Tải bản đầy đủ (.pdf) (26 trang)

Nghiên cứu thành phần hóa học và hoạt tính sinh học của cây đu đủ đực (carica papaya l ) tt tiếng anh

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.16 MB, 26 trang )

UNIVERSITY OF DANANG
UNIVERSITY OF SCIENCE AND EDUCATION

DO THI THUY VAN

STUDY ON CHEMICAL COMPOSITION
AND BIOLOGICAL ACTIVITIES OF MALE CARICA PAPAYA L.

Major:

Organic chemistry

Major code:

9 44 01 14 (62 44 01 14)

SUMMARY OF DOCTORAL THESIS

Da Nang – 2020


This thesis was completed at:
UNIVERSITY OF SCIENCE AND EDUCATION
Advisors:
1. Prof.Dr. Dao Hung Cuong
2. Assoc.Prof.Dr. Giang Thi Kim Lien

1st Reviewer: .....................................................................
2nd Reviewer: .....................................................................
3rd Reviewer: .....................................................................


The thesis will be defended at the University Thesis Evaluation
Council (Organic Chemistry) at University of Science and Education
on date month 2020

The thesis can be found in:
The library of Nation;
The library of University of Science and Education, The University
of Danang.


1
INTRODUCTION
1. Preface
Carica papaya L., belonging to the Caricaceae family, is considered as a
valuable nutraceutical fruit plant. It is native to tropical America and is
commonly known as Papaya in English, Papita in Hindi, Erandakarkati in
Sanskrit,... In Vietnam, Papaya is widely planted in the delta provinces,
along the rivers, on alluvial soils. Papayas have the advantage of being easy
to grow, produce fruits quickly, high productive and many parts of the
papaya tree are used for different medicinal purposes.
Because of the common use of medicinal plants, many research projects
have focused on determining the chemical composition and biological
activity of this plant, mainly the parts of the female papaya. However, the
parts of the male papaya remain understudied.
The use of parts from the male papaya to treat diseases is still based on
folk experience, many people are afraid because there is no scientific basis
to prove it. Therefore, understanding the chemical composition and showing
that the specific ingredients of male papaya have biological activity is vital
work, creating a scientific basis for the application of natural resources in
Vietnam as a medicine to treat various diseases, including cancer.

Therefore, the topic: “Study on chemical compositon and biological
activities of male Carica papaya L.” was selected.
2. Aims of the thesis
Isolation and determination of the chemical structure of the isolated
compounds from male Carica papaya flowers and leaves;
Evaluation of the in vitro cytotoxic and tyrosinase inhibitory activity of
the isolated compounds.
3. Contents of the thesis
- Evaluation of the in vitro cytotoxic activity of extracts from male
Carica papaya flowers and leaves;
- Isolation and determination of the chemical structure of the isolated
compounds from male Carica papaya flowers and leaves;
- Evaluation of the in vitro cytotoxic activity of the isolated compounds;
- Evaluation of the in vitro tyrosinase inhibitory activity of the methanol
extract and the isolated compounds.


2
4. New contributions of the thesis
New contributions on chemical study of male Carica papaya flowers
and leaves as belowing:
- Two new compounds including caricapapayol (CP12A) and ethyl(9E)-8,11,12-trihydroxyoctadecenoat (CP17A).
- A compound was firstly isolated from natural source: 1-benzyl-5(hydroxymethyl)-1H-pyrrole-2-carbaldehyde (CP1).
- Among isolated compounds, eighteen compounds, including vitexoid
(CP3); lariciresinol (CP4); dehydrodiconiferyl alcohol (CP5); 6-hydroxy2,6-dimethyl-2,7-octadienoic acid (CP9); 6-hydroxy-2,6-dimethyloct-7enoic acid (CP10); hỗn hợp 3-hydroxy-3-methyl-5-hexanolide và leucine
(CP11); 2,6-dimethylocta-2,7-diene-1,6-diol (CP14); indole-3-aldehyde
(CP19); 3β,7α-dihydroxycholest-5-ene (CP20); cholest-5-ene-3β,7β-diol
(CP21); saringosterol (CP22); quercitrin (CPE3); kaempferol-3-O-α-Lrhamnopyranoside (CPE5); quercetin 3-O-β-D-galactopyranoside (CPE6);
kaempferol-3-O-α-L-arabinopyranoside (CPE7); tetratriacontanyl palmitate
(CPL-C1); 1-hentriacontanol (CPL-C2) và vanillin (CPL-C3) were

isolated from male Carica papaya flowers and leaves for the first time.
This is the first report on the evaluation of the in vitro cytotoxic activity
of the isolated compounds from male Carica papaya flowers and leaves on
A549, MCF-7, Hep3B cell lines. Most of them inhibited the A549, MCF-7,
Hep3B cell lines with different levels.
This is the first report on the evaluation of the in vitro tyrosinase
inhibitory activity of the methanol extract and the isolated compounds from
male Carica papaya flowers. One of the new compounds, caricapapayol
(CP12A), showed potent inhibitory effects similar to kojic acid.
5. The layout of the thesis
The thesis consists of 130 pages containing 41 tables and 58 pictures.
Preface 04 pages, conclusions and recommendations 03 pages, publications
01 page, references 14 pages. Contents of the thesis is divided into 04
chapters:
Chapter 1. Overview, 25 pages.
Chapter 2. Materials and methods, 6 pages.
Chapter 3. Experimental section, 18 pages.
Chapter 4. Results and discussion, 59 pages.
CHAPTER 1. OVERVIEW
This part mentioned domestic and international researches on the
following issues:
1.1. Introduction to Carica papaya L.
1.2. Research on chemical composition of Carica papaya L.
1.3. Research on biological activities of Carica papaya L.


3
CHAPTER 2. MATERIALS AND METHODS
2.1. Plant materials
The flowers and leaves of Carica papaya were collected at Quang NamDa Nang, Vietnam in December 2016. Its scientific name was identified by

botanist Dr. Ngo Van Trai, Vietnam National Institute of Medicinal
Materials. A voucher specimen No. DD001 was deposited at the Hebarium
of the Institute of Chemistry, Vietnam Academy of Science and
Technology.
2.2. Chemicals, tools and equipment
Brief presentation of chemicals, tools and equipment used in the thesis.
2.3. Research methods
2.3.1. Methods using for extraction of plant materials
Plant materials were extracted using solid-liquid extraction method and
liquid-liquid extraction methods.
2.3.2. Methods using for evaluation cytotoxic activity of extracts
The cytotoxic activity of extracts was determined by the MTT method.
2.3.3. Methods using for isolation of compounds
Chromatographic methods include thin-layer chromatography (TLC),
column chromatography (CC).
2.3.4. Methods using for determination of the chemical structure of
compounds
General method using for determination of the chemical structure of the
compounds is a combination of physical parameters and modern
spectroscopic methods such as melting point (Mp), mass spectrometry and
high-resolution mass spectrometry (ESI-MS, HR-ESI-MS), magnetic
resonance spectrum (1D, 2D-NMR) and chemical method.
2.3.5. Methods using for evaluation cytotoxic activity of compounds
The cytotoxic activity of the isolated compounds was determined by the
SRB method.
2.3.6. Methods using for evaluation tyrosinase inhibitory activity
The tyrosinase inhibitory activity in vitro was determined by the method
of Mashuda et al with some small changes.



4
CHAPTER 3. EXPERIMENTALS
3.1. Evaluation cytotoxic activity of extracts
3.1.1. Preparation of extracts
The dried powdered male Carica papaya flowers (100 g) were extracted
with MeOH under sonication to yield a dark solid residue after evaporation.
This residue was suspended in distilled water and successively partitioned
with n-hexane, chloroform, ethyl acetate to obtain corresponding n-hexane,
chloroform and ethyl acetate extracts after removal of solvent in vacuo.
The same process with 100 g dried powdered male Carica papaya
leaves also yielded n-hexane, chloroform and ethyl acetate extracts.
3.1.2. Evaluation cytotoxic activity of extracts
The in vitro cytotoxic activity of the n-hexane, chloroform and ethyl
acetate extracts from male Carica papaya flowers and leaves was determined
on A549, MCF-7, Hep3B cell lines using the MTT method with the purpose
of screening the extracts that are toxic to cancer cells. This screening was
performed at the Advanced Center of Organic Biochemistry - Institute of
Marine Biochemistry, Vietnam Academy of Science and Technology.
3.2. Isolation of compounds
3.2.1. Male Carica papaya flowers
a. Preparation of extracts
Diagram of creating extracts from male Carica papaya flowers is shown
in Figure 3.1.
Male Carica papaya flowers power (5,0 kg)
1. Ultrasonic soaking with methanol (8 liters x 3)
2. Removal of sovent in vacuo
Methanol extract (300 g)
1. Adding distilled water (2 liters)
2. Extraction distribution in turn with n-hexane (5 liters x 2),
chloroform (5 liters x 2), dichloromethane (5 liters x 2) and

ethyl acetate (5 liters x 2)
3. Removal of sovent in vacuo

CPH (54 g)
n-hexane extract

CPC (12 g)
Chloroform extract

CPD (52 g)
Dichloromethane extract

CPET (20 g)
Ethyl acetate extract

Figure 3.1. Preparation of crude extracts from male Carica papaya flowers

b. Isolation of compounds
Isolation diagram of compounds from chloroform extract from male
Carica papaya flowers is shown in Figure 3.2 and Table 3.1.


5
CPC
(12 g)

Table 3.1. Silica gel and solvent system used in
Figure 3.2

(1)

CPC2
(1,8 g)

CPC1
(3,4 g)

CPC3
(1,4 g)

CPC4
(1,2 g)

CPC5
(2,3 g)

Mobile phase

Silica gel

Gradient CH2Cl2-MeOH

(2)

YMC RP-18

MeOH-H2O (2:1, v/v)

(3)

Silica gel


CH2Cl2-MeOH (95:5, v/v)

(4)

Silica gel

CH2Cl2-MeOH-H2O (3:1:0,1, v/v)

(5)

Silica gel

CH2Cl2-MeOH (4:1, v/v)

(6)

Crystallization

CH2Cl2-MeOH (1:1, v/v)

(3)

(2)

CPC2A

Static phase
(1)


CPC5A CPC5B

CPC2B CPC2C
(4)

(99:1→10:1, v/v)

CPC5C CPC5D
(6)

(5)

C1
(10 mg)

C2
(3 mg)

C3
(27 mg)

Figure 3.2. Isolation of compounds from
chloroform extract

Isolation diagram of compounds from dichloromethane extract from
male Carica papaya flowers is shown in Figure 3.3 and Table 3.2.
CPD
(52 g)

Table 3.2. Silica gel and solvent system used in

Figure 3.3

(1)
CPD2
(4,0 g)

CPD1
(20,6 g)

CPD3
(2,5 g)

CPD4
(3,5 g)
(3)

(2)
CPD2A
(1,2 g)
(4)

CPD2C
(0,5 g)

CPD2B
(0,8 g)
(5)

CP4
(5 mg)


CPD2D
(1,24 g)

(6)

CP5
(2,5 mg)

CP11
(6 mg)

CPD4A
(0,6 g)

(7)

CP12A
(9 mg)

CP3
(7 mg)

CPD4B
(1,5 g)

CPD4C
(1,1 g)
(9)


(8)

CPD2D1 CPD2D2 CPD2D3
CPD4C1
(10)

CP1
(5 mg)

CPD5
(15,1 g)

CP6
(3 mg)

CPD4C3

(11)
CPD4C2

CP17A
(8 mg)

(15)
CPD4A1

CPD4A2

CPD4A3


CPD4A4

(13)

(12)
CP19
(9 mg)

CP20
(5 mg)

CP21
(7 mg)

CP14
(7 mg)

(14)
CP9
(10 mg)

CP22
(6 mg)

CP10
(8 mg)

Static phase

Mobile phase


(1)

Silica gel

(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)

Silica gel
Silica gel
YMC RP-18
Silica gel
YMC RP-18
YMC RP-18
Silica gel
YMC RP-18
Silica gel
Silica gel

Silica gel
Silica gel
Silica gel
Silica gel

Gradient
CH2Cl2-MeOH
(100:0→0:100, v/v)
CH2Cl2-MeOH (20:1, v/v)
CH2Cl2-MeOH (20:1, v/v)
Acetone-H2O (2:1, v/v)
CH2Cl2-EtOAc (2:1, v/v)
MeOH-H2O (2:1, v/v)
MeOH-H2O (2:1, v/v)
CH2Cl2-EtOAc (2:1, v/v)
MeOH-H2O (2:1, v/v)
CH2Cl2-acetone (5:1, v/v)
n-hexane-acetone (2,5:1, v/v)
CH2Cl2-acetone (4:1, v/v)
n-hexane-EtOAc (1:1, v/v)
CH2Cl2-MeOH (10:1, v/v)
CH2Cl2-acetone (3:1, v/v)

Figure 3.3. Isolation of compounds from
dichloromethane extract

Isolation diagram of compounds from ethyl acetate extract from male
Carica papaya flowers is shown in Figure 3.4 and Table 3.3.
CPET
(20 g)

(1)
CPET1
(2,0 g)
(2)
CPE1
(40 mg)

CPET2
(2,4 g)
(3)

CPET2A
(60 mg)
(6)
CPE2
(18 mg)

CPET3
(1,6 g)
(4)

CPET2B CPET3A
(820 mg) (25 mg)
(7)
CPE3
(11 mg)

Table 3.3. Silica gel and solvent system used
in Figure 3.4
CPET4

(6,2 g)
(5)

CPET3B CPET4A
(37 mg) (300 mg)
(8)
(9)
CPE4
(9,2 mg)

CPET5
(4,4 g)

CPET4B
(410 mg)
(10)

CPET4A1 CPET4A2 CPET4B1 CPET4B2
(58 mg)
(42 mg)
(62 mg)
(71 mg)
(11)
(12)
(14)
(13)
CPE5
CPE6
CPE7
CPE8

(9 mg)
(8,1 mg) (9,6 mg) (8,7 mg)

Figure 3.4. Isolation of compounds from
ethyl acetate extract

(1)

Static phase
Silica gel

(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

YMC RP-18
YMC RP-18
YMC RP-18
YMC RP-18
Sephadex LH-20
Sephadex LH-20
Sephadex LH-20
Silica gel

(10)


Silica gel

(11)
(12)
(13)
(14)

Sephadex LH-20
Sephadex LH-20
Sephadex LH-20
Sephadex LH-20

Mobile phase
Gradient
CH2Cl2-MeOH
(50:1→1:1, v/v)
MeOH-H2O (3:2, v/v)
MeOH-H2O (1,3:1, v/v)
MeOH-H2O (1,2:1, v/v)
MeOH-H2O (1:1, v/v)
MeOH-H2O (1:1, v/v)
MeOH-H2O (1:1, v/v)
MeOH-H2O (1:1, v/v)
CH2Cl2-MeOH-H2O
(3:1:0,2, v/v)
CH2Cl2-MeOH-H2O
(3,5:1:0,15, v/v)
MeOH-H2O (1:1, v/v)
MeOH-H2O (1:1, v/v)

MeOH-H2O (1:1, v/v)
MeOH-H2O (1:1, v/v)


6
3.2.2. Male Carica papaya leaves
a. Preparation of extracts
Diagram of creating extracts from male Carica papaya leaves is shown
in Figure 3.5.
Male Carica papaya leaves power (5,0 kg)
1. Ultrasonic soaking with methanol (5 liters x 3)
2. Removal of sovent in vacuo
Methanol extract (500 g)
1. Adding distilled water (3 liters)
2. Extraction distribution in turn with n-hexane (5 liters x 2)
and chloroform (4 liters x 2)
3. Removal of sovent in vacuo

CPLH (185 g)
n-hexane extract

CPLC (74 g)
Chloroform extract

Figure 3.5. Preparation of crude extracts from male Carica papaya leaves

b. Isolation of compounds
Isolation diagram of compounds from chloroform extract from male
Carica papaya leaves is shown in Figure 3.6 and Table 3.4.
CPLC

(74 g)
(1)

CPLC1CPLC4

CPLC5
(5,0 g)

CPLC6CPLC7

(2)

CPL
C5A

CPL
C5B

CPLC8
(3,5 g)

CPLC9CPLC11

(4)

(3)

CPL
C5C


CPL
C5D

CPL-C3
(4 mg)

CPL
C12A

(
(5)
30 mg)
CPL-C1
(12 mg)

CPL
C8A

CPL
C8B

CPL
C8C

Table 3.4. Silica gel and solvent system used in
Figure 3.6

CPLC12
(1,2 g)


CPL
C8D

CPL
C8E

CPL
C12B
(0
(7)
,2 g)

CPL
C12C

(1)

Static phase
Silica gel

(2)
(3)
(4)
(5)
(6)
(7)

Silica gel
Silica gel
Silica gel

Refinement
Refinement
Silica gel

Mobile phase
Gradient n-hexane-acetone
(50:1→1:1, v/v)
n-hexane-acetone (5:1, v/v)
n-hexane-acetone (20:1, v/v)
n-hexane-acetone (10:1, v/v)
Acetone
Acetone
Chloroform/acetone (15:1, v/v)

CPL-C4
(20 mg)

(
(6)
55 mg)
CPL-C2
(17 mg)

Figure 3.6. Isolation of compounds from
ethyl acetate extract

3.3. Physical and spectroscopic data
3.3.1. Compound 1 (C1): Rutin
Yellow needle-shaped crystals
Mp: 190-193oC

Molecular formula C27H30O16, M = 610
ESI-MS: m/z 633,1 [M+Na]+
1
H-NMR (500 MHz, CD3OD): δH 6,23 (1H, d, J = 2,0 Hz, H-6); 6,42 (1H,
d, J = 2,0 Hz, H-8); 7,69 (1H, d, J = 2,5 Hz, H-2′); 6,89 (1H, d, J = 8,0 Hz,
H-5′); 7,65 (dd, J = 8,0; 2,5 Hz, H-6′); 5,12 (1H, d, J = 2,0 Hz, H-1′′); 3,25-


7
3,47 (4H, m, H-2′′, H-3′′, H-4′′, H-5′′); 3,49-3,83 (2H, d, J = 10,5; 1,0 Hz,
H-6′′); 4,45 (1H, d, J = 1,5 Hz, H-1′′′); 3,65 (1H, dd, J = 3,5; 1,5 Hz, H-2′′′);
3,56 (1H, m, H-3′′′); 3,28 (1H, m, H-4′′′); 3,32 (1H, m, H-5′′′); 1,14 (3H, d,
J = 6,0 Hz, H-6′′′).
13
C-NMR (125 MHz, CD3OD): δC 158,5 (C-2); 135,6 (C-3); 179,4 (C-4);
162,9 (C-5); 99,9 (C-6); 160,0 (C-7); 94,9 (C-8); 159,3 (C-9); 105,6 (C-10);
123,1 (C-1′); 117,7 (C-2′); 145,8 (C-3′); 149,8 (C-4′); 116,1 (C-5′); 123,5
(C-6′); 104,7 (C-1′′); 75,7 (C-2′′); 78,1 (C-3′′); 71,4 (C-4′′); 77,2 (C-5′′);
68,5 (C-6′′); 102,4 (C-1′′′); 72,2 (C-2′′′); 72,1 (C-3′′′); 73,9 (C-4′′′); 69,7 (C5′′′); 17,8 (C-6′′′).
3.3.2. Compound 2 (C2): Acid gallic
White needle-shaped crystals
Mp: 236-238oC
Molecular formula C7H6O5, M = 170
1
H-NMR (500 MHz, CD3OD): δH 7,08 (2H, s, H-2, H-6).
13
C-NMR (125 MHz, CD3OD): δC 122,0 (C-1); 110,3 (C-2); 146,3 (C-3);
139,5 (C-4), 146,3 (C-5); 110,3 (C-6); 170,4 (C-7).
3.3.3. Compound 3 (C3): Daucosterol
White powder

Mp: 283-286oC
Molecular formula C35H60O6, M = 576
ESI-MS: m/z 397,3 [M-C6H12O6+H]+
1
H-NMR (500 MHz, DMSO-d6): δH 3,43 (1H, m, H-3); 5,32 (1H, br s, H6); 0,68 (3H, s, H-18); 0,96 (3H, s, H-19); 0,91 (3H, d, J = 6,5 Hz, H-21);
0,84 (3H, t, J = 7,6 Hz, H-26); 0,81 (3H, d, J = 6,8 Hz, H-28); 0,83 (3H, d, J
= 6,8 Hz, H-29); 4,22 (1H, d, J = 8,0 Hz, H-1′); 2,90 (1H, m, H-2′); 3,12
(1H, m, H-3′); 3,02 (1H, m, H-4′); 3,08 (1H, m, H-5′); 3,40 (1H, m, Ha-6′);
3,64 (1H, dd, J = 6,0; 10,0 Hz, Hb-6′).
13
C-NMR (125 MHz, DMSO-d6): δC 36,79 (C-1); 29,22 (C-2); 76,94 (C-3);
38,29 (C-4); 140,42 (C-5); 212,10 (C-6); 31,32 (C-7); 31,38 (C-8); 49,58
(C-9); 36,16 (C-10); 20,55 (C-11); 39,33 (C-12); 41,81 (C-13); 56,14 (C14); 23,80 (C-15); 27,72 (C-16); 55,42 (C-17); 11,61 (C-18); 18,90 (C-19);
35,43 (C-20); 18,56 (C-21); 33,33 (C-22); 25,46 (C-23); 45,13 (C-24); 28,7
(C-25); 19,63 (C-26); 22,58 (C-27); 19,03 (C-28); 11,73 (C-29); 100,79 (C1′); 73,42 (C-2′); 76,67 (C-3′); 70,08 (C-4′); 76,67 (C-5′); 61,07 (C-6′).
3.3.4. Compound 4 (CP1): 1-benzyl-5-(hydroxymethyl)-1H-pyrrole-2carbaldehyde (The compound was firstly isolated from natural source)
Colorless oil
Molecular formula C13H13NO2, M = 215
HR-ESI-MS: m/z 238,0842 [M+Na]+
Calcd for C13H13NO2Na: 238,0844
1
H-NMR (500 MHz, CDCl3): δH 6,96 (1H, d, J = 4,0 Hz, H-3); 6,31 (1H, d,
J = 4,0 Hz, H-4); 4,57 (2H, s, H-6); 9,57 (1H, s, H-7); 7,00 (2H, d, J = 7,0


8
Hz, H-1′, H-6′); 7,28 (2H, t, J = 7,0 Hz, H-3′, H-5′); 7,24 (1H, t, J = 7,0 Hz,
H-4′); 5,76 (2H, s, H-7′).
13
C-NMR (125 MHz, CDCl3): δC 132,9 (C-2); 124,2 (C-3); 110,8 (C-4);

141,9 (C-5); 56,7 (C-6); 179,8 (C-7); 137,8 (C-1′); 126,1 (C-2′); 128,8 (C3′); 127,4 (C-4′); 128,8 (C-5′); 126,1 (C-6′); 48,6 (C-7′).
3.3.5. Compound 5 (CP3): Vitexoid
Colorless oil
Molecular formula C10H16O3, M = 184
1
H-NMR (500 MHz, CDCl3): δH 2,67 (1H, m, H-2); 2,03 (1H, m, Ha-3);
2,10 (1H, m, Hb-3); 4,74 (1H, m, H-4); 1,78 (1H, dd, J = 3,0; 11,5 Hz, Ha5); 2,03 (1H, dd, J = 8,0; 15,5 Hz, Hb-5); 5,93 (1H, dd, J = 10,5; 17,0 Hz,
H-7); 5,14 (1H, dd, J = 1,5; 10,5 Hz, Ha-8); 5,33 (1H, dd, J = 1,5; 17,0 Hz,
Hb-8); 1,27 (3H, d, J = 7,0 Hz, H-9); 1,33 (3H, s, H-10).
13
C-NMR (125 MHz, CDCl3): δC 179,34 (C-1); 33,83 (C-2); 36,60 (C-3);
75,75 (C-4); 47,06 (C-5); 72,62 (C-6); 144,03 (C-7); 112,86 (C-8); 15,84
(C-9); 28,74 (C-10).
3.3.6. Compound 6 (CP4): Lariciresinol
White powder
Mp: 165-168oC
Molecular formula C20H24O6, M = 360
1
H-NMR (500 MHz, CDCl3): δH 6,87 (1H, d, J = 1,5 Hz, H-2); 6,88 (1H, d,
J = 8,0 Hz, H-5); 6,81 (1H, dd, J = 1,5; 8,0 Hz, H-6); 4,79 (1H, d, J = 7,0
Hz, H-7); 2,41 (1H, m, H-8); 3,92 (1H, Ha-9); 3,78 (1H, Hb-9); 3,89 (s, 3OMe); 6,69 (1H, br s, H-2′); 6,84 (1H, d, J = 8,5 Hz, H-5′); 6,70 (1H, br d, J
= 8,5 Hz, H-6′); 2,92 (1H, dd, J = 5,0; 13,5 Hz, Ha-7′); 2,56 (1H, dd, J =
10,5; 13,5 Hz, Hb-7′); 2,74 (1H, m, H-8′); 4,06 (1H, dd, J = 6,5; 8,5 Hz, Ha9′); 3,75 (1H, dd, J = 6,5; 8,5 Hz, Hb-9′); 3,87 (s, 3′-OMe).
13
C-NMR (125 MHz, CDCl3): δC 134,8 (C-1); 108,3 (C-2); 146,7 (C-3);
145,1 (C-4); 114,2 (C-5); 118,8 (C-6); 82,9 (C-7); 52,6 (C-8); 61,0 (C-9);
56,0 (C3-OMe); 132,3 (C-1′); 111,2 (C-2′); 146,6 (C-3′); 144,1 (C-4′); 114,4
(C-5′); 121,2 (C-6′); 33,4 (C-7′); 42,5 (C-8′); 72,9 (C-9′); 56,0 (C3′-OMe).
3.3.7. Compound 7 (CP5): Dehydrodiconiferyl alcohol
White powder

Mp: 141-142oC
Molecular formula C20H22O6, M = 358
1
H-NMR (500 MHz, CDCl3): δH 6,87 (1H, s, H-2); 6,90 (1H, s, H-6); 6,57
(1H, d, J = 16,0 Hz, H-7); 6,25 (1H, dt, J = 6,0; 16,0 Hz, H-8); 4,31 (2H, d,
J = 6,0 Hz, H-9); 3,91 (s, 3-OMe); 6,93 (1H, br s, H-2′); 6,88 (1H, d, J =
9,0 Hz, H-5′); 6,91 (1H, br d, J = 9,0 Hz, H-6′); 5,58 (1H, d, J = 7,5 Hz, H7′); 3,63 (1H, m, H-8′); 3,97 (1H, Ha-9′); 3,92 (1H, Hb-9′); 3,87 (s, 3′-OMe).
13
C-NMR (125 MHz, CDCl3): δC 130,9 (C-1); 110,6 (C-2); 144,5 (C-3);
148,2 (C-4); 128,1 (C-5); 114,8 (C-6); 131,4 (C-7); 126,5 (C-8); 63,9 (C-9);
56,0 (C3-OMe); 132,9 (C-1′); 108,8 (C-2′); 146,7 (C-3′); 145,8 (C-4′); 114,4


9
(C-5′); 119,5 (C-6′); 88,3 (C-7′); 53,6 (C-8′); 64,0 (C-9′); 56,0 (C3′-OMe).
3.3.8. Compound 8 (CP6): Benzyl-O--D-glucopyranoside
White powder
Mp: 121-122oC
Molecular formula C13H18O6, M = 270
1
H-NMR (500 MHz, CDCl3): δH 7,33 (2H, d, J = 7,0 Hz, H-2, H-6); 7,32
(2H, t, J = 7,0 Hz, H-3, H-5); 7,26 (1H, t, J = 7,0 Hz, H-4); 4,59 (1H, d, J =
12,0 Hz, Ha-7); 4,85 (1H, d, J = 12,0 Hz, Hb-7); 4,37 (1H, d, J = 7,5 Hz, H1′); 3,41 (1H, t, J = 8,5 Hz, H-2′); 3,51 (1H, t, J = 9,0 Hz, H-3′); 3,58 (1H, t,
J = 9,0 Hz, H-4′); 6,25 (1H, m, H-5′); 3,81 (2H, H-6′).
13
C-NMR (125 MHz, CDCl3): δC 137,1 (C-1); 128,2 (C-2); 128,5 (C-3);
128,1 (C-4); 128,5 (C-5); 128,2 (C-6); 71,5 (C-7); 101,9 (C-1′); 73,6 (C-2′);
76,3 (C-3′); 69,9 (C-4′); 75,5 (C-5′); 61,6 (C-6′).
3.3.9. Compound 9 (CP9): 6-hydroxy-2,6-dimethyl-2,7-octadienoic acid
Colorless oil

Molecular formula C10H16O3, M = 184
1
H-NMR (500 MHz, DMSO-d6): δH 6,62 (1H, m, H-3); 2,21 (2H, m, H-4);
1,48 (2H, t, J = 8,0 Hz, H-5); 5,86 (1H, dd, J = 11,0; 17,5 Hz, H-7); 4,97
(1H, dd, J = 2,0; 11,0 Hz, Ha-8); 5,16 (1H, dd, J = 2,0; 17,5 Hz, Hb-8); 1,70
(3H, s, H-9); 1,16 (3H, s, H-10).
13
C-NMR (125 MHz, DMSO-d6): δC 169,34 (C-1); 127,83 (C-2); 141,52
(C-3); 23,08 (C-4); 40,61 (C-5); 71,29 (C-6); 145,77 (C-7); 111,17 (C-8);
12,22 (C-9); 27,67 (C-10).
3.3.10. Compound 10 (CP10): 6-hydroxy-2,6-dimethyloct-7-enoic acid
Colorless oil
Molecular formula C10H18O3, M = 186
1
H-NMR (500 MHz, CDCl3): δH 2,48 (1H, m, H-2); 1,68 (1H, m, Ha-3);
1,43 (1H, m, Hb-3); 1,38 (2H, m, H-4); 1,53 (2H, m, H-5); 5,90 (1H, dd, J =
11,0; 17,0 Hz, H-7); 5,20 (1H, d, J = 17,0 Hz, Ha-8); 5,04 (1H, d, J = 11,0
Hz, Hb-8); 1,18 (3H, d, J = 7,0 Hz, H2-Me); 1,28 (3H, s, H6-Me).
13
C-NMR (125 MHz, CDCl3): δC 181,0 (C-1); 39,1 (C-2); 33,9 (C-3); 21,5
(C-4); 42,0 (C-5); 73,2 (C-6); 145,0 (C-7); 111,8 (C-8); 16,9 (C2-Me); 27,8
(C6-Me).
3.3.11. Compound 11 (CP14): 2,6-dimethylocta-2,7-diene-1,6-diol
Colorless oil
Molecular formula C10H18O2, M = 170
1
H-NMR (500 MHz, CD3OD): δH 3,92 (2H, s, H-1); 5,41 (1H, dt, J = 1,0;
7,0 Hz, H-3); 2,09 (2H, m, H-4); 1,56 (2H, m, H-5); 5,94 (1H, dd, H-7);
5,06 (1H, dd, J = 1,5; 11,0 Hz, Ha-8); 5,23 (1H, dd, J = 1,5; 17,5 Hz, Hb-8);
1,66 (3H, s, H-9); 1,27 (3H, s, H-10).

13
C-NMR (125 MHz, CD3OD): δC 68,96 (C-1); 135,88 (C-2); 126,83 (C-3);
23,36 (C-4); 43,05 (C-5); 73,79 (C-6); 146,26 (C-7); 112,06 (C-8); 13,62
(C-9); 27,60 (C-10).


10
3.3.12. Compound 12 (CP11): Mixture of 3-hydroxy-3-methyl-5hexanolide and leucine
Colorless oil
Compound 12.1 (CP11.1): 3-hydroxy-3-methyl-5-hexanolid
Molecular formula C6H10O3, M = 130
HR-ESI-MS: m/z 131,0709 [M+H]+
Calcd for C6H11O3: 131,0708
1
H-NMR (500 MHz, CDCl3): δH 2,65 (1H, d, J = 17,0 Hz, Ha-2); 2,56 (1H,
d, J = 17,0 Hz, Hb-2); 1,93 (1H, m, Ha-4); 1,91 (1H, m, Hb-4); 4,60 (1H,
ddd, J = 4,0; 10,5; 10,5 Hz, Ha-5); 4,35 (1H, ddd, J = 4,0; 4,0; 10,5 Hz, Hb5); 1,41 (3H, s, H3-Me).
13
C-NMR (125 MHz, CDCl3): δC 170,3 (C-1); 44,8 (C-2); 68,3 (C-3); 36,0
(C-4); 65,9 (C-5); 29,8 (C3-Me).
Compound 12.2 (CP11.2): Leucine
Molecular formula C6H13NO2, M = 131
HR-ESI-MS: m/z 130,1649 [M-H]Calcd for C6H12NO2: 130,1650
1
H-NMR (500 MHz, CDCl3): δH 4,12 (1H, m, H-2); 1,80 (1H, m, Ha-3);
1,58 (1H, m, Hb-3); 1,79 (1H, m, H-4); 1,00 (1H, d, J = 6,0 Hz, H-5); 0,97
(3H, d, J = 6,0 Hz, H4-Me).
13
C-NMR (125 MHz, CDCl3): δC 57,4 (C-2); 40,9 (C-3); 25,2 (C-4); 23,0
(C-5); 21,6 (C4-Me).

3.3.13. Compound 13 (CP12A): Caricapapayol (New compound)
Yellow powder
Molecular formula C29H34O4, M = 446
HR-ESI-MS: m/z 447,2526 [M+H]+
Calcd for C29H35O4: 447,2535
1
H-NMR (500 MHz, CD3OD): δH 6,88 (1H, d, J = 2,0 Hz, H-3); 6,69 (1H,
d, J = 2,0 Hz, H-5); 6,35 (1H, d, J = 10,0 Hz, H-7); 5,69 (1H, d, J = 10,0
Hz, H-8); 1,44 (3H, s, H-10); 1,44 (3H, s, H-11); 6,84 (1H, d, J = 16,0 Hz,
H-1′); 6,76 (1H, d, J = 16,0 Hz, H-2′); 6,49 (1H, s, H-4′); 6,49 (1H, s, H-8′);
3,33 (2H, d, J = 7,0 Hz, H-1′′); 5,27 (1H, t, J = 7,0 Hz, H-2′′); 1,78 (3H, s,
H-4′′); 1,97 (2H, t, J = 7,0 Hz, H-5′′); 2,07 (2H, m, H-6′′); 5,09 (1H, t, J =
7,0 Hz, H-7′′); 1,64 (3H, s, H-9′′), 1,58 (3H, s, H-10′′).
13
C-NMR (125 MHz, CD3OD): δC 141,2 (C-1); 146,4 (C-2); 114,3 (C-3);
132,0 (C-4); 117,1 (C-5); 123,2 (C-6); 123,4 (C-7); 132,3 (C-8); 77,8 (C-9);
28,0 (C-10); 28,0 (C-11); 128,2 (C-1′); 128,0 (C-2′); 137,4 (C-3′); 105,8 (C4′); 157,2 (C-5′); 116,1 (C-6′); 157,2 (C-7′); 105,8 (C-8′); 23,2 (C-1′′); 124,5
(C-2′′); 134,9 (C-3′′); 16,3 (C-4′′); 40,9 (C-5′′); 27,8 (C-6′′); 125,5 (C-7′′);
131,9 (C-8′′); 25,8 (C-9′′); 17,7 (C-10′′).
3.3.14.
Compound
14
(CP17A):
Ethyl-(9E)-8,11,12trihydroxyoctadecenoat (New compound)
White powder


11
Molecular formula C20H38O5, M = 358
HR-ESI-MS: m/z 357,8369 [M-H]Calcd for C20H37O5: 357,2641

1
H-NMR (500 MHz, CD3OD): δH 2,32 (2H, t, J = 7,5 Hz, H-2); 1,62 (2H,
m, H-3); 1,34 (2H, m, H-4); 1,34 (2H, m, H-5); 1,34 (2H, m, H-6); 1,53
(2H, m, H-7); 4,05 (1H, dt, J = 6,5; 6,5 Hz, H-8); 5,71 (1H, dd, J = 6,5; 15,5
Hz, H-9); 5,65 (1H, dd, J = 6,5; 15,5 Hz, H-10); 3,90 (1H, dd, J = 5,5; 5,5
Hz, H-11); 3,42 (1H, m, H-12); 1,34 (2H, m, H-13); 1,53 (2H, m, H-14);
1,34 (2H, m, H-15); 1,34 (2H, m, H-16); 1,34 (2H, m, H-17); 0,93 (3H, t, J
= 6,5 Hz, H-18); 4,13 (2H, q, J = 7,0 Hz, H-1′); 1,26 (3H, t, J = 7,0 Hz, H2′).
13
C-NMR (125 MHz, CD3OD): δC 175,6 (C-1); 35,1 (C-2); 26,0 (C-3); 30,1
(C-4); 30,4 (C-5); 26,5 (C-6); 38,3 (C-7); 73,2 (C-8); 136,8 (C-9); 131,4 (C10); 76,7 (C-11); 75,7 (C-12); 33,8 (C-13); 26,5 (C-14); 30,5 (C-15); 33,1
(C-16); 23,7 (C-17); 14,4 (C-18); 61,4 (C-1′); 14,5 (C-2′).
3.3.15. Compound 15 (CP19): Indole-3-aldehyde
Yellow needle-shaped crystals
Molecular formula C9H7NO, M = 145
HR-ESI-MS: m/z 146,1657 [M]+
Calcd for C9H7NO: 146,1659
1
H-NMR (500 MHz, CD3OD): δH 8,11 (1H, s, H-2); 8,18 (1H, d, J = 7,5
Hz, H-4); 7,25 (1H, dd, J = 7,5; 8,0 Hz, H-5); 7,30 (1H, dd, J = 7,5; 8,0 Hz,
H-6); 7,50 (1H, d, J = 8,0 Hz, H-7); 9,91 (1H, s, H-8).
13
C-NMR (125 MHz, CD3OD): δC 139,7 (C-2); 120,2 (C-3); 125,7 (C-3a);
122,4 (C-4); 123,6 (C-5); 125,0 (C-6); 113,1 (C-7); 139,0 (C-7a); 187,4 (C8).
3.2.16. Compound 16 (CP20): 3β,7α-dihydroxycholest-5-ene
White powder
Mp: 188-189oC
Molecular formula C27H46O2, M = 402
ESI-MS: m/z 367,3 [M+H-2H2O]+
1

H-NMR (500 MHz, CD3OD): δH 1,02 (1H, m, Ha-1); 1,33 (1H, m, Hb-1);
1,52 (1H, m, Ha-2); 1,86 (1H, m, Ha-2); 3,61 (1H, m, H-3); 2,29 (1H, m, Ha4); 2,34 (1H, m, Hb-4); 5,62 (1H, s, H-6); 3,85 (1H, m, H-7); 1,47 (1H, m,
H-8); 1,24 (1H, m, H-9); 1,49 (1H, m, Ha-11); 1,51 (1H, m, Hb-11); 1,18
(1H, m, Ha-12); 2,01 (1H, m, Hb-12); 1,43 (1H, m, H-14); 1,32 (1H, m, Ha15); 1,92 (1H, m, Hb-15); 1,16 (1H, m, Ha-16); 1,71 (1H, m, Hb-16); 1,18
(1H, m, H-17); 0,68 (3H, s, H-18); 1,05 (3H, s, H-19); 1,41 (1H, m, H-20);
0,92 (3H, d, J = 6,5 Hz, H-21); 1,12 (1H, m, Ha-22); 1,86 (1H, m, Hb-22);
1,16 (1H, m, Ha-23); 1,34 (1H, m, Hb-23); 1,12 (1H, m, Ha-24); 1,18 (1H,
m, Hb-24); 1,52 (1H, m, H-25); 0,85 (3H, d, J = 6,5 Hz, H-26); 0,86 (3H, d,
J = 6,5 Hz, H-27).


12
13

C-NMR (125 MHz, CD3OD): δC 36,2 (C-1); 31,4 (C-2); 71,3 (C-3); 42,0
(C-4); 146,3 (C-5); 123,9 (C-6); 65,4 (C-7); 37,5 (C-8); 42,3 (C-9); 37,4 (C10); 20,7 (C-11); 39,2 (C-12); 42,2 (C-13); 49,4 (C-14); 28,3 (C-15); 24,3
(C-16); 55,9 (C-17); 11,6 (C-18); 18,3 (C-19); 35,8 (C-20); 18,8 (C-21);
37,0 (C-22); 23,7 (C-23); 39,5 (C-24); 28,0 (C-25); 22,6 (C-26); 22,8 (C27).
3.3.17. Compound 17 (CP21): Cholest-5-ene-3β,7β-diol
White powder
Mp: 178-179oC
Molecular formula C27H46O2, M = 402
ESI-MS: m/z 367,3 [M+H-2H2O]+
1
H-NMR (500 MHz, CD3OD): δH 3,55 (1H, m, H-3); 5,30 (1H, d, J = 8,5
Hz, H-6); 3,85 (1H, br d, J = 8,0 Hz, H-7); 0,68 (3H, s, H-18); 1,06 (3H, d,
J = 6,5 Hz, H-19); 0,92 (3H, d, J = 6,5 Hz, H-21); 0,87 (3H, d, J = 6,5 Hz,
H-26); 0,87 (3H, d, J = 6,5 Hz, H-27).
13
C-NMR (125 MHz, CD3OD): δC 37,0 (C-1); 31,6 (C-2); 71,5 (C-3); 41,8

(C-4); 143,5 (C-5); 125,5 (C-6); 73,4 (C-7); 41,0 (C-8); 48,3 (C-9); 36,5 (C10); 21,1 (C-11); 39,5 (C-12); 43,0 (C-13); 55,5 (C-14); 26,4 (C-15); 28,6
(C-16); 56,0 (C-17); 11,8 (C-18); 18,8 (C-19); 35,7 (C-20); 19,2 (C-21);
36,2 (C-22); 23,9 (C-23); 39,6 (C-24); 28,0 (C-25); 22,6 (C-26); 22,8 (C27).
3.3.18. Compound 18 (CP22): Saringosterol
White needle-shaped crystals
Mp: 160-161oC
Molecular formula C29H48O2, M = 428
HR-ESI-MS: m/z 439,3651 [M+Na]+
Calcd for C29H48NaO2: 416,3654
1
H-NMR (500 MHz, CDCl3): δH 1,85 (1H, m, Ha-1); 1,07 (1H, m, Hb-1);
1,82 (1H, m, Ha-2); 1,50 (1H, m, Ha-2); 3,51 (1H, m, H-3); 2,27 (2H, m, H4); 5,35 (1H, d, J = 5,0 Hz, H-6); 1,97 (1H, m, Ha-7); 1,52 (1H, m, Hb-7);
1,45 (1H, m, H-8); 0,93 (1H, m, H-9); 1,49 (2H, m, H-11); 2,23 (1H, m, Ha12); 1,18 (1H, m, Hb-12); 0,99 (1H, m, H-14); 1,58 (1H, m, Ha-15); 1,05
(1H, m, Hb-15); 1,82 (1H, m, Ha-16); 1,26 (1H, m, Hb-16); 1,15 (1H, m, H17); 0,67 (3H, s, H-18); 1,00 (3H, s, H-19); 1,39 (1H, m, H-20); 0,93 (3H,
d, J = 6,0 Hz, H-21); 1,41 (1H, m, Ha-22); 1,03 (1H, m, Hb-22); 1,62 (1H,
m, Ha-23); 1,58 (1H, m, Hb-23); 1,73 (1H, m, H-25); 0,90 (3H, d, J = 8,5
Hz, H-26); 0,87 (3H, d, J = 6,5 Hz, H-27); 5,80 (1H, ddd, J = 7,0; 11,0; 17,5
Hz, H-28); 5,14 (1H, dd, J = 3,0; 11,0 Hz, Ha-29); 5,20 (1H, dd, J = 5,5;
17,0 Hz, Hb-29).
13
C-NMR (125 MHz, CDCl3): δC 37,3 (C-1); 31,7 (C-2); 71,7 (C-3); 42,4
(C-4); 140,8 (C-5); 121,7 (C-6); 31,9 (C-7); 31,9 (C-8); 50,1 (C-9); 36,5 (C10); 21,1 (C-11); 39,8 (C-12); 42,3 (C-13); 56,8 (C-14); 24,3 (C-15); 28,2
(C-16); 55,9 (C-17); 11,9 (C-18); 19,4 (C-19); 36,1 (C-20); 18,8 (C-21);


13
29,1 (C-22); 34,6 (C-23); 77,7 (C-24); 35,9 (C-25); 16,5 (C-26); 17,5 (C27); 142,6 (C-28); 113,0 (C-29).
3.3.19. Hợp chất 19 (CPE1): Kaempferol
Yellow powder
Mp: 275-277oC

Molecular formula C15H10O6, M = 286
ESI-MS: m/z 287,14 [M+H]+
1
H-NMR (500 MHz, CD3OD): δH 6,20 (1H, s, H-6); 6,40 (1H, s, H-8); 6,92
(1H, d, J = 8.5 Hz, H-3′); 6,92 (1H, d, J = 8.5 Hz, H-5′); 8,08 (1H, d, J = 8.5
Hz, H-2′); 8,08 (1H, d, J = 8.5 Hz, H-6′).
13
C-NMR (125 MHz, CD3OD): δC 148,1 (C-2); 137,1 (C-3); 177,3 (C-4);
162,4 (C-5); 99,3 (C-6); 165,5 (C-7); 94,5 (C-8); 158,2 (C-9); 104,5 (C-10);
123,7 (C-1′); 130,7 (C-2′); 116,3 (C-3′); 160,5 (C-4′); 116,3 (C-5′); 130,7
(C-6′).
3.3.20. Compound 20 (CPE5): Kaempferol-3-O-α-L-rhamnopyranoside
Yellow powder
Mp: 172-175oC
Molecular formula C21H20O10, M = 432
ESI-MS: m/z 433,46 [M+H]+
1
H-NMR (500 MHz, CD3OD): 6,22 (1H, br s, H-6); 6,39 (1H, br s, H-8);
7,78 (1H, d, J = 8,5 Hz, H-2′); 6,95 (1H, d, J = 8,5 Hz, H-3′); 6,95 (1H, d, J
= 8,5 Hz, H-5′); 7,78 (1H, d, J = 8,5 Hz, H-6′); 5,40 (1H, br s, H-1′′); 4,24
(1H, br s, H-2′′); 3,73 (1H, br d, J = 5,0 Hz, H-3′′); 3,36 (1H, m, H-4′′); 3,34
(1H, m, H-5′′); 0,94 (3H, d, J = 4,5, H-6′′).
13
C-NMR (125 MHz, CD3OD): δC 159,3 (C-2); 136,2 (C-3); 179,6 (C-4);
163,2 (C-5); 100,0 (C-6); 166,2 (C-7); 94,8 (C-8); 158,6 (C-9); 105,9 (C10); 122,7 (C-1′); 131,9 (C-2′); 116,6 (C-3′); 161,6 (C-4′); 116,6 (C-5′);
131,9 (C-6′); 103,5 (C-1′′); 72,2 (C-2′′); 72,0 (C-3′′); 73,2 (C-4′′); 71,9 (C5′′); 17,7 (C-6′′).
3.3.21. Compound 21 (CPE4): Kaempferol-3-O-β-D-glucopyranoside
Yellow powder
Mp: 223-229oC
Molecular formula C21H20O11, M = 448

ESI-MS: m/z 447,42 [M-H]1
H-NMR (500 MHz, CD3OD): δH 6,22 (1H, s, H-6); 6,42 (1H, s, H-8); 8,07
(1H, d, J = 8,5 Hz, H-2′); 6,91 (1H, d, J = 8,5 Hz, H-3′); 6,91 (1H, d, J = 8,5
Hz, H-5′); 8,07 (1H, d, J = 8,5 Hz, H-6′); 5,26 (1H, d, J = 7,0 Hz, H-1′′);
3,23 (1H, m, H-5′′); 3,55 (1H, dd, J = 5,0; 12,0 Hz, Ha-6′′); 3,71 (1H, br d, J
= 12,0 Hz, Hb-6′′).
13
C-NMR (125 MHz, CD3OD): δC 158,5 (C-2); 135,5 (C-3); 179,5 (C-4);
163,1 (C-5); 100,0 (C-6); 166,1 (C-7); 94,8 (C-8); 159,1 (C-9); 105,7 (C10); 122,8 (C-1′); 132,3 (C-2′); 116,1 (C-3′); 161,6 (C-4′); 116,1 (C-5′);


14
132,3 (C-6′); 104,2 (C-1′′); 75,8 (C-2′′); 78,1 (C-3′′); 71,4 (C-4′′); 78,4 (C5′′); 62,7 (C-6′′).
3.3.22. Compound 22 (CPE7): Kaempferol-3-O-α-L-arabinopyranoside
Yellow powder
Mp: 204-209oC
Molecular formula C20H18O10, M = 418
1
H-NMR (500 MHz, CD3OD): δH 6,17 (1H, d, J = 2,0 Hz, H-6); 6,35 (1H,
d, J = 2,0 Hz, H-8); 6,90 (1H, d, J = 8,5 Hz, H-3′); 6,90 (1H, d, J = 8,5 Hz,
H-5′); 8,07 (1H, d, J = 8,5 Hz, H-2′); 8,07 (1H, d, J = 8,5 Hz, H-6′); 5,10
(1H, d, J = 6,5 Hz, H-1′′).
13
C-NMR (125 MHz, CD3OD): δC 158,6 (C-2); 135,4 (C-3); 179,2 (C-4);
162,8 (C-5); 100,8 (C-6); 168,7 (C-7); 95,4 (C-8); 158,5 (C-9); 104,8 (C10); 122,6 (C-1′); 132,1 (C-2′); 116,2 (C-3′); 161,6 (C-4′); 116,2 (C-5′);
132,1 (C-6′); 104,6 (C-1′′); 72,7 (C-2′′); 74,0 (C-3′′); 68,9 (C-4′′); 66,7 (C5′′).
3.3.23. Compound 23 (CPE2): Quercetin
Yellow powder
Mp: 314-316oC
Molecular formula C15H10O7, M = 302

1
H-NMR (500 MHz, DMSO-d6): δH 6,19 (1H, d, J = 2,0 Hz, H-6); 6,42
(1H, d, J = 2,0 Hz, H-8); 7,68 (1H, d, J = 1,5 Hz, H-2′); 6,90 (1H, d, J = 8,0
Hz, H-5′); 7,42 (1H, dd, J = 1,5; 8,0 Hz, H-6′).
13
C-NMR (125 MHz, DMSO-d6): δC 146,9 (C-2); 135,8 (C-3); 175,9 (C-4);
160,8 (C-5); 98,3 (C-6); 164,1 (C-7); 93,5 (C-8); 156,3 (C-9); 103,1 (C-10);
122,1 (C-1′); 115,2 (C-2′); 145,1 (C-3′); 147,8 (C-4′); 115,7 (C-5′); 120,1
(C-6′).
3.3.24. Compound 24 (CPE3): Quercitrin
Yellow powder
Mp: 174-177oC
Molecular formula C21H20O11, M = 448
ESI-MS: m/z 447,36 [M-H]1
H-NMR (500 MHz, CD3OD): δH 6,22 (1H, s, H-6); 6,39 (1H, s, H-8); 7,36
(1H, s, H-2′); 6,93 (1H, d, J = 7,5 Hz, H-5′); 7,32 (1H, d, J = 7,5 Hz, H-6′);
5,37 (1H, br s, H-1′′); 0,96 (3H, d, J = 6,0 Hz, H-6′′).
13
C-NMR (125 MHz, CD3OD): δC 159,3 (C-2); 136,2 (C-3); 179,6 (C-4);
163,2 (C-5); 99,9 (C-6); 165,9 (C-7); 94,8 (C-8); 158,5 (C-9); 105,9 (C-10);
123,0 (C-1′); 116,4 (C-2′); 146,4 (C-3′); 149,8 (C-4′); 117,0 (C-5′); 122,9
(C-6′); 103,5 (C-1′′); 72,0 (C-2′′); 72,1 (C-3′′); 73,3 (C-4′′); 71,9 (C-5′′);
17,6 (C-6′′).
3.3.25. Compound 25 (CPE6): Quercetin 3-O-β-D-galactopyranoside
Yellow powder
Mp: 232-238oC
Molecular formula C21H20O12, M = 464


15

1

H-NMR (500 MHz, DMSO-d6): δH 6,18 (1H, s, H-6); 6,38 (1H, s, H-8);
7,53 (1H, br s, H-2′); 6,81 (1H, d, J = 8,5 Hz, H-5′); 7,66 (1H, dd, J = 1,5;
8,5 Hz, H-6′); 5,36 (1H, d, J = 7,5 Hz, H-1′′); 3,58 (1H, t, J = 9,0 Hz, H-2′′);
3,65 (1H, d, J = 2,0 Hz, H-4′′).
13
C-NMR (125 MHz, DMSO-d6): δC 156,1 (C-2); 133,4 (C-3); 177,4 (C-4);
161,2 (C-5); 98,7 (C-6); 93,5 (C-8); 156,3 (C-9); 103,7 (C-10); 121,0 (C1′); 115,9 (C-2′); 144,8 (C-3′); 148,5 (C-4′); 115,3 (C-5′); 121,9 (C-6′);
101,8 (C-1′′); 71,2 (C-2′′); 73,2 (C-3′′); 67,9 (C-4′′); 75,8 (C-5′′); 60,1 (C6′′).
3.3.26. Compound 26 (CPE8): Myricitrin
Yellow powder
Mp: 205-207oC
Molecular formula C21H20O12, M = 464
1
H-NMR (500 MHz, CD3OD): δH 6,22 (1H, d, J = 2,0 Hz, H-6); 6,38 (1H,
d, J = 2,0 Hz, H-8); 6,97 (1H, br s, H-2′); 6,97 (1H, br s, H-6′); 5,33 (1H, d,
J = 1,0 Hz, H-1′′); 4,24 (1H, br s, H-2′′); 3,81 (1H, dd, J = 3,5; 9,5 Hz, H3′′); 3,36 (1H, t, J = 9,5 Hz, H-4′′); 4,06 (1H, m, H-5′′); 0,98 (3H, d, J = 6,0,
H-6′′).
13
C-NMR (125 MHz, CD3OD): δC 159,4 (C-2); 136,3 (C-3); 179,7 (C-4);
163,2 (C-5); 99,8 (C-6); 165,9 (C-7); 94,7 (C-8); 158,5 (C-9); 105,9 (C-10);
121,9 (C-1′); 109,6 (C-2′); 146,8 (C-3′); 137,9 (C-4′); 146,8 (C-5′); 109,4
(C-6′); 103,6 (C-1′′); 72,0 (C-2′′); 72,1 (C-3′′); 73,3 (C-4′′); 71,9 (C-5′′);
17,7 (C-6′′).
3.3.27. Compound 27 (CPL-C1): Tetratriacontanyl palmitate
White powder
Mp: 67-71oC
Molecular formula C50H100O2, M = 732
ESI-MS: m/z 713,47 [M-H-H2O]-, 767,53 [M-H+2H2O]1

H-NMR (500 MHz, CDCl3), δH: 0,88 (3H, t, J = 6,5 Hz, H-16); 0,88 (3H, t,
J = 6,5 Hz, H-34′); 1,26 (m); 1,61 (2H, m, H-3); 2,28 (2H, t, J = 7,5 Hz, H2); 4,05 (2H, t, J = 7,0 Hz, H-1′).
13
C-NMR (125 MHz, CDCl3), δC: 174,0 (C-1); 64,4 (C-1′); 14,1 (C-16); 14,1
(C-34′); 34,4-22,7.
3.3.28. Compound 28 (CPL-C2): Tetratriacontanyl palmitate
White powder
Mp: 67-71oC
Molecular formula C50H100O2, M = 732
ESI-MS: m/z 713,47 [M-H-H2O]-, 767,53 [M-H+2H2O]1
H-NMR (500 MHz, CDCl3): δH 0,88 (3H, t, J = 7,0 Hz, H-31); 1,26 (m);
1,56 (2H, m, H-30); 3,64 (2H, t, J = 7,0 Hz, H-1).
13
C-NMR (125 MHz, CDCl3): δC 63,1 (C-1); 14,1 (C-31); 32,8-22,7.
3.3.29. Compound 29 (CPL-C3): Vanillin
White powder


16
Mp: 82-84oC
Molecular formula C8H8O3, M = 152
ESI-MS: m/z 175,0 [M+Na]+
1
H-NMR (500 MHz, CD3OD): δH 7,47 (1H, d, J = 2,0 Hz, H-2); 6,96 (1H,
d, J = 8,0 Hz, H-5); 7,46 (1H, dd, J = 8,0; 2,0 Hz, H-6); 9,77 (1H, s, H-7);
3,94 (3H, s, H-8).
13
C-NMR (125 MHz, CD3OD): δC 130,7 (C-1); 111,4 (C-2); 149,7 (C-3);
154,7 (C-4); 116,3 (C-5); 127,9 (C-6); 192,9 (C-7); 56,4 (C-8).
3.3.30. Compound 30 (CPL-C4): Stigmasterol

White needle-shaped crystals
Mp: 169-172oC
Molecular formula C29H48O, M = 412
ESI-MS: m/z 395,3 [M-H2O+H]+
1
H-NMR (500 MHz, CDCl3): δH 3,53 (1H, m, H-3); 5,35 (1H, br d, J = 3,5
Hz, H-6); 0,84 (3H, s, H-18); 1,03 (3H, s, H-19); 0,91 (3H, d, J = 6,5 Hz, H21); 5,15 (1H, dd, J = 8,5; 15,0 Hz, H-22); 5,02 (1H, dd, J = 8,5; 15,0 Hz,
H-23); 0,84 (3H, t, J = 8,5 Hz, H-26); 0,81 (3H, d, J = 6,8 Hz, H-28); 0,86
(3H, d, J = 9,5 Hz, H-29).
13
C-NMR (125 MHz, CDCl3): δC 37,25 (C-1); 31,66 (C-2); 71,81 (C-3);
42,30 (C-4); 140,75 (C-5); 121,73 (C-6); 31,90 (C-7); 31,90 (C-8); 50,15
(C-9); 36,51 (C-10); 21,09 (C-11); 39,77 (C-12); 42,30 (C-13); 56,87 (C14); 24,37 (C-15); 28,93 (C-16); 56,05 (C-17); 11,99 (C-18); 19,41 (C-19);
40,51 (C-20); 21,22 (C-21); 138,33 (C-22); 129,27 (C-23); 51,24 (C-24);
31,90 (C-25); 21,22 (C-26); 25,41 (C-27); 19,04 (C-28); 12,26 (C-29).
3.4. Evaluation cytotoxic activity of compounds
The in vitro cytotoxic activity of compounds from male Carica papaya
flowers and leaves was determined on A549, MCF-7, Hep3B cell lines by
the SRB method. These experiments were performed at the Biological
Laboratory - Institute of Biotechnology, Vietnam Academy of Science and
Technology.
3.5. Evaluation tyrosinase inhibitory activity of methanol extract and
compounds
The in vitro tyrosinase inhibitory activity of the methanol extract and
compounds from male Carica papaya flowers was performed at the
Biological Laboratory - Department of Pharmacy - Yonsei University South Korea.
CHAPTER 4. RESULTS AND DISCUSSIONS
4.1. Results of evaluating cytotoxic activity of extracts
The results obtained in Table 4.1 show that n-hexane, chloroform, ethyl
acetate extracts from male Carica papaya flowers and leaves are all capable

of inhibiting the growth of three cancer lines on A549, Hep3B, MCF-7 with
different levels. In particular, chloroform extract of both male Carica
papaya flowers and leaves exhibited better cytotoxic activity on all A549,
Hep3B, MCF-7 cell lines with the rate of cells surviving from 15,49±1,65 to
46,81±3,75% at 100 µg/mL and from 44,64±2,21 to 45,18±2,62% at 30
µg/mL. This is the basis for selection orientation for the study of chemical
composition.


17

Table 4.1. Cytotoxic activity of extracts

Research
Sample

Conc.
(μg/mL)

Male Carica papaya
Control
n-hexane
extract

30
100
30

Chloroform
extract


100
30

Ethyl acetate
extract

100
0,5 (0,1)

Camptothecin

10

Rate of cell survical (CS %)
A549

Hep3B

Flowers

Leaves

Flowers

100,0
±2,40
58,67
±2,56
29,69

±1,73
56,30
±0,62
35,76
±2,50
89,57
±3,65
69,80
±0,59
76,00
±2,27
41,77
±1,25

100,0
±1,29
62,47
±2,69
57,93
±2,36
59,58
±2,55
55,28
±2,80
78,81
±0,98
54,04
±1,34
55,66
±2,49

35,74
±0,77

100,0
±1,89
59,70
±2,24
50,53
±0,70
59,70
±1,50
46,81
±3,75
90,21
±3,91
63,47
±2,28
48,73
±1,35
28,27
±2,64

MCF-7


100,0
±2,64
59,94
±2,27
49,72

±2,06
45,18
±2,62
15,49
±1,65
79,47
±1,47
66,56
±2,25
54,27
±2,01
22,64
±0,67

Flowers

Leaves

100,0
±3,76
56,11
±2,06
54,11
±1,92
70,42
±1,49
38,24
±1,60
57,60
±1,56

55,88
±0,18
62,82
±2,10
42,66
±2,08

100,0
±1,93
65,01
±1,21
56,29
±2,29
44,64
±2,21
27,33
±2,49
72,05
±2,38
71,21
±2,27
56,25
±1,97
44,84
±0,22

4.2. Chemical structure of compounds
This section presents the detailed results of the spectral analysis and
structure determination of 30 isolated compounds from male Carica papaya
flowers and leaves including 2 new compounds, the first isolation of 1

compound from natural source and 27 known compounds.
The chemical structure and names of 30 compounds from male Carica
papaya are shown in Table 4.30 and Figure 4.47.
Table 4.30. Compounds from male Carica papaya

Symbol
C1
C2
C3
CP1
CP3
CP4
CP5
CP6
CP9
CP10
CP11
CP12A
CP14
CP17A
CP19

Compound
Rutin
Acid gallic
Daucosterol
1-benzyl-5-(hydroxymethyl)-1H-pyrrole-2carbaldehyde
Vitexoid
Lariciresinol
Dehydrodiconiferyl alcohol

Benzyl-O--D-glucopyranoside
6-hydroxy-2,6-dimethyl-2,7-octadienoic acid
6-hydroxy-2,6-dimethyloct-7-enoic acid
3-hydroxy-3-methyl-5-hexanolide và leucine
Caricapapayol
2,6-dimethylocta-2,7-diene-1,6-diol
Ethyl-(9E)-8,11,12-trihydroxyoctadecenoat
Indole-3-aldehyde

Symbol

Compound

CP20
CP21
CP22

3β,7α-dihydroxycholest-5-ene
Cholest-5-ene-3β,7β-diol
Saringosterol

CPE1

Kaempferol

CPE2
CPE3
CPE4
CPE5
CPE6

CPE7
CPE8
CPL-C1
CPL-C2
CPL-C3
CPL-C4

Quercetin
Quercitrin
Kaempferol-3-O-β-D-glucopyranoside
Kaempferol-3-O-α-L-rhamnopyranoside
Quercetin 3-O-β-D-galactopyranoside
Kaempferol-3-O-α-L-arabinopyranoside
Myricitrin
Tetratriacontanyl palmitate
1-hentriacontanol
Vanillin
Stigmasterol


18
OH

HO

HO
8

3''


O

1''

6''

5''

6'''
H3 C

5

HO

8

HO

10

2

3
4

9

HO


3'

2'
9'

1

5

2

4

5'

HO

6

5

1
2'

3'

OH

OH 1'


4

7
2

3'

2'

3

OCH3

OCH3

CP5

5

4

7

4

1

O

1


1

3

5

10

2

4

8

9

3
2

HO

2

5

10

4
6


8

NH2

3

6

9

CP6

OH

2

HO

COOH

O

3

1

HO

4'


O

5

OH
3

4'

1'

O

CP4

6

HO

5'

6'
7'

3

6

HO


O

8'

6

7
8

OCH3

O

1

CP1
6'

HO

OH
9'

OH

4'

8'


8
7

2

CP3

HO

5

O

5'

7'

9

9

O

8

4

C3

6'

1'

HO

H3CO

4

3

5
6

OH

1

O

2'

HOH2C

3'

OH

OH

3


4

N

1'

13

4'

C2

5
6

5'

28

2

2'''

C1
7

O
OH
OH


7'

6'

3

OH

4

29

8

10
OH

1'''

O

3'''

4'''

HO

O


5'''

HO

11

19

1

3

O

OH

2

OH

4''

27

17

6
OH

2''


O

24

20

18

5'
6'

HO

3
4

22

21

1

2

9
10
5

7


CHO

C

4'

1'

O
7
6

26

O

7

OH

3'
2'

O
2
1

COOH


CP9

CP10

CP11

CP14

OH
10

O
9

11

8
CHO

1

8

3
4

6

7


22

21

24
26

18

2

5

2'

3'

1'

OH

OH

8'

4

OH

7'

6'

4'

5''

2''

7''
6''

3''

1''

10''

15

17

13

7

9

11

8''


3

5

OH

5'

O

1'

7a
7

CP12A

CP17A

5

7

HO

H

OH


CP19

24

22

21

N
H

15

9

3

6

27

17

13

H

1

2


O

11

19

2'

9''

4''

OH

1

3

3a

5

CP20

29

26

28


18

21

24
26

19
1
3

HO

11

5

25

20

18

27

17

13


OH

H
15

9

11

19

14

9

1

H

27

17

13

8
10

7


OH

3

5

HO

CP21

CP22

34'

5

HO

26

1'
1

16

1

8
H3CO


OH

O

22

21

31

3

1

7

O

17

C
11

19

O

24

H


1
10

13

8

3
HO

CPL-C1

CPL-C2

CPL-C3

5

CPL-C4

Figure 4.47. Chemical structure of compounds from male Carica papaya

Details of the method for determining the structure of a new compound
is given below for one example, the remaining compounds were identified
similarly.
4.2.13. Compound 13 (CP12A): Caricapapayol (New compound)

(a)


(b)

Hình 4.18. Chemical structure (a) and important HMBC correlations (b) of CP12A

27

20

18

28

29


19

Compound CP12A was isolated as a yellowish amorphous powder. Its
molecular formula was determined to be C29H34O4 by a quasi-molecular ion peak
at m/z 447.2526 [M+H]+ (calcd for C29H35O4, 447.2535) in the HR-ESI-MS
(Figure 4.19) and in conjunction with 13C-NMR data. The 1H-NMR spectrum
(Figure 4.20) of CP12A contained signals characteristic for a symmetric 1,3,4,5tetrasubstituted phenyl group [δH 6.59 (2H, br s)], an asymmetric 1,3,4,5tetrasubstituted phenyl group [δH 6.88, 6.69 (each 1H, d, J = 2.0 Hz)], a cisvinylene group [δH 6.35, 5.69 (each 1H, d, J = 10.0 Hz)], a trans-vinylene group
[δH 6.84, 6.76 (each 1H, d, J = 16.0 Hz)], two olefinic protons [δH 5.27, 5.09 (each
1H, t, J = 7.0 Hz)], and five methyl groups [δH 1.78, 1.64, 1.58, 1.44, 1.44 (each
3H, s)]. The 13C-NMR (Figure 4.21) and DEPT (Figure 4.22) spectral data of
CP12A showed 29 carbons comprising five sp2 oxygenated tertiary (δC 157.2,
157.2, 146.4, 141.2; 77,8), six sp2 quaternary, ten sp2 methine, three sp3
methylene, and five methyl carbons. The HMBC correlations between H-1′ (δH
6.84) and C-3 (δC 114.3)/ C-5 (δC 117.1)/ C-3′ (δC 137.4), H-2′ (δH 6.76) and C-4′
(δC 105.8)/ C-8′ (δC 105.8)/ C-4 (δC 132.0) indicated that two 1,3,4,5tetrasubstituted phenyl groups connected each other via a trans-vinylene

group. The presence of a geranyl group was deduced by HMBC correlations
between H3-9″ (δH 1.64)/H3-10″ (δH 1.58) and C-7″ (δC 125.5)/ C-8″ (δC
131.9), H2-6″ (δH 2.07) and C-7″/ C-8″/ C-5″ (δC 40.9)/ C-3″ (δC 134.9), H34″ (δH 1.78) and C-5″/ C-3″/ C-2″ (δC 124.5), H2-1″ (δH 3.33) and C-3″/ C2″. Additionally, HMBC correlations between H2-1″ and C-5′ (δC 157.2)/ C7′ (δC 157.2)/ C-6′ (δC 116.1) in conjunction with the downfield shifted
values of δC-5′,C-7′ 157.2 indicated the presence of hydroxy groups at C-5′, C7′ and geranyl group at C-6′ to form a symmetric 1,3,4,5-tetrasubstituted
phenyl moiety. The HMBC (Figure 4.24) correlations between H-3 (δH 6.88)
and C-1 (δC 141.2)/ C-2 (δC 146.4) suggested the assignment of two
oxygenated sp2 carbons C-1 and C-2. The presence of a 3-methylbut-1-enyl
side chain and its binding location at C-6 were confirmed by HMBC
correlations between H3-10 (δH 1.44)/ H3-11 and C-9 (δC 77.8)/ C-8 (δC
132.3), H-7 (δH 6.35) and C-1 (δC 141.2)/ C-6 (δC 123.2)/ C-5 (δC 117.1). An
ether bridge between C-1 and C-7 was deduced by a signal of sp2
oxygenated tertiary carbon at δC 77.8 (C-9) and the molecular formula of
compound CP12A (C29H34O4). Consequently, the structure of compound
CP12A was established to be a new phenolic compound and named as
caricapapayol (Figure 4.18).


20

Table 4.14. NMR data for compound CP12A

C

δCa, b

δHa, c (J, Hz)

C

δCa, b


δHa, c (J, Hz)

1
2
3
4
5
6
7
8
9
10
11
1′
2′
3′
4′

141,2
146,4
114,3
132,0
117,1
123,2
123,4
132,3
77,8
28,0
28,0

128,2
128,0
137,4
105,8

6,88 (d, 2,0)
6,69 (d, 2,0)
6,35 (d, 10,0)
5,69 (d, 10,0)
1,44 (s)
1,44 (s)
6,84 (d, 16,0)
6,76 (d, 16,0)
6,49 (s)

5′
6′
7′
8′
1″
2″
3″
4″
5″
6″
7″
8″
9″
10″


157,2
116,1
157,2
105,8
23,2
124,5
134,9
16,3
40,9
27,8
125,5
131,9
25,8
17,7

6,49 (s)
3,33 (d, 7,0)
5,27 (t, 7,0)
1,78 (s)
1,97 (t, 7,0)
2,07 (m)
5,09 (t, 7,0)
1,64 (s)
1,58 (s)

a

measure in CD3OD, b125 MHz, c500 MHz.

Figure 4.19. HR-ESI-MS spectrum of CP12A


Figure 4.21. 13C-NMR spectrum of CP12A

Figure 4.23. HSQC spectrum of CP12A

Figure 4.20. 1H-NMR spectrum of CP12A

Figure 4.22. DEPT spectrum of CP12A

Figure 4.24. HMBC spectrum of CP12A


21
4.3. Results of evaluating cytotoxic activity of compounds
The results obtained in Table 4.31 show that ethyl-(9E)-8,11,12trihydroxyoctadecenoat (CP17A), indole-3-aldehyde (CP19), cholest-5ene-3β,7β-diol (CP21), kaempferol (CPE1) and quercetin (CPE2) did not
show activity on all A549, Hep3B, MCF-7 cell lines at any concentration
while all the remaining compounds showed cytotoxic activity on all three
cancer cell lines with IC50 values ranging from 26,72±0,76 to 93,07±5,03
µg/mL. It is noteworthy that most compounds have better inhibitory effect
on MCF-7 cell line.
Table 4.31. Cytotoxic activity of compounds

IC50 (μg/mL)

Compound

IC50 (μg/mL)

Compound


A549

MCF-7

Hep3B

C1

-

-

-

CP21

C2

-

-

-

C3

CP11

44,58
±4,04

54,63
±3,67
50,80
±5,93
70,99
±7,26
32,52
±2,41
78,98
±4,64
86,03
±7,57
55,71
±2,61

55,91
±3,08
34,73
±1,55
66,12
±5,60
60,85
±4,43
30,70
±2,72
54,15
±5,89
67,49
±2,41
43,31

±1,05

49,87
±3,80
60,37
±3,71
62,62
±5,49
62,32
±5,03
36,71
±1,93
72,25
±3,13
77,77
±5,52
66,77
±4,54

CPL-C1

CP12A*

-

-

-

CP14


49,06
±2,82

38,28
±1,53

54,07
±2,85

CP17A

>100

>100

>100

CPL-C4

-

-

-

CP19

>100
77,37

±3,50

>100
56,33
±2,67

>100
59,09
±3,50

Ellipticine

0,43
±0,04

0,37
±0,03

0,50
±0,04

CP1**
CP3
CP4
CP5
CP6
CP9
CP10

*


CP20

A549

MCF-7

Hep3B

CP22

>100
76,02
±4,61

>100
63,80
±2,79

>100
84,06
±5,21

CPE1

>100

>100

>100


CPE2

>100

>100

>100

CPL-C2

91,37
±3,40
71,52
±3,27
61,72
±3,00
71,70
±3,87
34,67
±2,21
36,02
±1,69
50,24
±3,65
83,52
±4,08

75,27
±4,95

81,84
±4,72
47,79
±2,12
85,61
±4,43
26,72
±0,76
35,92
±1,13
46,64
±2,64
79,99
±3,43

90,50
±2,74
80,13
±2,76
64,37
±3,42
74,90
±3,13
44,13
±3,61
45,49
±4,29
64,16
±5,29
93,07

±5,03

CPL-C3

-

-

-

CPE3
CPE4
CPE5
CPE6
CPE7
CPE8

(-): No testing, *New compound, **The compound was firstly isolated from natural source.

4.4. Results of evaluating tyrosinase inhibitory activity of methanol
extract and compounds
4.4.1. Results of evaluating tyrosinase inhibitory activity of methanol
extract
The results obtained in Table 4.32 show that the methanol extract from
male Carica papaya flowers exhibits the ability to inhibit tyrosinase
enzyme with 62,7% at 200 µg/mL. Base on this result, we evaluated
tyrosinase inhibitory activity in vitro of isolated compounds from male
Carica papaya flowers.



22

Table 4.32. Tyrosinase inhibitory activity of methanol extract

Research sample
Methanol extract

Concentration (µg/mL)
200

Percent inhibition (I %)
62,7

4.4.2. Results of evaluating tyrosinase inhibitory activity of compounds
The results obtained in Table 4.33 show that glycoside compound (CP6)
and monoterpenoid compound (CP3) did not show tyrosinase inhibitory
activity, while all the remaining compounds showed tyrosinase inhibitory
activity with IC50 values ranging from 14,3±2,7 to 82,1±3,6 µM.
Specifically, alkaloid compounds (CP1), lignan (CP4) and phenolic
compound (CP12A) show a strong inhibitory effect on tyrosinase enzyme
with corresponding IC50 values of 25,5±1,9; 19,8±3,0 and 14,3±2,7 µM. In
particular, the new phenolic compound caricapapayol (CP12A) showed
strong tyrosinase inhibitory activity (IC50 = 14,3±2,7 µM), which is nearly
equivalent with kojic acid (IC50 = 11,3±1,6 µM). This result was consistent
with the study of Hammerstone J. F. et al when announcing the tyrosinase
inhibitory activity of polyphenol compounds. The remaining monoterpenoid
compounds (CP9, CP10, CP14) and neolignan (CP5) showed a medium
and weak tyrosinase inhibitory activity with corresponding IC50 values of
36,8±2,5; 47,5±2,9; 82,1±3,7 and 76,4±3,3 µM.
Table 4.33. Tyrosinase inhibitory activity of compounds


Compound

IC50 (μM)

Compound

IC50 (μM)

Compound

IC50 (μM)

C1

-

CP10

-

CPE1

-

C2

-

CP11


14,3±2,7

CPE2

-

C3

-

CP12A*

82,1±3,6

CPE3

-

CP1**

25,5±1,9

CP14

-

CPE4

-


CP3

>100

CP17A*

-

CPE5

-

CP4

19,8±3,0

CP19

-

CPE6

-

CP5

76,4±3,3

CP20


-

CPE7

-

CP6

>100

CP21

-

CPE8

-

CP9

36,8±2,5

CP22

-

Acid kojic

11,3±1,6


(-): No testing, *New compound, **The compound was firstly isolated from natural source.


23
CONCLUSIONS
1. Chemical composition
From male Carica papaya flowers and leaves, 30 compounds were
isolated and identified for chemical structure. According to the literature
search at the time of research, there were 2 new compounds, 1 compound
was previously not isolated from natural sources, 18 compounds were
firstly isolated from this plant.
- Two new compounds: caricapapayol (CP12A) and ethyl-(9E)-8,11,12trihydroxyoctadecenoat (CP17A).
- A compound was firstly isolated from natural source: 1-benzyl-5(hydroxymethyl)-1H-pyrrole-2-carbaldehyde (CP1).
- Eighteen compounds were firstly isolated from this plant: vitexoid
(CP3); lariciresinol (CP4); dehydrodiconiferyl alcohol (CP5); 6-hydroxy2,6-dimethyl-2,7-octadienoic acid (CP9); 6-hydroxy-2,6-dimethyloct-7enoic acid (CP10); mixture of 3-hydroxy-3-methyl-5-hexanolide và leucine
(CP11); 2,6-dimethylocta-2,7-diene-1,6-diol (CP14); indole-3-aldehyde
(CP19); 3β,7α-dihydroxycholest-5-ene (CP20); cholest-5-ene-3β,7β-diol
(CP21); saringosterol (CP22); quercitrin (CPE3); kaempferol-3-O-α-Lrhamnopyranoside (CPE5); quercetin 3-O-β-D-galactopyranoside (CPE6);
kaempferol-3-O-α-L-arabinopyranoside
(CPE7);
tetratriacontanyl
palmitate (CPL-C1); 1-hentriacontanol (CPL-C2) and vanillin (CPL-C3).
- The remaining nine compounds were known: rutin (C1), acid gallic
(C2), daucosterol (C3), benzyl-O- -D-glucopyranoside (CP6), kaempferol
(CPE1), quercetin (CPE2), kaempferol-3-O-β-D-glucopyranoside (CPE4);
myricitrin (CPE8) and stigmasterol (CPL-C4).
2. Biological activities
- Evaluated cytotoxic activity of extracts from male Carica papaya
flowers and leaves on A549, Hep3B, MCF-7 cell lines in vitro. The results

show that n-hexane, chloroform, ethyl acetate extracts from male Carica
papaya flowers and leaves are all capable of inhibiting the growth of three
cancer lines on A549, Hep3B, MCF-7 with different levels. In particular,
chloroform extract of both male Carica papaya flowers and leaves
exhibited better cytotoxic activity on all A549, Hep3B, MCF-7 cell lines
with the rate of cells surviving from 15,49±1,65 to 46,81±3,75% at 100
µg/mL and from 44,64±2,21 to 45,18±2,62% at 30 µg/mL. This is the basis
for selection orientation for the study of chemical composition.
- Evaluated cytotoxic activity of 24/30 isolated compounds from male
Carica papaya flowers and leaves on A549, Hep3B, MCF-7 cell lines in
vitro. The results show that 19/24 isolated compounds showed cytotoxic
activity on all three cancer cell lines with IC50 from 26,72±0,76 to
93,07±5,03 µg/mL. It is noteworthy that most compounds have better
inhibitory effect on MCF-7 cell line.
- Evaluated tyrosinase inhibitory activity of methanol extract and 9/26


×