Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (492.16 KB, 6 trang )
<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>
<b>Tran Van Nhu* </b>
<i>University of Transport and Communication</i>
ABSTRACT
The clutch dynamic model is important in dynamic research and gearshift control for automated
manual transmission and dual clutch transmission. The dynamic model must describe correctly the
behavior of the clutch in the transitional period for simulation and the controller design ensures
fast and smooth synchronization. This article presents the clutch dynamic model based on the
friction dynamic model. The developed model was simulated using Matlab/Simulink, the
numerical simulation results were compared with the literature models to show the effective of the
developed model.
<i><b>Keywords: Clutch; Clutch dynamic model; Dynamic friction model; Powertrain; Stribeck.</b></i>
INTRODUCTION*
The friction clutch is an element important in
the automotive powertrain, its function is to
transmit torque from the engine to the
transmission system by friction torque. The
friction clutch is present in the various
powertrain such as the Manual Transmission
(MT), the Automated Manual Transmission
(AMT) and the Dual Clutch Transmission
(DCT). The AMTs and the DCTs have more
advantages compared to the manual
transmission and the automatic one. It attracts
many researchers for modeling, simulation
and developing the control law to manage the
clutch/dual clutch during gear shifting and
take-off phase. In the literature, the friction
clutch is usually modeled by the Coulomb
friction model. The Coulomb friction model
does not describe well the Stick-Slip
transition and Stribeck phenomenon. In the
clutch control research to enhance the smooth
driving, the transition phase is very important.
In this paper the author develops a dynamic
model of friction clutch based on the bristle
models.
In the literature, the dynamic friction model is
presented in some works. The Dalh’s model
introduced in [1] was developed for the
simulation of control systems. This model is
*
<i>Tel: 0972 020094, Email: </i>
In [7] the authors introduced a static friction
model Pacejka with the “Magic” formula,
which capture the Stribeck effect and it
applied for modelling the tyre friction. This
In this paper the author introduces a dynamic
clutch model based on the Bristles model. The
developed model is simulated and compared
with the literature models to show the effectof
the developed model.
CLUTCH MODEL BASED ON THE
STATIC FRICTION MODEL
In the literature, the author majority use
Coulomb friction to model the clutch friction.
This model does not capture the Stribeck
effect. In [8], the author introduced a clutch
model based on the static friction model with
the friction coefficient depending on the
sliding velocity to capture Stribeck effect.
The clutch friction torque in the sliding phase
is determined by equations:
( )sign( )
<i>c</i> <i>c</i> <i>r</i> <i>r</i> <i>n</i>
<i>T</i>
where:
angular velocity,
( ) ( ) <i>r</i> <i>s</i> <i>s</i>
<i>r</i> <i>c</i> <i>s</i> <i>c</i> <i>e</i>
where
coefficient;
<i>s</i>
When the clutch is locked, the torque
transmitting through the clutch is the static
friction torque, which is determined
depending on the state of the system (see
CLUTCH MODEL BASED ON THE
LUGRE FRICTION MODEL
The clutch dynamics model based on the
Lugre model developed in [5], with the
relative angular velocity
clutch friction disc and the pressure plate. The
LuGre clutch model is described in the
standard form of a first-order nonlinear
differential equation:
- The average deflection of the bristles
| |
( )
<i>r</i>
<i>r</i>
<i>r</i>
<i>dz</i>
<i>z</i>
<i>dt</i> <i>g</i>
(3)
where
relative angular velocity
0
1
( ) ( ) <i>r</i> <i>s</i>
<i>r</i> <i>c</i> <i>s</i> <i>c</i>
<i>g</i>
(4)
with
- The clutch friction torque is determined by
following equation:
0 1 2
<i>c</i> <i>r</i> <i>c</i> <i>n</i>
<i>dz</i>
<i>T</i> <i>z</i> <i>F</i>
<i>dt</i>
<sub></sub> <sub></sub>
(5)
where
the linear viscous friction coefficient,
THE NEW DYNAMIC MODEL OF THE
FRICTION CLUTCH
The surfaces of the clutch disc and pressure
plate are very irregular at the microscopic
level. We visualize this contact as two bodies
that make contact through elastic bristles (see
Figure 1) [4]. For simplicity the bristles on
one part are shown as being rigid. When a
torque applies the bristles is deflected which
give rise to the friction torque. If the torque
applied is sufficiently large, the bristles
deflect so much that they will slip.
<i><b>Figure 1. The contact between two surfaces of the </b></i>
The clutch slipping coefficient is defined as
the ratio of internal slipping angular velocity
1 2
1 2
1
(6)
where
In the sliding phase, the bristles are deflected
maximum, they will slip, therefore
1 2 1 2
1 1 1
<i>r</i>
(7)
The average deflection of the bristles is
denoted as
2 2
<i>dz</i>
<i>dt</i>
1 2 1 2 1
( ) ( ) <i>r</i>
<i>dz</i>
<i>dt</i>
(9)
The clutch friction torque is a function
depending on the slipping coefficient
<i>c</i> <i>n</i> <i>c</i> <i>n</i>
<i>T</i> <i>f</i>
( ) sin tan tan ( )
<i>g</i>
where:
<i>c</i>
<i>D</i>
1
2
2 sin <i>c</i>
<i>s</i>
<i>C</i>
<sub></sub> <sub></sub>
(13)
1
tan / (2 )
tan ( )
<i>s</i>
<i>s</i> <i>s</i>
<i>B</i> <i>C</i>
<i>E</i>
<i>B</i> <i>B</i>
(14)
where
In the locked phase, the clutch torque is
independent of the slipping coefficient
0
<i>c</i>
<i>dT</i> <i>dz</i>
<i>dt</i>
0
1 <i>dT<sub>c</sub></i>
<i>dz</i>
<i>dt</i>
(16)
From the equations (9) and (16) we have:
0
1
1 <i><sub>c</sub></i>
<i>r</i>
<i>dt</i>
From the equation (10) we have
( )
( )
( )
( )
<i>c</i> <i>n</i>
<i>c</i> <i>n</i>
<i>n</i>
<i>c</i> <i>n</i>
<i>dT</i> <i>dg</i> <i>dF</i>
<i>F</i> <i>g</i>
<i>dt</i> <i>dt</i> <i>dt</i>
<i>dF</i>
<i>dg</i> <i>d</i>
<i>F</i> <i>g</i>
<i>d</i> <i>dt</i> <i>dt</i>
From the equations (17) and (18) we have:
0 1
( )
( )
<i>c</i> <i>n</i> <i>r</i>
<i>n</i>
<i>c</i>
<i>dg</i> <i>d</i>
<i>F</i>
<i>d</i> <i>dt</i>
The clutch model is described by the
equations (10), (11) and (19).
SIMULATION RESULTS
Considering a simplified model of powertrain
as shown in Figure 2. In this figure, <i>T<sub>in</sub></i> is the
engine torque, <i>I</i><sub>1</sub> is the mass moment of
inertia of the engine, flywheel, clutch drum
and pressure plate,
The differential equations of the simplified
powertrain model is given [8]
1
1
2 1 2 1 2
2
3 1 2 1 2
3
1
( )
1
( ) ( )
1
( ) ( )
; 1,..., 3
<i>in</i> <i>c</i>
<i>c</i>
<i>r</i>
<i>i</i> <i>i</i>
<i>T</i> <i>T</i>
<i>I</i>
<i>T</i> <i>C</i> <i>K</i>
<i>I</i>
<i>C</i> <i>K</i> <i>T</i>
<i>I</i>
<i>i</i>
(20)
where
load torque,
For the clutch model based on the static
friction model, it is necessary to determine the
clutch torque in the locked state. In the locked
state, we have
2
*
1 2
( ) ( )
<i>in</i>
<i>c</i>
<i>T I</i>
<i>T</i>
<i>I</i> <i>I</i>
<i>C</i>
(21)
Applying simulation with the parameters of the
simplified powertrain model as following [8]:
1 2.7
<i>I</i> kgm2;
16300
<i>C</i> Nm/rad; <i>K</i> 60Nm.s/rad. The
parameters of clutch models are [8]:
<i>c</i>
4
0 5.10
3
10
<i>s</i>
; <i>B</i>100. The function
<i><b>Figure 3. Function</b></i>
The first simulation is implemented by the
time-varying normal force
<i><b>Figure 4. First test - time-varying normal force: </b></i>
<i>angular velocities </i>
developed model are similar, that of Lugre
clutch modelis slightly different from the
other two.
<i><b>Figure 5. First test - time-varying normal force: </b></i>
<i>clutch torque </i>
According the function of the clutch, the
normal force is variable to synchronize and
disengage the clutch disc. In this case, the
developed clutch model captures well the
clutch behavior in the process of
synchronization and disengagement.
<i><b>Figure 6. Second test - time-varying engine </b></i>
<i>torque: angular velocities </i>
CONCLUSION
In the literature, the clutch model is modelled
based on the static friction model. This model
does not capture the stick-slip transition. The
clutch model based on the Lugre friction
model capture well the behavior of clutch in
The developed model in this paperhas
eliminated the disadvantages of the two
models above. It captures well the Stribeck
effect, the stick-slip transition. However, this
model is not affine in the control input
REFERENCES
1. P. Dahl (1968), “A solid friction model”, The
Aerospace Corporation, El Segundo, CA,
Technical Report TOR-0158H3107–18I-1.
2. H. Olsson, K. J. Åström, C. C. de Wit, M.
Gäfvert, P. Lischinsky (1998), “Friction Models
<i>and Friction Compensation”, Eur. J. Control, vol </i>
4, No.3, pp. 176–195.
3. D. A. Haessig, B. Friedland (1991), “On the
<i>modelling and simulation of friction”, J. Dyn. </i>
<i>Syst. Meas. Control, vol 133(1), pp. 354–362. </i>
4. C. Canudas de Wit, H.Olsson, K.J.Astrom,
P.Lischinsky (1995), “A new model for control of
<i>systems with friction”, IEEE Trans. Autom. </i>
<i>Control, vol 40, pp. 419–424. </i>
5. M. Aberger, M. Otter (2002), “Modelling
6. R. Nouailletas (2009), “Modélisation hybride,
identification, commande et estimation d’états de
système soumis à des frottements secs -
Application à un embrayage robotisé.”, Grenoble
INP, Grenoble.
7. <i>H. B. Pacejka (2006), Tyre and Vehicle </i>
<i>Dynamics. Butterworth-Heinemann. </i>
TĨM TẮT
<b>XÂY DỰNG MƠ HÌNH LY HỢP TRÊN CƠ SỞ MƠ HÌNH MA SÁT </b>
<b>ĐỘNG LỰC HỌC </b>
<b>Trần Văn Như*</b>
<i>Trường Đại học Giao thông Vận tải </i>
Mơ hình động lực học ly hợp quan trọng trong nghiên cứu động lực học và điều khiển quá trình
chuyển số trên hệ thống truyền lực tự động hóa AMT và DCT. Mơ hình động lực học cần mô tả
được hành vi của ly hợp trong giai đoạn q độ để mơ phỏng chính xác và thiết kế bộ điều khiển
đảm bảo đóng mở ly hợp nhanh và êm dịu. Bài báo này tác giả trình bày mơ hình động lực học ly
hợp xây dựng trên cơ sở mơ hình ma sát động lực học. Mơ hình được mơ phỏng bằng phần mềm
Matlab/Simulink, kết quả mơ phỏng được so sánh với các mơ hình trước đây cho thấy sự đáp ứng
hành vi của mơ hình.
<i><b>Từ khóa: Ly hợp; Mơ hình động lực học ly hợp; Mơ hình ma sát động lực học; Hệ thống truyền </b></i>
<i>lực; Stribeck.</i>
<i><b>Ngày nhận bài: 01/8/2017; Ngày phản biện: 14/8/2017; Ngày duyệt đăng: 30/8/2017 </b></i>
*