Introduction to MIS
Chapter 8
Models and Decision Support
Copyright © 1998-2002 by Jerry Post
Introduction to MIS
1
Models
Strategy
Decision
100
80
60
40
20
0
1st Qtr
2nd Qtr
Actual
3rd Qtr
4th Qtr
Forecast
Output
1
2
f ( x)
1 x
exp
2
2
Model
Data
Tactics
Operations
Company
Introduction to MIS
2
Outline
Biases in Decisions
Introduction to Models
Why Build Models?
Decision Support Systems: Database, Model, Output
Data Warehouse
Data Mining and Analytical Processing
Digital Dashboard and EIS
DSS Examples
Geographical Information Systems
Cases: Computer Hardware Industry
Appendix: Forecasting
Introduction to MIS
3
Tactical
Models
Management
Business Operations
Introduction to MIS
Tr
a
Pr nsa
Pr
o
oc
c
es ces tion
s C sin
on g
t ro
l
Mgt.
DS
S
Strategic
ES
EI
S
Decision Levels
4
Choose a Stock
Stock Price
130
125
120
115
CompanyA
110
CompanyB
105
100
95
90
1
2
3
4
5
6
7
8
9
10 11 12
Month
Company A’s share price increased by 2% per month.
Company B’s share price was flat for 5 months and then increased by
3% per month.
Which company would you invest in?
Introduction to MIS
5
Data availability
Selective perception
Frequency
Concrete information
Illusory correlation
Inconsistency
Conservatism
Non-linear extrapolation
Heuristics: Rules of thumb
Anchoring and adjustment
Representativeness
Sample size
Justifiability
Regression bias
Best guess strategies
Complexity
Emotional stress
Social pressure
Redundancy
Introduction to MIS
Output
Processing
Human Biases
Acquisition/Input
Question format
Scale effects
Wishful thinking
Illusion of control
Feedback
Learning on irrelevancies
Misperception of chance
Success/failure attribution
Logical fallacies in recall
Hindsight bias
6
File: C08Fig08.xls
Understanding the Process
Optimization
Prediction
Simulation or "What If"
Scenarios
Dangers Goal or output
Why Build Models?
Optimization
Maximum
variables
25
Output
20
Model: defined
by the data points
or equation
15
10
5
5
3
0
1 2 3
4
5
Input Levels
6
7
8
9 10
1
Control variables
Introduction to MIS
7
File: C08Fig09.xls
Prediction
25
20
Economic/
regression
Forecast
Output
15
10
5
Moving Average
Trend/Forecast
0
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2
Time/quarters
Introduction to MIS
8
File: C08Fig10.xls
Simulation
Goal or output
variables
25
Output
20
15
Results from altering
internal rules
10
5
0
1
2
3
4
5
6
7
8
9 10
Input Levels
Introduction to MIS
9
Object-Oriented Simulation Models
Custom Manufacturing
purchase
order
routing
& scheduling
purchase
order
Customer
Order Entry
Invoice
Parts
List
Production
Shipping
Schedule
Shipping
Inventory
Introduction to MIS
10
File: C08Fig11.xls
DSS: Decision Support Systems
Sales and Revenue 1994
300
Model
250
Legend
200
d
a
at
to
an
y
al
ze
sales
154
163
161
173
143
181
revenue profit
204.5 45.32
217.8 53.24
220.4 57.17
268.3 61.93
195.2 32.38
294.7 83.19
prior
35.72
37.23
32.78
47.68
41.25
67.52
su
re
lt s
150
Sales
Revenue
Profit
Prior
100
50
0
Jan
Feb
Mar
Apr
May
Jun
Output
Database
Introduction to MIS
11
Introduction to MIS
Data Mining: Spotfire
12
Data Warehouse
Predefined
reports
Interactive
data analysis
Operations
data
Daily data
transfer
OLTP Database
3NF tables
Data warehouse
Star configuration
Flat files
Introduction to MIS
13
Multidimensional OLAP Cube
ry
o
eg
t
Ca
Pet Store
Item Sales
Amount = Quantity*Sale Price
Customer
Location
Time
Sale Date
Introduction to MIS
14
Microsoft SQL Server Cube Browser
Introduction to MIS
15
Microsoft Pivot Table
Introduction to MIS
16
Digital Dashboard
Stock market
Equipment details
Exceptions
Quality control
Plant or
management variables
Products
Plant schedule
/>
Introduction to MIS
17
Easy access to data
Graphical interface
Non-intrusive
Drill-down capabilities
EIS: Executive
Information System
EIS Software
from Lightship
highlights easeof-use GUI for
data look-up.
Introduction to MIS
18
Executives
5000
4500
4000
3500
3000
2500
2000
1500
1000
500
0
Sales
Data
Distribution
South
North
Overseas
1993
1994
1995
1996
Production: North
Data
Data
Introduction to MIS
Production Costs
South
North
Overseas
r EIS
o
f
a
t
Da
Central Management
Executive IS
Sales
Production Costs
Distribution Costs
Fixed Costs
Data
Item#
1995
1994
1234
2938
7319
542.1
631.3
753.1
442.3
153.5
623.8
Production
19
Marketing Research Data
Introduction to MIS
20
File: C08-10 Marketing Forecast.xls
Marketing Sales Forecast
GDP and Sales
2800
100
GDP
2600
90
Sales
2400
Forecast
GDP
2000
70
1800
60
1600
Sales
80
2200
50
1400
40
1200
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
1000
Quarter
forecast
Note the fourth quarter sales jump.
The forecast should pick up this cycle.
Introduction to MIS
21
Regression Forecasting
Data:
Quarterly sales and GDP for 10 years.
Model:
Sales = b0 + b1 Time + b2 GDP
Analysis:
Estimate model coefficients with regression.
Intercept
Time
GDP
Coefficients Standard Error
-98.175
15.895
-1.653
0.304
0.102
0.012
t Stat
-6.176
-5.444
8.507
Forecast GDP for each quarter.
Output:
Compute Sales prediction.
Graph forecast.
Introduction to MIS
22
File: C08-19 HRM.xls
Human Resources
Introduction to MIS
23
Human Resources
dollars
Raises
4000
3500
3000
2500
2000
1500
1000
500
0
90.0%
80.0%
70.0%
60.0%
50.0%
40.0%
30.0%
20.0%
10.0%
0.0%
Caulkins
Jihong
Raise
Introduction to MIS
Louganis
Naber
Raise pct
Spitz
Weissmuller
Performance
24
File: C08-14 Finance NPV.xls
Finance Example: Project NPV
Rate = 7%
P r o j e c t C N P V = $ 3 , 8 14
P r o j e c t A N P V=$ 18 , 4 7 5
100,000
60,000
50,000
40,000
20,000
0
0
-50,000
1
2
3
4
5
6
Costs-A
Revenue-A
-100,000
0
-20,000
0
1
2
3
4
5
6
Costs-C
Revenue-C
-40,000
-150,000
-60,000
-200,000
-80,000
-250,000
-100,000
Ye a r
Ye a r
P r o j e c t B N P V=$ 6 , 0 6 4
80,000
60,000
40,000
20,000
0
-20,000
-40,000
0
1
2
3
4
5
6
Costs-B
Can you look at these cost and
revenue flows and tell if the
project should be accepted?
Revenue-B
-60,000
-80,000
-100,000
-120,000
Ye a r
Introduction to MIS
25