HỘI THẢO VẬT LÝ
NĂM 2016
MÁY GIA TỐC CYCLÔTRÔN
I/ ĐẶT VẤN ĐỀ:
Cấu trúc cuối cùng của vật chất là thế nào, câu hỏi này luôn làm các nhà vật lý phải
băn khoăn. Một cách để tìm ra câu trả lời là cho một hạt tích điện có năng lượng cao
( chẳng hạn một prôtôn) bắn vào một bia rắn, hoặc tốt hơn nữa là cho hai hạt proton
năng lượng cao va chạm trực tiếp với nhau. Phân tích các mảnh bắn ra từ va chạm ấy
là con đường hay nhất để tìm hiểu về bản chất của các hạt nhỏ hơn nguyên tử của vật
chất. Giải Nobel về vật lý năm 1976 và 1984 đã được tặng cho các công trình nghiên
cứu như vậy.
Làm sao ta có thể cung cấp cho proton đủ năng lượng để tiến hành các thí nghiệm đó?
Biện pháp trực tiếp duy nhất là bắt prôtôn “rơi” vào một hiệu điện thế V, làm cho
động năng của nó tăg tới eV. Vì ta cần năng lượng ngày mỗi lớn cho nên việc tạo ra
hiệu điện thế cần thiết ngày càng khó khăn.
Một cách làm hay hơn là bắt prôtôn chuyển động tròn trong một từ trường, và
mỗi chu kỳ ta lại dùng điện kích nhẹ nó một lần, chẳng hạn nếu một prôtôn quay 100
vòng trong một từ trường, và mỗi vòng lại nhận thêm một năng lượng 100 keV, thì
cuối cùng động năng của nó sẽ là 100x (100keV) hay 10MeV. Dựa trên nguyên lí ấy
các nhà vật lý đã chế tạo ra CYCLÔTRON
II/ GIẢI PHÁP:
CYCLÔTRON
Là hình ảnh chụp từ trên xuống của một vùng mà hạt tích điện ( cụ thể là
Prôtôn) chuyển động tròn trong cyclôtron. Hai hộp rỗng hình chữ D làm bằng đồng lá
hở ở phía cạnh thẳng. Người ta gọi đó là cực D. Hai cực D tham gia vào một mạch
dao động tạo ra một hiệu điện thế xoay chiều ở khe giữa hai cực đó. Hai cực D đặt
1
trong một từ trường hướng từ mặt phẳng hình vẽ ra phái trước do một nam châm điện
lớn tạo ra
Giả sử một prôtôn được phóng ra ở tâm của cyclôtrôn và lúc đầu chuyển động
về phía cực D tích điện âm . nó sẽ được gia tốc về phía cực D này và chiu vào trong
đó. Khi đã vào bên trong, thì các vách bằng đồng của của cực D sẽ là một màng điện
“che” không cho nó bị ảnh hưởng của điện trường, thế là điện trường không vào được
trong cực D. Tuy nhiên từ trường thì không bị cực D làm bằng đồng( vật liệu không từ
tính) che chắn, nên prôtôn chuyển động theo một quỹ đạo tròn với bán kính thay đổi
mv
theo tốc độ và cho bởi công thức : r = qB (1)
Cho rằng đúng lúc prôtôn đi vào giữa khe của cực D thứ nhất, thì hiệu điện thế
gia tốc đổi dấu. thế là prôtôn lại đối diện với một cực tích điện âm và lại được gia tốc
lần nữa. Quá trình đó cứ tiếp diễn prôtôn chuyển động tròn đồng bộ với thế dao động
điện từ tự do động trên các cực D, cho tới khi quỹ dạo xoắn ốc của prôtôn chạm vào
thành cực D.
Điểm mấu chốt trong nguyên tắc làm việc của cyclôtrôn là tần số quay tròn f
của prôtôn phải đúng bằng tần số dao động điện của máy phát dao động fdđ hay là f =
fdđ (2) ( điều kiện cộng hưởng)
Điều kiện cộng hưởng nói lên rằng, nếu muốn năng lượng của prôtôn quay tròn
tăng lên ta phải cung cấp năng lượng ấy ở tần số fdđ đúng bằng tần số quay tròn tự
nhiên f của prôtôn trong từ trường. kết hợp các phương trình (1) và (2) ta được
qB = 2π mf dd (3)
Với prôtôn , q và m là không đổi. Máy phát dao động điện từ tự do động được
thiết kế để phát ra một tần số cố định fdđ. Ta sẽ điều chỉnh cyclôtrôn bằng cách thay
đổi B cho đến khi phương trình (3) được thỏa mãn và chùm prôtôn năng lượng cao
xuất hiện.
2
Bài 1: (Cơ sở vật lý tập 5 – DAVID HALLIDAY)
Giả sử một máy gia tốc cyclôtrôn hoạt động với tần số dao động điện từ tự do động 12
MHz và bán kính cực D là 53 cm
a/ Hỏi từ trường phải đạt độ lớn bằng bao nhiêu, để cyclôtrôn có thể gia tốc được hạt
đơtơron?
GIẢI: Hạt đơtơron có cùng điện tích như prôtôn nhưng khối lựng lớn xấp xỉ gấp đôi (
m = 3,34x10-27 kg) từ phương trình (3) ta có
B=
2π m. f dd 2π .(3,34.10−27 ).(12.106 )
=
= 1,57T
q
1, 6.10−19
b/ Năng lượng của hạt đơtơron thu được là bao nhiêu
GIẢI: từ phương trình (1) tốc độ của hạt đơtơron quay tròn với bán kính quỹ đạo
bằng bán kính R của cực D cho bởi công thức:
RqB 0,53.1, 6.10−19.1,57
v=
=
= 3,99.107 m / s
−27
m
3,34.10
Tốc độ ấy tương ứng với động năng bằng
K=
1 2
mv =
2
1
(3,34.10−27.3,99.107 ) : (1, 6.10−13 )
2
= 16, 6 MeV
=
Bài 2:(Cơ sở vật lý tập 5 – DAVID HALLIDAY)
Cyclôtrôn trong bài tập 1 đã được chỉnh để gia tốc hạt đơteron
a/ Tính năng lượng của protôn mà nó có thể tạo ra khi giữ nguyên tần số đã dùng để
gia tốc đơteron?
b/ Từ trường cần thiết bằng bao nhiêu?
c/ Nếu giữ nguyên từ trường như vẫn dùng với đơteron thì năng lượng của prôtôn tạo
ra được bằng bao nhiêu?
3
d/ Tính tần số phải dùng lúc này
GIẢI:
a/ ta có
f =
v
⇒ v = 2π f .r
2π r
Động năng của hạt:
k=
1 2 m
mv = (2π fr )2 = 2mπ 2 f 2 r 2
2
2
Thay số vào ta được:
k = 2.1, 67.10−27.π 2 .(12.106 ) 2 .(0,53) 2
= 1,33.10−12 = 8,31MeV
b/
qvB =
m
mv 2
mv
⇒B=
mà v = 2π f .r ⇒ B = q .2π f
r
qr
Thay số vào ta được:
B=
1, 67.10−27.2π .12.106
= 0, 787(T )
1, 6.10−19
c/ Ta có
k=
mv 2 m 2v 2
=
2
2m
mv
1
( Bqr ) 2
Mà : B = qr ⇒ mv = Bqr ⇒ K =
2m
Thay số:
(1,57.1, 6.10−19.0,53) 2
K=
= 5,31.10−12 J = 33,17 MeV
−27
2.1, 67.10
d/ Tần số phải dùng:
f =
Thay số: f =
v
1 Bq
=
2π r 2π m
1,57.1, 6.10−19
= 23,94.106 Hz = 23,94 MHz
−27
2π .1, 67.10
4
Bài 3: ( Đề thi chọn HSG quốc gia môn vật lí năm 1991 – 1992)
Cyclôtrôn là máy gia tốc gồm hai hộp rỗng bằng kim loại hình
chữ D, cách nhau một khe (H.v), có một từ trường với cảm ứng
ur
từ B không đổi vuông góc với mặt hộp. Gần tâm của 2 hộp đó có một nguồn phát ra
r
ur
hạt tích điện với vận tốc v vuông góc với B . Biết khối lượng m và điện tích q của hạt.
a/ chứng minh rằng quỹ đạo của hạt trong từ trường là đường tròn. Tính bán kính
đường tròn này.
b/ Có một hiệu điện thế xoay chiều đặt vào hai hộp D với tần số thích hợp để hạt được
tăng tốc mỗi lần đi qua khe. Quỹ đạo của vật gần giống đường xoắn ốc. chính xác thì
quỹ đạo ấy có đường như thế nào?
c/ Tính tần số quay của hạt, cho nhận xét về tần số này. Tần số của hiệu điện thế xoay
chiều phải bằng bao nhiêu để hạt được tăng tốc mỗi lần qua khe? Trong phần dưới
đây, xét trường hợp gia tốc hạt prôtôn có khối lượng mp = 1,66.10-27 kg và điện tích e
= 1,6.10-19 C. Hiệu điện thế đặt vào các D có tần số f = 107 Hz. Vòng cuối cùng của
prôtôn trước khi ra khỏi cyclôtrôn có bán kính 0,42m.
d/ Tính cảm ứng từ B và động năng cuối cùng của hạt prôtôn ( động năng tính bằng
MeV)
e/ cực đại của hiệu điện thế giữa các D là 20Kv. Tính số vòng mà prôtôn đã quay
trước khi ra khỏi cyclôtrôn
GIẢI:
ur
a/ Hạt tích điện được phóng ra gần tâm của cyclôtrôn, chuyển động trong từ trường B
. Lực Lorenxơ đóng vai trò là lực hướng tâm. Cho nên hạt sẽ chuyển động theo quỹ
đạo là một đường tròn:
qvB =
mv 2
mv
⇒R=
R
qB
5
b/ Trong mỗi nửa hộp thì quỹ đạo của hạt mang điện là cung tròn , cung tròn này chỉ
được nới rộng khi hạt mang điện được tăng tốc, lúc nó đi qua khe. Quỹ đạo thực sự
của hạt gần như đường xoắn ốc , chính xác thì quỹ đạo của hạt có dạng như hình vẽ
trên.
ω=
c/ Tần số góc của hạt:
v Bq
ω
Bq
=
= const ⇒ f =
=
R m
2π 2π m
Cứ mỗi vòng quay hạt qua khe hai lần và được tăng tốc. Tần số dòng điện đặt vào
cyclôtrôn đúng bằng tần số quay của hạt.
d/
B=
2π fm p
q
≈ 0, 65155T
m .v
mv
⇒ Rmax = p max
Bq
Bq
BqRmax
⇒ vmax =
= 2π fRmax
mp
R=
⇒ w max =
m p vm2 ax
2
=
1 2 2 2
4π f Rmax m p = 3, 6.108 MeV
2
e/ sau mỗi vòng quay hạt nhận được động năng 2W0 = 2qUmax coi vận tốc ban đầu của
prôtôn là không đáng kể, sau n vòng quay hạt thu được động năng:
w = 2nqU max = w max ⇒ n =
w max
= 9.107 vòng.
2qU max
Bài 4: ( Đề thi chọn HSG quốc gia môn vật lí năm 2008)
Cyclôtrôn là máy gia tốc hạt tích điện đầu tiên của vật lí hạt nhân ( 1931). Nó gồm
có hai hộp rỗng có dạng trụ nửa hình tròn gọi là các D, đặt cách nhau một khoảng rất
nhỏ (khe) trong một buồng đã hút hết không khí ( H.vẽ). Các D được nối với hai cực
của một nguồn điện sao cho giữa hai D có một hiệu điện thế với độ lớn U xác định,
nhưng dấu lại thay đổi một cách tuần hoàn theo thời gian với tần số f nào đó. Một
ur
nam châm điện mạnh tạo ra một từ trường đều, có véctơ cảm ứng từ B vuông góc với
mặt các D( mặt phẳng hình vẽ). Giữa hai thành khe của cyclôtrôn có một nguồn phát
ra hạt α ( khối lượng m α ) với vận tốc đầu v0 = 107 m/s vuông góc với khe, lúc ấy
6
người ta điều chỉnh nguồn điện để cho D bên phải tích điện âm, D bên trái tích điện
dương. Sau đó hạt α chuyển động với vận tốc tăng dần cho đến khi đủ lớn thì nó
được lái ra ngoài cho đập vào các bia để thực hiện phản ứng hạt nhân.
Cho m α = 6,64.10-27 kg, điện tích nguyên tố e = 1,6.10-19 C, B = 1T, U = 2.105 V.
a/ chứng minh rằng trong lòng các D quỹ đạo của hạt α là nửa đường tròn. Tìm
mối liên hệ của bán kính ữuy đạo vào khối lượng, vận tốc, điện tích của hạt α vào
ur
cảm ứng từ B. Với chiều đi của hạt α như hình vẽ thì B hướng ra trước hay ra sau
mặt phẳng hình vẽ?
b/ Nếu lần nào đi qua khe hạt α cũng chuyển động cùng chiều với điện trường do
U sinh ra thì lần nào nó cũng được tăng tốc . Để có sự đồng bộ này, f phải thỏa mãn
điều kiện gì và lấy giá tị là bao nhiêu? Tính vận tốc v n của hạt α khi đi trên nửa
đường tròn thứ n và bán kính Rn của nửa đường tròn đó.
Nếu bán kính của nửa đường tròn cuối là 0,5m thì hạt α đã chuyển động được
khoảng bao nhiêu vòng? Tính vận tốc trước khi ra ngoài của nó.
3/ Nếu tần số f lấy giá trị như đã tính ở ý 2 ( của câu này) và giữ không đổi, đồng
thời tiếp tục cho hạt α chuyển động tăng tốc đến vận tốc ngưỡng v ng ≈ 105 km/s thì
không điều chỉnh đồng bộ được nữa.
a/ Giải thích nguyên nhân.
b/ Nêu mối liên hệ tốc độ góc của hạt α với f.
c/ Để sự tăng tốc của hạt α đồng bộ với sự đảo chiều của hiệu điện thế thì bán
kính tối đa của các D là bao nhiêu.
GIẢI:
r
r
a/ Trong lòng D chỉ có từ trường tác dụng, lực Lorenxơ lên hạt F = 2evr ∧ B , e > 0 là
điện tích nguyên tố.
r r
mα v2
= 2evB
Lực Lorenxơ F ⊥ v nên là lực hướng tâm
R
Suy ra quỹ đạo của hạt α là nửa vòng tròn, bán kính
R=
mα v
2eB
(1)
7
r
B hướng từ phía trước ra phía sau (đi vào) mặt phẳng hình vẽ.
2/ Hạt α đi được một vòng thì U phải đổi chiều 2 lần, tức là chu kì chuyển động
của hạt α và chu kì đổi chiều của U phải bằng nhau
T=
2πR πmα
1 eB
2eB
=
→f = =
, ωα = 2πf =
÷ (2)
v
eB
T πmα
mα
f=
eB
1,6.10−19.1
=
≈ 7,67MHz
πmα 3,14.6,64.10−27
Cứ mỗi một lần đi qua khe, hạt α lại thu thêm được một động năng bằng 2eU .
Như vậy nếu hạt α qua khe lần thứ n và đi trên nửa vòng tròn n, động năng của hạt α
1
2
tăng thêm một lượng 2neU . Động năng ban đầu của hạt là K 0 = mα v20 . Như vậy động
1
2
1
2
năng của hạt α khi đi trên nửa vòng tròn n là K = K 0 + 2neU = mα v20 + 2neU = mα v2n .
Vận tốc của hạt α khi đi trên nửa vòng tròn n là
vn = v20 +
4neU
mα
(3)
Theo (1) bán kính của nửa vòng tròn n là
Rn =
mα vn
=
2eB
mα v20 +
4neU
mα
(4)
2eB
Từ (4) suy ra
2
2.1,6.10−19.1.0,5 2
mα 2eBR n
6,64.10−27
2
14
≈ 24 lượt
n=
−
10
÷ − v0 =
÷
4eU mα
4.1,6.10−19.2.105 6,64.10−27
Số vòng mà hạt α đã chuyển động là ≈ 12.
Từ (3) suy ra sau 12 vòng, vận tốc của hạt α là v ≈ 2,4.107 m/ s
8
3. a. Khi vận tốc của hạt tăng, do hiệu ứng tương đối tính khối lượng của hạt α
m=
tăng theo hệ thức Einstein
mα
2
v , nên tốc độ góc của nó theo (2) giảm.
1− ÷
c
Thành thử nếu tần số f của U giữ không đổi thì hạt α đến khe chậm hơn trước,
đáng lẽ vào lúc tăng tốc thì lại đi ngược chiều điện trường và sẽ bị hãm. 0,50
điểm.
2
2
2eB 2eB
v
v
b. ωα =
=
1− ÷ = 2πf 1− ÷
m
mα
c
c
c.
R max =
mv
=
2eB
mα v
2
v
2eB 1− ÷
c
=
6,64.10−27.108
2
10
2.1,6.10−19.1. 1−
8÷
3.10
8
≈ 2,2m
.
Bài 5: Trong một cyclôtrôn , hạt prôtôn chuyển động trên quỹ dạo tròn bán kính 0,5m.
Độ lớn của từ trường là 1,2 T.
a/ Tính tần số của cyclôtrôn .
b/ Tính động năng của prôtôn ra eV.
GẢI:
Bài 6: Một nhà vật lý thiết kế một cyclôtrôn để gia tốc prôtôn tới tốc độ bằng 1/10 tốc
độ ánh sáng. Nam châm dùng ở đây tạo ra được từ trường 1,4T
Hãy tính:
a/ Bán kính của cyclôtrôn .
b/ tần số dao động điện từ tự do động tương ứng, bỏ qua hiệu ứng tương đối tính.
Bài 7: Một hạt đơtôron chuyển động trong máy cyclôtrôn có từ trường B = 1,5T theo
quỹ đạo tròn bán kính 50 cm. Do va chạm với bia nó vỡ thành một prôtôn và một
nơtron mà không mất mát đáng kể về động năng. Biện luận về chuyển động tiếp theo
của từng hạt, cho rằng khi vỡ năng lượng của hạt đơtơron chia đều cho hai hạt.
9
GIẢI:
r
r
a/ Gọi v là vận tốc của đơteri trước khi vỡ, v tiếp tuyến với quỹ đạo tròn bán kính r =
50 cm.
ur
Khi vỡ thành 2 hạt cùng khối lượng m1 = m2 = m/2 = u thì mỗi hạt có vận tốc v1
uu
r
và v2 . Theo định luật bảo toàn động lượng :
r
r
uu
r
mv = m1 v1 + m2 v2 hay 2uv = uv1 + uv2
(1)
Theo định luật bảo toàn năng lượng ( động năng)
1 2 1
1
1
1
mv = m1v12 + m2 v22 hay uv 2 = uv12 + uv22
2
2
2
2
2
ur r r
Từ (1) và (2) suy ra v1 = v2 tức là v1 = v 2 = v
(2)
Nơtrôn không mang điện nên chuyển động trong từ trường không chịu táca dụng của
lực Lorenxơ nên nó vẫn chuyển động thẳng đều theo phương Oy tiếp xúc với quỹ đạo
C tại O ( điểm mà đơteri bị vỡ)
Prôtôn cũng như đơteri mang điện dương nên chịu tác dụng của lực Lorenxơ
FL = qvB = m
v2
mv
⇒r=
r
qB
• Với đơteri :
mD = 2u, qD = e; rD =
2uv
eB
• Với prôtôn :
MmP = u; qp= e; rp =
Vậy :
rp
rD
=
uv
eB
uv eB 1
x
=
eB 2uv 2
1
2
Suy ra : rp = rD = 0,5.50 = 25cm
Vậy prôtôn chuyển động trên đường tròn C’ bán kính rp = 25cm và ở cùng phía
với đường tròn C đối với Oy ( vì prôtôn mang điện cùng dấu với đơteri ).
10
Bài 8: Ước tính tổng chiều dài quãng đường đi của hạt đơteri trong máy cyclôtrôn
trong bài tập 1, trong suốt quá trình gia tốc . Cho rằng thế năng gia tốc giữa hai cực D
là 80 kV.
GIẢI:
Mỗi lần đi qua điện trường giữa 2 cực D , hạt đơteri nhận thêm năng lượng ( động
năng)
K1 = eV
Trong một chu kì ( một vòng quay) đơteri đi qua hai lần nên nhận thêm năng lượng:
K2 = 2K1 = 2eu = 2e.80 KV = 160 KeV.
Tính động năng của hạt đơteri khi ra khỏi máy:
Từ công thức
FL = qvB = m
Suy ra:
v2
r
v qB
v
qB
=
⇒ f =
=
r m
2π r 2π m
Hay : B =
2π mf
q
Động năng của đơteri :
2
1 2 m qr 2 mq 2 r 2 4π 2 m 2 f 2
K = mv = ÷ B =
.
2
2m
2m 2
q2
= 2π 2 mr 2 f 2
Thay số : K = 2π 2
3,34.10−27.0,532.(12.106 ) 2
= 16, 67.106 eV
−19
1, 6.10
Để đạt được động năng K hạt phải quay trong máy n vòng thì:
n=
K 16, 67.106
=
= 104, 2 vòng
K2
160.103
Coi nguồn phát hạt đặt ở tâm máy, thì độ dài trung bình của một vòng quay là:
11
C=
2π r
= π r = 0,53π
2
Tổng chiều dài quãng đường đi của hạt trong máy là:
L = nC = 104,2. 0,53. π =173,5m.
12