Tải bản đầy đủ (.pdf) (16 trang)

American Options

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (167.52 KB, 16 trang )

Chapter 25
American Options
This and the following chapters form part of the course Stochastic Differential Equations for Fi-
nance II.
25.1 Preview of perpetual American put
dS = rS dt + S dB
Intrinsic value at time
t :K,St
+
:
Let
L 2 0;K
be given. Suppose we exercise the first time the stock price is
L
or lower. We define

L
= minft  0; S t  Lg;
v
L
x=IEe
,r
L
K , S 
L

+
=

K , x
if


x  L
,
K , LIEe
,r
L
if
xL:
Theplanistocomute
v
L
x
andthenmaximizeover
L
to find the optimal exercise price. We need
to know the distribution of

L
.
25.2 First passage times for Brownian motion: first method
(Based on the reflection principle)
Let
B
be a Brownian motion under
IP
,let
x0
be given, and define
 = minft  0; B t=xg:

is called the first passage time to

x
. We compute the distribution of

.
247
248
K
K
x
Intrinsic value
Stock price
Figure 25.1: Intrinsic value of perpetual American put
Define
M t = max
0ut
B u:
From the first section of Chapter 20 we have
IP fM t 2 dm; B t 2 dbg =
22m , b
t
p
2t
exp

,
2m , b
2
2t

dm db; m0;b  m:

Therefore,
IP fM t  xg =
Z
1
x
Z
m
,1
22m , b
t
p
2t
exp

,
2m , b
2
2t

db dm
=
Z
1
x
2
p
2t
exp

,

2m , b
2
2t





b=m
b=,1
dm
=
Z
1
x
2
p
2t
exp

,
m
2
2t

dm:
We make the change of variable
z =
m
p

t
in the integral to get
=
Z
1
x=
p
t
2
p
2
exp

,
z
2
2

dz :
Now
  tM t  x;
CHAPTER 25. American Options
249
so
IP f 2 dtg =
@
@t
IP f  tg dt
=
@

@t
IP fM t  xg dt
=
"
@
@t
Z
1
x=
p
t
2
p
2
exp

,
z
2
2

dz

dt
= ,
2
p
2
exp


,
x
2
2t

:
@
@t

x
p
t

dt
=
x
t
p
2t
exp

,
x
2
2t

dt:
We also have the Laplace transform formula
IEe
,

=
Z
1
0
e
,t
IP f 2 dtg
= e
,x
p
2
; 0:
(See Homework)
Reference: Karatzas and Shreve, Brownian Motion and Stochastic Calculus, pp 95-96.
25.3 Drift adjustment
Reference: Karatzas/Shreve, Brownian motion and Stochastic Calculus, pp 196–197.
For
0  t1
,define
e
B t=t + Bt;
Z t = expf,B t ,
1
2

2
tg;
= expf,
e
B t+

1
2

2
tg;
Define
~ = minft  0;
e
B t=xg:
We fix a finite time
T
and change the probability measure “only up to
T
”. More specifically, with
T
fixed, define
f
IP A=
Z
A
ZTdP; A 2FT:
Under
f
IP
, the process
e
B t; 0  t  T
, is a (nondrifted) Brownian motion, so
f
IP f ~ 2 dtg = IP f 2 dtg

=
x
t
p
2t
exp

,
x
2
2t

dt; 0 tT:
250
For
0 tT
we have
IP f ~  tg = IE
h
1
f ~ tg
i
=
f
IE

1
f ~ tg
1
Z T 


=
f
IE
h
1
f ~ tg
expf
e
B T  ,
1
2

2
T g
i
=
f
IE

1
f ~ tg
f
IE

expf
e
B T  ,
1
2


2
T g




F ~ ^ t

=
f
IE
h
1
f ~ tg
expf
e
B ~ ^ t ,
1
2

2
~ ^ tg
i
=
f
IE
h
1
f~tg

expfx ,
1
2

2
~ g
i
=
Z
t
0
expfx ,
1
2

2
sg
f
IP f~ 2 dsg
=
Z
t
0
x
s
p
2s
exp

x ,

1
2

2
s ,
x
2
2s

ds
=
Z
t
0
x
s
p
2s
exp

,
x , s
2
2s

ds:
Therefore,
IP f ~ 2 dtg =
x
t

p
2t
exp

,
x , t
2
2t

dt; 0 tT:
Since
T
is arbitrary, this must in fact be the correct formula for all
t0
.
25.4 Drift-adjusted Laplace transform
Recall the Laplace transform formula for
 = minft  0; B t=xg
for nondrifted Brownian motion:
IEe
,
=
Z
1
0
x
t
p
2t
exp


,t ,
x
2
2t

dt = e
,x
p
2
; 0;x  0:
For
~ = minft  0; t + Bt=xg;
CHAPTER 25. American Options
251
the Laplace transform is
IEe
,~
=
Z
1
0
x
t
p
2t
exp

,t ,
x , t

2
2t

dt
=
Z
1
0
x
t
p
2t
exp

,t ,
x
2
2t
+ x ,
1
2

2
t

dt
= e
x
Z
1

0
x
t
p
2t
exp

, +
1
2

2
t ,
x
2
2t

dt
= e
x,x
p
2+
2
; 0;x  0;
where in the last step we have used the formula for
IEe
,
with

replaced by

 +
1
2

2
.
If
~ !  1
,then
lim
0
e
, ~ ! 
=1;
if
~ ! =1
,then
e
, ~ !
=0
for every
0
,so
lim
0
e
, ~ ! 
=0:
Therefore,
lim

0
e
, ~ ! 
= 1
~1
:
Letting
0
and using the Monotone Convergence Theorem in the Laplace transform formula
IEe
,~
= e
x,x
p
2+
2
;
we obtain
IP f ~1g = e
x,x
p

2
= e
x,xj j
:
If
  0
,then
IP f ~1g =1:

If
0
,then
IP f ~1g = e
2x
 1:
(Recall that
x0
).
25.5 First passage times: Second method
(Based on martingales)
Let
0
be given. Then
Y t = expfB t ,
1
2

2
tg
252
is a martingale, so
Y t ^  
is also a martingale. We have
1=Y0 ^  
= IEY t ^  
= IE expfBt ^   ,
1
2


2
t ^  g:
= lim
t!1
IE expfBt ^   ,
1
2

2
t ^  g:
We want to take the limit inside the expectation. Since
0  expfB t ^   ,
1
2

2
t ^  ge
x
;
this is justified by the Bounded Convergence Theorem. Therefore,
1=IE lim
t!1
expfBt ^   ,
1
2

2
t ^  g:
There are two possibilities. For those
!

for which
 !   1
,
lim
t!1
expfBt ^   ,
1
2

2
t ^  g = e
x,
1
2

2

:
For those
!
for which
 ! =1
,
lim
t!1
expfB t ^   ,
1
2

2

t ^  g lim
t!1
expfx ,
1
2

2
tg =0:
Therefore,
1=IE lim
t!1
expfB t ^   ,
1
2

2
t ^  g
= IE

e
x,
1
2

2

1
1

= IEe

x,
1
2

2

;
where we understand
e
x,
1
2

2

to be zero if
 = 1
.
Let
 =
1
2

2
,so
 =
p
2
. We have again derived the Laplace transform formula
e

,x
p
2
= IEe
,
; 0;x  0;
for the first passage time for nondrifted Brownian motion.
25.6 Perpetual American put
dS = rS dt + S dB
S 0 = x
S t=xexpfr ,
1
2

2
t + Btg
= x exp
8







:

2
6
6

6
4

r

,

2

| z 

t + B t
3
7
7
7
5
9



=



;
:

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×