>
<i>p w</i> <i>p</i>
<i>n</i> <i>i</i> <i>i</i>
<i>n</i>
<i>n</i>
<i>i</i>
<i>w</i> <i>e</i>
− = −
=
<sub></sub> <sub></sub>
= <sub></sub><sub></sub> − + − <sub></sub><sub></sub>
=
= −
=
+ −
− − −
= <sub>+</sub> −
= =
+
+
1 <sub>1</sub> <sub>min</sub> <sub>,1</sub> <sub>1</sub> 1
1
0
1
2 2
min ,min 1, .
1
0
<i>E N</i>
<i>N</i> <i><sub>r</sub><sub>i</sub></i> <i><sub>p</sub><sub>i</sub></i> <i><sub>r</sub></i>
<i>i</i>
<i>N</i>
<i>E</i> <i><sub>N</sub></i> <i>e</i> <i>p<sub>i</sub></i> <i>p p<sub>i</sub></i> <i><sub>i</sub></i>
<i>p w<sub>i</sub></i>
<i>i</i>
<i>E N</i>
<i>w</i> <i>e</i>
<sub></sub> <sub></sub>
<sub>−</sub>
− − −
<sub></sub> − <sub>+</sub> − − <sub></sub>
=
<sub></sub> <sub></sub>
+ <sub>+</sub> −
The proof is completed.
<b>Remark 2.3. It is easily to check that the (1.2) is a </b>
special case of the (1.8) when <i>N n</i>= + is fixed.
<b>Corollary 2.2. For </b><i>r r</i><sub>1 2</sub>= = = =... <i><sub>rn</sub></i> 1, then
2 2
( <sub>0</sub>) <sub>0</sub> min ,min 1,
1
0
2
1
1
1 <sub>1</sub> <sub>min</sub> <sub>,1</sub> <sub>.</sub>
1
0
1
<i>P W<sub>N</sub></i> <i>w</i> <i>P U</i> <i>w</i> <i>E</i> <i><sub>N</sub></i>
<i>w</i> <i>e</i>
<i>N</i> <i><sub>pi</sub></i>
<i>N</i>
<i>E</i> <i><sub>N</sub></i> <i>e</i>
<i>p w<sub>i</sub></i> <i>p<sub>i</sub></i>
<i>i</i>
<sub></sub> <sub></sub>
<sub></sub>
<sub></sub> <sub></sub>
− <sub>+</sub> −
<sub></sub><sub></sub> <sub> −</sub><sub></sub>
−
+ <sub></sub> − <sub>+</sub> <sub></sub>
=
(0.11)
<b>Remark 2.4. The result (1.11) is a non-uniform </b>
bound on Poisson approximation for the random
sums of independent geometric random variables.
<b>3 CONCLUSIONS </b>
Bounds for the distance between the distribution
function of random sums of independent
negative-binomial random variables and an appropriate
Poisson distribution function were obtained. The
results in this paper are extensions and
generaliza-tions of results in Teerapabolarn (2013a), and
Teerapabolarn (2014), Tran Loc Hung and Le
Tru-ong Giang (2016a, 2016b). The results will be
more interesting and valuable if Poisson
approxi-mation for random sums of dependent negative -
random variables. Journal of Mathematics Research.
4(3): 29-35.
Le Truong Giang and Trinh Huu Nghiem, 2017.
Charac-teristic functions method for some of the limit
theo-rems in probability. Can Tho University Journal of
Science. 53: 88-95.
Teerapabolarn, K., 2013a. Improved bounds on Poisson
approximation for independent binomial random
Teerapabolarn, K., 2013b. Poisson approximation for
random sums of geometric random variables.
Inter-national Journal of Pure and Applied Mathematics.
89(1): 35-39.
ran-Tran Loc Hung and Le Truong Giang, 2016a. On bounds
in Poisson approximation for distributions of
inde-pendent negative-binomial distributed random
varia-bles. SpringerPlus,
Tran Loc Hung and Le Truong Giang, 2016b. On the
bounds in Poisson approximation for independent
ge-ometric distributed random variables. Bulletin of the
Irannian Mathematical Society. 42(5): 1087-1096.
Vellaisamy, P. and Upadhye, S., 2009. Compound
nega-tive binomial approximations for sums of random
variables. Probability and Mathematical
Statis-tics, 29(2): 205 - 226.