Tải bản đầy đủ (.docx) (14 trang)

THPT vũ duy thanh đề thi thử tốt nghiệp THPT 2019 2020

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (258.28 KB, 14 trang )

TRƯỜNG THPT VŨ DUY THANH

ĐỀ THI THỬ TỐT NGHIỆP THPT NĂM HỌC 2019-2020

SỞ GDĐT NINH BÌNH
TRƯỜNG THPT VŨ DUY THANH

ĐỀ THI THỬ TN THPT
(Đề gồm 06 trang)

NĂM HỌC 2019 - 2020
MÔN: TOÁN
Thời gian: 90 phút

Họ và tên: ..................................SBD:..................................

Câu 1. Có bao nhiêu cách chọn lấy 1 chiếc bút từ một hộp đựng 5 chiếc bút màu xanh khác nhau và 3
chiếc bút màu đen khác nhau?
A3
C3
A. 5 .
B. 5 .
C. 8.
D. 15.
( u ) u = 5 và u3 = 15. Công bội của cấp số nhân đã cho bằng
Câu 2. Cho cấp số nhân n với 2
A. 10.
B. 3.
C. 5.
D. 20.
x+1


Câu 3. Nghiệm của phương trình 2 = 16 là
A. x = 4.
B. x = 3 .
C. x = 2 .
D. x = 1.
Câu 4. Thể tích của khối lập phương cạnh 3a bằng
3
3
3
3
A. 6a .
B. 8a .
C. 9a .
D. 27a .
y = log5 x
Câu 5. Tập xác định của hàm số
là tập nào dưới đây?


0; +�)
2; +�)
( - �;+�) .
( 0;+�) .
A. �
.
B.
C.
D. �
.
F

(
x
)
=
sinx
+
3cos
x
f
(
x
)
f
(
x
)
Câu 6. Hàm số
là một nguyên hàm của hàm số
, khi đó hàm

A. f (x) = - cosx + 3sin x .
C. f (x) = cosx + 3sin x .

B. f (x) = 3sin x - cosx .
D. f (x) = cosx - 3sin x .

2
Câu 7. Cho khối chóp có diện tích đáy B = 6a và chiều cao h = 2a . Thể tích khối chóp đã cho bằng
3
3

3
3
A. 6a .
B. 12a .
C. 4a .
D. 2a .

Câu 8. Cho khối nón có bán kính đáy r = 3 và chiều cao h = 4.Thể tích của khối nón đã cho bằng
A. V = 16p 3 .
B. V = 12p .
Câu 9. Diện tích của mặt cầu có bán kính R = 4 là
64
S=
p
3 .
A.
B. S = 16p .
Câu 10. Cho hàm số

y = f ( x)

C. V = 4.

D. V = 4p .

C. S = 64p .

D. S = 32p .

có đồ thị như hình vẽ bên dưới

y
4

3

2

O

1 x

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
( - 2;1) .
( - �;- 2) .
( - 2;0) .
A.
B.
C.
log3 ( a2)
Câu 11. Với a là số thực dương tùy ý,
bằng
2
1
log3 a
log3 a
2 + log3 a
A. 3
.
B. 2
.

C.
.

D.

( 0;4) .

D.

2log3 a

.
Trang 1


TRƯỜNG THPT VŨ DUY THANH

ĐỀ THI THỬ TỐT NGHIỆP THPT NĂM HỌC 2019-2020

Câu 12. Một hình trụ có bán kính đáy bằng 2cm và thiết diện qua trục là hình vuông. Diện tích xung
quanh của hình trụ đã cho bằng
2
2
2
2
A. 8pcm .
B. 4pcm .
C. 16pcm .
D. 32pcm .
Câu 13. Cho hàm số


y = f ( x)

có đồ thị như hình bên dưới.

Điểm cực tiểu của đồ thị hàm số đã cho là

( - 1;- 2) .
( 1;2) .
A. - 1.
B. 1.
C.
D.
Câu 14. Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên dưới?
y
3
1

2
1 O

1

x

1
3
3
2
A. y = x - 2x + 1 . B. y = x - 3x + 1. C. y = - x + 3x + 1. D. y = x - 3x + 1.

2 - 2x
y=
x + 1 là
Câu 15. Tiệm cận đứng của đồ thị hàm số
A. y = - 2.
B. y = 2.
C. x = - 1.
D. x = 1.
Câu 16. Tập nghiệm của bất phương trình ln x �1 là

e; +�)
( e;+�) .
( 0;+�) .
( - �;e�

A.
B.
C. �
.
D.
.
y = f ( x)
Câu 17. Cho hàm số
xác định và liên tục trên � có bảng biến thiên như sau
+�
- �
x
-1
2
+

0
0
+
f '( x)
4

2

3

+�

10
3

f ( x)

- �

f ( x) + 8 = 0
Số nghiệm của phương trình

A. 3 .
B. 2.

C. 1.

22
3


D. 4 .

Trang 2


TRƯỜNG THPT VŨ DUY THANH
3

ĐỀ THI THỬ TỐT NGHIỆP THPT NĂM HỌC 2019-2020
3

�f (x)dx = 5

Câu 18. Nếu 1
A. 15 .

thì

f (x) �3�

1

2�
dx


B. 5.

bằng


z = ( 2 + 3i )

C. 3 .

D. 11.

2

Câu 19. Số phức liên hợp của số phức

z
=
5
+
12
i
A.
.
B. z = 5 - 12i .
C. z = - 5 - 12i .
D. z = 12 - 5i .
z = 3 + 5i
z = 3i - 1
z - 3z2
Câu 20. Cho hai số phức 1
và 2
. Phần ảo của số phức 1
bằng
6
4

4
A. .
B.
.
C. .
D. 6.
z = 5i
z = 2 - 3i
Câu 21. Trên mặt phẳng tọa độ, cho hai số phức 1
và 2
. Điểm biểu diễn số phức
w = z1.z2
là điểm nào dưới đây?

(

).

(

)

(

)

P - 15; 10
N 15; - 10
M ( - 15;- 10)
B.

.
C.
.
D.
.
(Oxyz) , cho điểm M ( - 3;2;- 1) . Tọa độ điểm M ' đối xứng với M qua
Câu 22. Trong không gian
(Oxy) là
mặt phẳng
M '( - 3;2;1)
M '( 3;2;1)
M '( 3;2 - 1)
M '( 3;- 2;- 1)
A.
.
B.
.
C.
.
D.
.
2
2
2
(Oxyz) , cho mặt cầu (S) : x + (y + 2) + (z - 2) = 8 . Bán kính của ( S )
Câu 23. Trong không gian
bằng
A.

Q 15; 10


C. R = 2 2 .
D. R = 64 .
(Oxyz) , Mặt phẳng đi qua 3 điểm A ( 1;0;0) , B ( 0;- 2;0) , C ( 0;0;- 3) có
Câu 24. Trong không gian
phương trình là
x y z
x
y
z
+ + =1
+
+ =- 2
A. 1 2 3
.
B. 1 - 2 3
.
A. R = 8.

B. R = 4.

x
y
z
+
+ =3
C. 1 - 2 3
.

x

y
z
+
+
=1
D. 1 - 2 - 3
.

x = 2 + 2t



d :�
y = - 3t


z = - 3 + 5t


Câu 25. Trong không gian Oxyz , cho đường thẳng
. Một vectơ chỉ phương của d có
tọa độ là
( 2;0;5) .
A. (2;0;- 3) .
B. (2;- 3;5) .
C. (2;3;- 5) .
D.
OA,OB,OC
Câu 26. Cho tứ diện OABC có OA = OB = OC và
đôi một vuông góc với nhau;

BC = a 2 . Góc giữa đường thẳng AC và mặt phẳng ( OBC ) bằng

Trang 3


TRƯỜNG THPT VŨ DUY THANH

A. 30�.

ĐỀ THI THỬ TỐT NGHIỆP THPT NĂM HỌC 2019-2020

B. 45�.

C. 60�.

f ( x)
f�
( x) như sau:
Câu 27. Cho hàm số
, bảng xét dấu của
x - �
0
- 1
+
0
y�
Số điểm cực tiểu của hàm số đã cho là
A. 3 .
B. 0 .
C. 2.

f ( x) = x3 - 3x + 2
Câu 28. Giá trị lớn nhất của hàm số
trên đoạn
A. - 16.
B. 20.
C. 0.
Câu 29. Xét tất cả các số thực dương a và b thỏa mãn
Mệnh đề nào dưới đây đúng?
2
3
A. a = b .
B. a = b .

D. 90�.
+�

1
0

+


- 3;3�

�bằng

(

).


D. 1.
D. 4.

log3 a = log27 a2 b

2
C. a = b .
D. a = b .
3
2
Câu 30. Số giao điểm của đồ thị hàm số y = x - 3x - 1 và đường thẳng y = 4x - 1 là
A. 3 .
B. 0 .
C. 2.
D. 1.
1 2
( )x - 2 > 24- 3x
Câu 31. Tập nghiệm của bất phương trình 2

(

;1
)
(2
;
+�
)
A.
.
B.

.
C. (1;2) .
D. (- �;1) �(2; +�)

.
Câu 32. Cho tam giác ABC vuông cân tại A có cạnh huyền bằng 2.Thể tích của khối tròn xoay khi quay
tam giác ABC quanh trục AB bằng

4
p
B. 3 .

2 2
p
A. 3 .

2
p
C. 3 .

p
D. 3 .

1

Câu 33. Tích phân

�x

1 + 8xdx


0

, nếu đặt t = 1 + 8x thì ta được

1

A.

1

�t 1+ 8tdt

B.

3

3

1
(t3- t)dt
32 �
1

.

�t 1+ 8tdt

C.
.

D. 1
.
x
Câu 34. Diện tích S của hình phẳng giới hạn bởi các đường y = e , y = - 3 , x = 0 , x = 2 được tính
bởi công thức nào dưới đây?
0

.

1
(t 3 - t)dt
32 �
0

2

2

S = p�
(e + 3)dx
x

A.

0

.

B.


S=�
(ex + 3)dx
0

.
Trang 4


TRƯỜNG THPT VŨ DUY THANH
2

C.

2

(

)

S = p�e + 3 dx
0

ĐỀ THI THỬ TỐT NGHIỆP THPT NĂM HỌC 2019-2020

x

2

.


D.

(

)

S = �ex - 3 dx
0

.
z1z2

z = 3 - 2i z2 = - 1 + 3i
z = 1+ 2i
z
Câu 35. Cho hai số phức 1
,
và 3
. Phần thực của số phức 3 bằng
A. 5.
B. i .
C. - 5.
D. - i .
2
z
Câu 36. Gọi 0 là nghiệm phức có phần ảo dương của phương trình 4z - 16z + 17 = 0. Môđun của số
z + 2i
phức 0
bằng


41
41
A. 4 .
B. 41 .
C. 2 .
D. 2 .
A(4;0;1)
B (- 2;2;3)
Câu 37. Trong không gian Oxyz , cho hai điểm

. Mặt phẳng trung trực của đoạn
AB
thẳng
có phương trình là
r r
2
r r
r
r
cos a,b =
cos
a
,
b
b
=
(
1
;0
;

2)
a
(2
;1
;0)
25
A.
.
B.
.
C.
.
D.

( )

( )

M ( 1;4;7)
Câu 38. Trong không gian Oxyz , cho điểm
và mặt phẳng (P ) : x + 2y - 2z - 3 = 0. Đường
thẳng đi qua M và vuông góc với (P ) có phương trình tham số là




x = 1 + 2t
x = - 4+t
x = 4 + 4t
x = 1+ t













y = 4 + 4t
y = 3 + 2t
y = - 3 + 3t
y = 2 + 4t












z = 7 - 4t
z = - 1- 2t

z = 4+t
z = - 2 + 7t




A. �
.
B. �
.
C. �
.
D. �
.
0,1,2,3,4,5,6,7
Câu 39. Gọi S là tập hợp tất cả các số tự nhiện gồm 3 chữ số được lập từ các chữ số
.
Lấy ngẫu nhiên một số thuộc tập S . Xác suất để lấy được số sao cho chữ số đứng sau luôn lớn
hơn hoặc bằng số đứng trước bằng
2
11
3
3
A. 7 .
B. 64 .
C. 16 .
D. 32 .
Câu 40. Cho lăng trụ tam giác ABC .A 'B 'C ' có tất cả các cạnh bằng a , góc tạo bởi giữa cạnh bên và
0
( A 'B 'C ') thuộc đường thẳng

mặt đáy bằng 30 . Hình chiếu H của điểm A lên mặt phẳng
B 'C ' . Khoảng cách giữa hai đường thẳng AA ' và B 'C ' tính theo a là
2a
4a
a 3
a 3
3.

3.

D. 4 .
mx + 4
f ( x) =
x + m nghịch biến
Câu 41. Có tất cả bao nhiêu giá trị nguyên của tham số m sao cho hàm số
( - �;0) .
trên khoảng
A. 5.
B. 4 .
C. 3 .
D. 2.
Câu 42. Một người gửi vào ngân hàng 100 triệu đồng với lãi suất ban đâu 4% /năm và lãi hàng năm
được nhập vào vốn. Cứ sau một năm lãi suất tăng 0,3%. Hỏi sau 4 năm tổng số tiền người đó nhận
được gần nhất với giá trị nào sau đây?
A. 117 triệu.
B. 119triệu.
C. 121 triệu.
D. 122 triệu.
3
2

Câu 43. Cho hàm số y = ax + bx + cx + d có đồ thị như hình bên.
A.

B.

C.

2 .

Trang 5


TRƯỜNG THPT VŨ DUY THANH

ĐỀ THI THỬ TỐT NGHIỆP THPT NĂM HỌC 2019-2020

Trong các số a,b,c,d có bao nhiêu số dương?
A. 2.
B. 3 .
C. 1.
D. 4 .
Câu 44. Một hình trụ có bán kính đáy bằng a. Cắt hình trụ bởi mặt phẳng song song với trục và cách
a
trục một khoảng 2 ta được thiết diện là một hình vuông.Thể tích của khối trụ đã cho bằng
3
B. pa 3 .

3
A. 3pa .


pa3 3
4 .
C.

3
D. pa .
p
2



p�

f�
=0

�f (x)dx


2�


f
(
x
)
f
'(
x
)

=
sin2x.cos3x,
"
x
��
Câu 45. Cho hàm số


. Khi đó 0
bằng
1
1
12
A. 2 .
B. 50 .
C. 0 .
D. 25 .
y = f ( x)
Câu 46. Cho hàm số
liên tục trên � và có đồ thị như hình vẽ.

f
Phương trình
A. 1.

(

)

1- sinx = f


(

1 + cosx

) có tất cả bao nhiêu nghiệm thuộc khoảng ( - 3,2) ?

D. vô số.
x +y +1
log2
= 2x - y
4x + y + 3
Câu 47. Cho các số thực x, y, z thỏa mãn x �0, y �0, z �- 1 và
.
2
2
(x + z + 1)
(y + 2)
T =
+
3x + y
x + 2z + 3 bằng
Khi đó giá trị nhỏ nhất của biểu thức
A. 4 2 .
Câu 48. Cho hàm số

y = f (x) =

B. 2.


C. 3.

B. 6

C. 6 3 .

D. 4 .

2x + m
x - 1 ( m là tham số thực). Tính tổng tất cả các giá trị của m sao

max
f (x) - min
f (x) = 2
� �
� �
2;3

� �

cho �
A. - 4 .

2;3�




.
2

B.
.
C. - 1.
D. - 3.
ABCD.A ����
BCD
Câu 49. Cho hình lập phương
. Gọi E , F , M , N , P ,Q lần lượt là tâm của các mặt
ABCD;A 'B 'C 'D ';ADD 'A ';DCC 'D ';CBB 'C ';ABB 'A ' . Biết cạnh khối lập phương bằng a, khi đó
thể tích của khối tám mặt đều nội tiếp khối lập phương trên là
a3
a3
a3
A. 8 .
B. 12 .
C. 4 .

a3
D. 6 .
Trang 6


TRƯỜNG THPT VŨ DUY THANH

ĐỀ THI THỬ TỐT NGHIỆP THPT NĂM HỌC 2019-2020

Câu 50. Trong tất cả các cặp số thực (x; y) thỏa mãn

logx2+y2+3 ( 2x + 2y + 5) �1


. Có bao nhiêu giá trị
thực của m để tồn tại duy nhất cặp số thực (x; y) sao cho x + y + 4x + 6y + 13 - m = 0 .
A. 3.
B. 1.
C. 2.
D. 0.
******Hết******
2

1.C
11.D
21.A
31.C
41.D

2.B
12.C
22.D
32.C
42.B

3.B
13.C
23.C
33.C
43.D

HƯỚNG DẪN GIẢI CHI TIẾT
BẢNG ĐÁP ÁN
4.D

5.C
6.D
7.C
14.B
15.C
16.C
17.C
24.D
25.B
26.B
27.D
34.B
35.A
36.C
37.A
44.B
45.D
46.A
47.D

2

8.D
18.C
28.D
38.A
48.B

9.C
19.C

29.D
39.C
49.D

10.C
20.B
30.A
40.D
50.C

LỜI GIẢI CHI TIẾT CÁC CÂU HỎI VD VÀ VDC

0,1,2,3,4,5,6,7
Câu 39. Gọi S là tập hợp tất cả các số tự nhiện gồm 3 chữ số được lập từ các chữ số
.
Lấy ngẫu nhiên một số thuộc tập S . Tính xác suất để lấy được số sao cho chữ số đứng sau
luôn lớn hơn hoặc bằng số đứng trước.
2
11
3
3
A. 7 .
B. 64 .
C. 16 .
D. 32 .
Lời giải
Chọn C
n ( W) = 7.8.8 = 448
Ta có:
A: “Chọn được số có 3 chữ số mà chữ số đứng sau luôn lớn hơn hoặc bằng chữ số đứng trước”

Số cần chọn có dạng abc trong đó a �b �c
Trang 7


TRƯỜNG THPT VŨ DUY THANH

ĐỀ THI THỬ TỐT NGHIỆP THPT NĂM HỌC 2019-2020

TH1: Nếu a < b < c . Chọn ra 3 số thuộc tập
C 3 = 35
Do đó có 7
số
C2
TH2: Nếu a = b < c có 7 số
C2
TH3: Nếu a < b = c có 7 số
C1
TH4: a = b = c có 7 số

{1,2,3,4,5,6,7} ta được 1 số thỏa mãn

P (A) =

n(A)
3
=
n ( W) 16

n ( A ) = C + 2C + C = 84
Suy ra:


.
Câu 40. Cho lăng trụ tam giác ABC .A 'B 'C ' có tất cả các cạnh bằng a , góc tạo bởi giữa cạnh bên và
0
( A 'B 'C ') thuộc đường thẳng
mặt đáy bằng 30 . Hình chiếu H của điểm A lên mặt phẳng
B 'C ' . Khoảng cách giữa hai đường thẳng AA ' và B 'C ' tính theo a là
3
7

2
7

2a
A.

1
7

4a

3.

B.

a 3
C. 2 .

3.


a 3
D. 4 .

Lời giải
Chọn D

Do

AH ^ ( A 'B 'C ')


0
nên AA 'H = 30

� 'H = a
AH = AA '.sin AA
2
Xét D AHA ' vuông tại H có
� 'H = a 3
A ' H = AA '.cosAA
2

A 'H =

a 3
2 nên A 'H ^ B 'C ' tại điểm H là

Mà D A 'B 'C ' là tam giác đều cạnh A và
trung điểm của B 'C '
B 'C ' ^ mp( AHA ')

Suy ra:
mp( AHA ')
Trong
kẻ HK ^ AA ' tại K thì HK là khoảng cách giữa AA ' và B 'C ' .
Ta có:

HK =

A 'H .AH
a 3
=
.
AA '
4

Trang 8


TRƯỜNG THPT VŨ DUY THANH

ĐỀ THI THỬ TỐT NGHIỆP THPT NĂM HỌC 2019-2020

f ( x) =

Câu 41. Có bao nhiêu giá trị nguyên của tham số m sao cho hàm số
( - �;0) .
khoảng
A. 5.
B. 4 .
C. 3 .

Lời giải
Chọn D
m2 - 4
f
'
x
=
mx + 4
( )
2
f ( x) =
x
+
m
(
)
x + m có
Hàm số
.
( - �;0)
Hàm số nghịch biến trên khoảng

m2 - 4 < 0

� f '( x) < 0 " x �( - �;0) � �
� - 2 < m �0

- m �( - �;0)



.

{

mx + 4
x + m nghịch biến trên
D. 2.

}

m ��� m � - 1;0
Do
.
Vậy có 2 giá trị nguyên của m .
Câu 42. Một người gửi vào ngân hàng 100 triệu đồng với lãi suất ban đâu 4% /năm và lãi hàng năm
được nhập vào vốn. Cứ sau một năm lãi suất tăng 0,3%. Hỏi sau 4 năm tổng số tiền người đó nhận
được gần nhất với giá trị nào sau đây?
A. 117 triệu.
B. 119 triệu.
C. 121 triệu.
D. 122 triệu.
Lời giải
Chọn B
T = 100(1 + 0,04) = 104
Số tiền sau năm thứ nhất là : 1
triệu
T 2 = T 1(1+ 0,043)
Số tiền sau năm thứ hai là :
triệu
T = T2(1 + 0,046)

Số tiền sau năm thứ ba là : 3
triệu
T = T 3(1 + 0,049) �119,02
Số tiền sau năm thứ tư là 4
triệu
3
2
Câu 43. Cho hàm số y = ax + bx + cx + d có đồ thị như hình bên.

Trong các số a,b,c,d có bao nhiêu số dương?
A. 2.
B. 3 .

C. 1.
Lời giải

D. 4 .

Chọn D
+ Từ hình dạng đồ thị ta suy ra a > 0
+ x = 0 suy ra y = d. từ đồ thị suy ra d > 0.
2
+ y ' = 3ax + 2bx + c .
Từ đồ thị hàm số ta nhận thấy hàm số đạt cực trị tại hai điểm có hoành độ âm
Suy ra y ' = 0 có 2 nghiệm âm phân biệt

Trang 9


TRƯỜNG THPT VŨ DUY THANH


ĐỀ THI THỬ TỐT NGHIỆP THPT NĂM HỌC 2019-2020


3ac > 0


c>0


� � 2b
��

b> 0
<0 �



� 3a
Vậy cả 4 số a,b,c,d đều dương.
Câu 44: Một hình trụ có bán kính đáy bằng a.Cắt hình trụ bở mặt phẳng song song với trục và cách trục
a
một khoảng 2 ta được thiết diện là một hình vuông.Tính thể tích của khối trụ.
pa3 3
4 .
C.

3
B. pa 3 .


3
A. 3pa .

3
D. pa .

Lời giải
Chọn B

Gọi O và O �là tâm hai đáy của hình trụ.
Giả sử thiết diện thu được khi cắt hình trụ đã cho bởi một mặt phẳng song song với trục là hình vuông
ABCD .
Theo giả thiết ta có AB = BC = OO �
,
I
AB
OI
^
AB .
Gọi là trung điểm
. Suy ra
OI ^ ( ABCD )
Mà OI ^ BC nên
.
a
d OO �
;( ABCD ) = d O ;( ABCD ) = OI =
OO �
/ / ( ABCD )
2.


nên

(

)

(

)

a
3
OI = ,OA = a � IA =
a
2
2 � AB = 3a .
Xét tam giác AOI vuông tại I và có
Thể tích khối trụ là:
= p.a2.
V = p.R 2.h = p.OA2.OO �

( 3a) = p

3a3 .

y = f ( x)
Câu 46. Cho hàm số
liên tục trên � và có đồ thị
như

hình
vẽ.
Hỏi
phương
trình
f

(

)

1- sinx = f

thuộc khoảng
A. 1.
C. 3.

(

1 + cosx

( - 3,2) .

)

có tất cả bao nhiêu nghiệm

B. 2.
D. vô số.
Lời giải


Chọn A
Trang 10


TRƯỜNG THPT VŨ DUY THANH

ĐỀ THI THỬ TỐT NGHIỆP THPT NĂM HỌC 2019-2020

Ta có: f ( 1- sin x) = f ( 1 + cosx)(*)

- 1 �sin x �1 �
0 � 1- sin x � 2



x �(- 3;2) � �
��

- 1 �cosx �1 �
0 � 1 + cosx � 2



x ��
0; 2�

� �
�thì hàm số y = f ( x) đồng biến nên phương trình
Với

(*) � 1- sin x = 1 + cosx

� 1- sin x = 1 + cosx � tan x = - 1 � x =
x �(- 3,2) � x =


Câu

-p
+ kp, k ��
4

-p
4

Cho các số thực x, y, z thỏa mãn các
x +y +1
log2
= 2x - y
4x + y + 3
.Khi
đó
giá
trị
2
2
(x + z + 1)
(y + 2)
T =
+

3x + y
x + 2z + 3 tương ứng bằng:

47.

A. 4 2 .

điều

kiện

nhỏ

nhất

C. 6 3 .

B. 6

x �0, y �0, z �- 1 và
của

biểu

thức

D. 4

Lời giải
Chọn D

Từ giả thiết ta có:
x +y +1
x +y +1
log2
= 2x - y � 1+ log2
= 2x - y + 1
4x + y + 3
4x + y + 3
2x + 2y + 2
� log2
= (4x + y + 3) - (2x + 2y + 2)
4x + y + 3
� f (2x + 2y + 2) = f (4x + y + 3) � 2x + 2y + 2 = 4x + y + 3 � y = 2x + 1
f (t) = log2 t + t

là đơn điệu trên (0; +�) )
(x + z + 1)2
(y + 2)2
(x + z + 1)2
(2x + 3)2
T =
+
=
+
3x + y
x + 2z + 3
5x + y
x + 2z + 3
Thay vào biểu thức T ta được:
(x + z + 1)2

(2x + 3)2
(3x + z + 4)2 1 (3x + z + 4)2
T =
+

= .
5
x
+
y
x
+
2
z
+
3
6
x
+
2
z
+
4
2 3x + z + 2
Áp dụng bất đẳng thức:
(Với hàm

Đặt

t =+�++޳++=

3x z 2 T

1
(t
2

4
t

4)

1
4
(2 t.
2
t

4)

4




y = 2x + 1



x=z=0



t = 2 = 3x + z + 2
��



y =1


x
+
z
+
1
2
x
+
3


=

x + 2z + 3
� 5x + 1
Dấu "=" xảy ra khi �
:


y  2x 1


�x  z  0
� t  2  3x  z  2 � �
� y 1
�x  z  1
2x  3


x  2z  3
�5 x  1
Trang 11


TRƯỜNG THPT VŨ DUY THANH

ĐỀ THI THỬ TỐT NGHIỆP THPT NĂM HỌC 2019-2020

Suy ra giá trị nhỏ nhất của biểu thức T = 4.
2x + m
y = f (x) =
x - 1 ( m là tham số thực). Tính tổng tất cả các giá trị của m sao
Câu 48. Cho hàm số
max
f (x) - min
f (x) = 2
� �
� �
2;3

� �


cho �
A. - 4 .

2;3

� �


.
2
B.
.

C. - 1.
Lời giải

D. - 3.

Chọn A
- 2- m
f '( x) =
2x + m
2
f (x) =

x - 1)
2;3�
(

x

1

Hàm số
liên tục trên đoạn

với x �[2;3].
TH1: y ' > 0 � - 2 - m > 0 � m < - 2
Suy ra hàm số đã cho đồng biến trên từng khoảng
( 2;3)
trên khoảng
Suy ra

max
y = y(3) =
� �
2;3�


( - �;1) ,( 1; +�)

nên hàm số đồng biến

6+m
;min
y = y(2) = 4 + m

2;3�
2




6+m
- ( 4 + m) = 2 � - 2 - m = 4 �
2


m+2= 4



m
+
2
=
4




m = 2 (ktm)


m = - 6 (tm)



Từ ycbt ta có :
TH2: y ' < 0 � - 2 - m < 0 � m > - 2 suy ra hàm số đã cho nghịch biến trên từng khoảng
( - �;1) ,( 1;+�) nên hàm số nghịch biến trên ( 2;3) .
xác định

Suy ra

min
y = y(3) =
� �
2;3�


Từ ycbt ta có :

6+ m
;max
y = y(2) = 4 + m

2;3�
2



6+ m
4+m= 2 � 2+ m = 4 �
2


m+2= 4



m+2= - 4





m = 2 (tm)


m = - 6 (ktm)



2 + ( - 6) = - 4
Vậy m = 2;m = - 6 nên tổng các giá trị của m là
.
ABCD.A ����
BCD
Câu 49. Cho hình lập phương
.Gọi E , F , M , N , P ,Q lần lượt là tâm của các mặt
ABCD;A 'B 'C 'D ';ADD 'A ';DCC 'D ';CBB 'C ';ABB 'A ' . Biết cạnh khối lập phương bằng a ,khi đó
thể tích của khối tám mặt đều nội tiếp khối lập phương trên là
a3
a3
a3
a3
A. 8 .
B. 12 .
C. 4 .
D. 6 .
Lời giải
Chọn D
Ta thấy khối tám mặt đều đó thực chất là 2 khối chóp có chung đáy EMNPQF được đánh dấu

như hình trên.
1
DC ' � MN = A 'C '
2
Xét D A 'DC ' có: M, N lần lượt là trung điểm của DA ' và

Trang 12


TRƯỜNG THPT VŨ DUY THANH

ĐỀ THI THỬ TỐT NGHIỆP THPT NĂM HỌC 2019-2020

Do ABCD.A 'B 'C 'D ' là khối lập phương cạnh a
� A 'B 'C 'D ' là hình vuông cạnh a

� A 'C ' = AB 2 = a 2 . Do vậy

MN =

a 2
2

a2
a 2
� SMNPQ =
2
+) Nhận thấy MNPQ là một hình vuông cạnh 2
1
1

d E ;( MNPQ ) = .EF = a
2
2
+)

(

)

1 1 a2 a3
1
=
2.
. .a. =
� VEMNPQF = 2.VE .MNPQ = 2. d E , ( MNPQ ) .SMNPQ
3
3 2 2
6
logx2+y2+3 ( 2x + 2y + 5) �1,
Câu 50. Trong tất cả các cặp số thực (x;y ) thỏa mãn
có bao nhiêu giá trị
2
2
thực của m để tồn tại duy nhất cặp số thực (x;y) sao cho x + y + 4x + 6y + 13 - m = 0 .

(

A. 3.

B. 1.


)

C. 2.
Lời giải

D. 0.

Chọn C
2
logx2+y2+3 �
2x + 2y�5
+ ) ��
1� 2x + 2y + 5 �x2 + y�
x2 + y2 �
- 2x - 2y�
- 2 ��
0( 1) �
(
+

3

Ta có:


log 2 2 �
+ ) ��
1�
( 2x + 2y�5

⇒ Tập hợp các cặp số thực ( x,y ) thỏa mãn x +y +3
là hình tròn
2
2
- 2x - 2y - 2 = 0
( C 1) : x + y �
(tính cả biên).
2

Xét

2

x2 + y2 + 4x + 6y + 13 - m = 0 � ( x + 2) + ( y + 3) = m.�


x =- 2
m = 0� �

�=
y�- 3�


TH1:
, không thỏa mãn (1).
2
2
TH2: m >0 , khi đó tập hợp các cặp số thực ( x; y ) thỏa mãn x + y + 4x + 6y + 13 - m = 0
+4x + 6y + 13 - m = 0.�
(C 2) : x2 + y2 �

là đường tròn
(C ) (C )
Để tồn tại duy nhất cặp số thực ( x;y ) thỏa mãn yêu cầu bài toán thì hai đường tròn 1 và 2
(C ) (C )
(C )
tiếp xúc ngoài với nhau hoặc hai đường tròn 1 và 2 tiếp xúc trong và đường tròn 2 có
I ( 1;1) ,
R = 2.�
(C ) (C )
bán kính lớn hơn đường tròn 1 . 1 có tâm 1
bán kính 1

( C2) có tâm

I 2 ( - 2;- 3) ,

bán kính

R2 = m ( m > 0) .�
Trang 13


TRƯỜNG THPT VŨ DUY THANH

Để

(C )
1

( - 3)




ĐỀ THI THỬ TỐT NGHIỆP THPT NĂM HỌC 2019-2020

(C ) tiếp xúc ngoài thì I I
2

1 2

= R1 + R2.�

2

2
+ ( - 4) �
= 2�
+ m�
� 5 = 2 + m � m =�
9�
( tm�
)�


(C ) (C )
(C )
Để đường tròn 1 và 2 tiếp xúc trong và đường tròn 2 có bán kính lớn hơn đường tròn

2
m - 2 = ( - 3) �

+�
42

⇔m = 49 ( tm )
Vậy có 2 giá trị của m thỏa mãn yêu cầu bài toán.

(C ) . ⇒ R
1

2

- R1 =�
I 1I 2

--------------- HẾT ---------------

Trang 14



×