Tải bản đầy đủ (.pdf) (2 trang)

D02 xác định các số hạng của dãy số muc do 1

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.45 KB, 2 trang )

Câu 27:

(THPT Lê Quý Đôn - Hải Phòng - 2018 - BTN) Cho dãy số  un  thỏa

[1D3-2.2-1]

2n 1  1
. Tìm số hạng thứ 10 của dãy số đã cho.
n
A. 51, 2
B. 51,3
C. 51,1
mãn un 

D. 102,3

Lời giải
Chọn B

2101  1
Ta có: u10 
 51,3 .
10
Câu 15. [1D3-2.2-1] (THPT Phan Đình Phùng - Hà Tĩnh - Lần 1 - 2017 - 2018 - BTN) Cho dãy số
u1  4
. Tìm số hạng thứ 5 của dãy số.

un 1  un  n
A. 16 .
B. 12 .
C. 15 .


D. 14 .
Lời giải
Chọn D
Ta có u2  u1  1  5 ; u3  u2  2  7 ; u4  u3  3  10 . Do đó số hạng thứ 5 của dãy số là
u5  u4  4  14 .
n
. Khẳng định nào sau đây là đúng?
n 1
1  2  3  5  5
A. Năm số hạng đầu của dãy là : ;
.
;
;
;
2 3 4 5 6
1  2  3  4  5
B. 5 số số hạng đầu của dãy là : ;
.
;
;
;
2 3 4 5 6
C. Là dãy số tăng.
D. Bị chặn trên bởi số 1 .
Lời giải
Chọn B
1 2 3 4 5
Thay n lần lượt bằng 1, 2,3, 4,5 ta được 5 số hạng đầu tiên là
; ; ; ; .
2 3 4 5 6


Câu 951. [1D3-2.2-1] Cho dãy số  un  với un 

Câu 3740.

[1D3-2.2-1] Cho dãy số  un  với un 

A. Dãy số có un 1 

a 1
.
n2  1

C. Là dãy số tăng.

a 1
. Khẳng định nào sau đây là đúng ?
n2
a 1
B. Dãy số có : un 1 
.
2
 n  1

D. Là dãy số tăng
Hướng dẫn giải

Chọn B.
Ta có un 1 
Câu 3753.


a 1

 n  1

2

.

[1D3-2.2-1] Cho dãy số  un  có un  n  1 với n  N * . Khẳng định nào sau đây là sai?

A. 5 số hạng đầu của dãy là: 0;1; 2 ; 3; 5 .
C. Là dãy số tăng.

B. Số hạng un1  n .

D. Bị chặn dưới bởi số 0 .
Hướng dẫn giải

Chọn A.
5 số hạng đầu của dãy là 0;1; 2; 3; 4 .




×