❚❘×❮◆● ✣❸■ ❍➴❈ ❙× P❍❸▼ ❍⑨ ◆❐■ ✷
❑❍❖❆ ❚❖⑩◆
✖✖✖✖✖✖✕♦✵♦✖✖✖✖✖✖✖
✣➱ ❚❍➚ ❑■➋❯ ❚❘❆◆●
P❍×❒◆● P❍⑩P ❚❆▼ ❚❍Ù❈ ❇❾❈ ❍❆■
❚❘❖◆● ●■❷■ P❍×❒◆● ❚❘➐◆❍ ❱⑨ ❍➏
P❍×❒◆● ❚❘➐◆❍
❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P ✣❸■ ❍➴❈
❈❤✉②➯♥ ♥❣➔♥❤✿ ✣↕✐ sè
❍⑨ ◆❐■✱ ✷✵✶✾
❚❘×❮◆● ✣❸■ ❍➴❈ ❙× P❍❸▼ ❍⑨ ◆❐■ ✷
❑❍❖❆ ❚❖⑩◆
✖✖✖✖✖✖✕♦✵♦✖✖✖✖✖✖✖
✣➱ ❚❍➚ ❑■➋❯ ❚❘❆◆●
P❍×❒◆● P❍⑩P ❚❆▼ ❚❍Ù❈ ❇❾❈ ❍❆■
❚❘❖◆● ●■❷■ P❍×❒◆● ❚❘➐◆❍ ❱⑨ ❍➏
P❍×❒◆● ❚❘➐◆❍
❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P ✣❸■ ❍➴❈
❈❤✉②➯♥ ♥❣➔♥❤✿ ✣↕✐ sè
◆❣÷í✐ ❤÷î♥❣ ❞➝♥ ❦❤♦❛ ❤å❝
❚❤❙✳❉×❒◆● ❚❍➚ ▲❯❨➌◆
❍⑨ ◆❐■✱ ✷✵✶✾
▲❮■ ❈❆▼ ✣❖❆◆
❊♠ ①✐♥ ❝❛♠ ✤♦❛♥ ❦❤â❛ ❧✉➟♥ ♥➔② ❧➔ ❦➳t q✉↔ ♥❣❤✐➯♥ ❝ù✉ ❝õ❛ ❜↔♥ t❤➙♥
❡♠✱ ✤÷ñ❝ ❤♦➔♥ t❤➔♥❤ ❞÷î✐ sü ❤÷î♥❣ ❞➝♥ ❝õ❛ ❚❤❙✳❉÷ì♥❣ ❚❤à ▲✉②➳♥✳ ❚r♦♥❣
❦❤✐ ♥❣❤✐➯♥ ❝ù✉✱ ❤♦➔♥ t❤➔♥❤ ❜↔♥ ❦❤â❛ ❧✉➟♥ ♥➔② ❡♠ ✤➣ t❤❛♠ ❦❤↔♦ ♠ët sè
t➔✐ ❧✐➺✉ ✤➣ ❣❤✐ tr♦♥❣ ♣❤➛♥ t➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦✳
❊♠ ①✐♥ ❦❤➥♥❣ ✤à♥❤ ❦➳t q✉↔ ❝õ❛ ✤➲ t➔✐✿ ✧P❤÷ì♥❣ ♣❤→♣ t❛♠ t❤ù❝
❜➟❝ ❤❛✐ tr♦♥❣ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤ ✈➔ ❤➺ ♣❤÷ì♥❣ tr➻♥❤✧ ❧➔ ❦➳t q✉↔
❝õ❛ ✈✐➺❝ ♥❣❤✐➯♥ ❝ù✉ ✈➔ ♥é ❧ü❝ ❤å❝ t➟♣ ❝õ❛ ❜↔♥ t❤➙♥✱ ❦❤æ♥❣ trò♥❣ ❧➦♣ ✈î✐
❦➳t q✉↔ ❝õ❛ ❝→❝ ✤➲ t➔✐ ❦❤→❝✳ ◆➳✉ s❛✐ ❡♠ ①✐♥ ❝❤à✉ ❤♦➔♥ t♦➔♥ tr→❝❤ ♥❤✐➺♠✳
❍➔ ◆ë✐✱ t❤→♥❣ ✺ ♥➠♠ ✷✵✶✾
❙✐♥❤ ✈✐➯♥
✣é ❚❤à ❑✐➲✉ ❚r❛♥❣
✐
▲❮■ ❈❷▼ ❒◆
❑❤â❛ ❧✉➟♥ ♥➔② ✤÷ñ❝ t❤ü❝ ❤✐➺♥ t↕✐ ❦❤♦❛ ❚♦→♥✱ tr÷í♥❣ ✣↕✐ ❤å❝ ❙÷ ♣❤↕♠
❍➔ ◆ë✐ ✷✱ ❞÷î✐ sü ❤÷î♥❣ ❞➝♥ ❦❤♦❛ ❤å❝ ❝õ❛ ❚❤❙✳ ❉÷ì♥❣ ❚❤à ▲✉②➳♥✳
❊♠ ①✐♥ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ s➙✉ s➢❝ tî✐ ❝æ ❚❤❙✳ ❉÷ì♥❣ ❚❤à ▲✉②➳♥✱
♥❣÷í✐ ✤➣ ✤à♥❤ ❤÷î♥❣ ✈➔ ❝❤➾ ❞➝♥ s→t s❛♦ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣✱
♥❣❤✐➯♥ ❝ù✉ ✈➔ ❤♦➔♥ t❤➔♥❤ ❦❤â❛ ❧✉➟♥ ♥➔②✳ ❙ü ❝❤✉②➯♥ ♥❣❤✐➺♣✱ ♥❣❤✐➯♠ tó❝
tr♦♥❣ ♥❣❤✐➯♥ ❝ù✉ ✈➔ ♥❤ú♥❣ ✤à♥❤ ❤÷î♥❣ ✤ó♥❣ ✤➢♥ ❝õ❛ ❝æ ❧➔ t✐➲♥ ✤➲ q✉❛♥
trå♥❣ ❣✐ó♣ ❡♠ ❝â ✤÷ñ❝ ♥❤ú♥❣ ❦➳t q✉↔ tr➻♥❤ ❜➔② tr♦♥❣ ❦❤â❛ ❧✉➟♥ ♥➔②✳
❊♠ ①✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥ ❇❛♥ ❈❤õ ♥❤✐➺♠ ❦❤♦❛ ❚♦→♥✱ ❝→❝ t❤➛②✱ ❝æ
❣✐→♦ tr♦♥❣ tê ✣↕✐ sè ✈➔ ❝→❝ t❤➛② ❝æ tr♦♥❣ ❦❤♦❛ ❚♦→♥ ✲ ❚r÷í♥❣ ✣↕✐ ❤å❝ ❙÷
♣❤↕♠ ❍➔ ◆ë✐ ✷ ✤➣ t↕♦ ✤✐➲✉ ❦✐➺♥ ❣✐ó♣ ✤ï ❡♠ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣✱
♥❣❤✐➯♥ ❝ù✉ ✈➔ ❤♦➔♥ t❤➔♥❤ ❦❤â❛ ❧✉➟♥ ♥➔②✳
❚r♦♥❣ q✉→ tr➻♥❤ ♥❣❤✐➯♥ ❝ù✉ ✤➲ t➔✐ ♥➔② ♠➦❝ ❞ò ✤➣ ❝â r➜t ♥❤✐➲✉ ❝è
❣➢♥❣✱ s♦♥❣ t❤í✐ ❣✐❛♥ ✈➔ ❦✐♥❤ ♥❣❤✐➺♠ ❜↔♥ t❤➙♥ ❝á♥ ♥❤✐➲✉ ❤↕♥ ❝❤➳ ♥➯♥ ❦❤â❛
❧✉➟♥ ❦❤æ♥❣ t❤➸ tr→♥❤ ❦❤ä✐ ♥❤ú♥❣ t❤✐➳✉ sât✱ ❡♠ r➜t ♠♦♥❣ ✤÷ñ❝ sü ✤â♥❣
❣â♣ þ ❦✐➳♥ ❝õ❛ ❝→❝ t❤➛②✱ ❝æ ❣✐→♦✱ ❝→❝ ❜↕♥ s✐♥❤ ✈✐➯♥ ✈➔ ❜↕♥ ✤å❝✳
❊♠ ①✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥✦
❍➔ ◆ë✐✱ t❤→♥❣ ✺ ♥➠♠ ✷✵✶✾
❙✐♥❤ ✈✐➯♥
✣é ❚❤à ❑✐➲✉ ❚r❛♥❣
✐✐
▼Ö❈ ▲Ö❈
▲í✐ ♠ð ✤➛✉
✶✳
❚r❛♥❣
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❑✐➳♥ t❤ù❝ ❝ì ❜↔♥ ✈➲ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐
✶
✳ ✳ ✳ ✳
✸
✶✳✶✳ ◆❣❤✐➺♠ ❝õ❛ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✸
✶✳✷✳ ✣à♥❤ ❧þ ❱✐✲❡t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹
✶✳✷✳✶✳ ✣à♥❤ ❧þ ❱✐✲❡t tê♥❣ q✉→t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹
✶✳✷✳✷✳ ❱➼ ❞ö ♠✐♥❤ ❤å❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹
✶✳✸✳ ✣à♥❤ ❧þ t❤✉➟♥ ✈➲ ❞➜✉ ❝õ❛ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺
✶✳✹✳ ❇➜t ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❤❛✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✾
✶✳✹✳✶✳ ✣à♥❤ ♥❣❤➽❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✾
✶✳✹✳✷✳ ❈→❝❤ ❣✐↔✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✾
✶✳✹✳✸✳ ❱➼ ❞ö ♠✐♥❤ ❤å❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✾
✶✳✺✳ ✣à♥❤ ❧þ ✤↔♦ ✈➲ ❞➜✉ ❝õ❛ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✵
✶✳✺✳✶✳ ✣à♥❤ ❧þ ✤↔♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✵
✶✳✺✳✷✳ ❙♦ s→♥❤ ❝→❝ ♥❣❤✐➺♠ ❝õ❛ ♠ët t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ✈î✐ ♠ët
sè α ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✶
✶✳✺✳✸✳ ❙♦ s→♥❤ ❝→❝ ♥❣❤✐➺♠ ❝õ❛ ♠ët t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ✈î✐ ❤❛✐
sè α, β (α < β) ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✹
✶✳✻✳ ❉➜✉ t❛♠ t❤ù❝ tr➯♥ ♠ët ♠✐➲♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✽
✶✳✻✳✶✳ ❇➔✐ t♦→♥ ✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✽
✶✳✻✳✷✳ ❇➔✐ t♦→♥ ✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✾
✶✳✻✳✸✳ ❇➔✐ t♦→♥ ✸ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✷
✐✐✐
✷✳
Ù♥❣ ❞ö♥❣ tr♦♥❣ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤ ✈➔ ❤➺
♣❤÷ì♥❣ tr➻♥❤ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✺
✷✳✶✳ P❤÷ì♥❣ tr➻♥❤✱ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ q✉② ✈➲ ❜➟❝ ❤❛✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✺
✷✳✶✳✶✳ P❤÷ì♥❣ tr➻♥❤ q✉② ✈➲ ❜➟❝ ❤❛✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✺
✷✳✶✳✷✳ ❍➺ ♣❤÷ì♥❣ tr➻♥❤ q✉② ✈➲ ❜➟❝ ❤❛✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✾
✷✳✷✳ P❤÷ì♥❣ tr➻♥❤ ✈➔ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ ❝❤ù❛ t❤❛♠ sè
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✻
✷✳✷✳✶✳ P❤÷ì♥❣ tr➻♥❤ ❝❤ù❛ t❤❛♠ sè ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✻
✷✳✷✳✷✳ ❍➺ ♣❤÷ì♥❣ tr➻♥❤ ❝❤ù❛ t❤❛♠ sè ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻✽
❑➳t ❧✉➟♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼✾
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✽✵
✐✈
▼❐❚ ❙➮ ❑➑ ❍■➏❯ ❱⑨ ❈❍Ú ❱■➌❚ ❚➁❚
R
❚➟♣ ❤ñ♣ ❝→❝ sè t❤ü❝✳
❈▼❘ ❈❤ù♥❣ ♠✐♥❤ r➡♥❣
✤♣❝♠ ✤✐➲✉ ♣❤↔✐ ❝❤ù♥❣ ♠✐♥❤
✈♥
✈æ ♥❣❤✐➺♠
✈
▲❮■ ▼Ð ✣❺❯
✶✳ ▲þ ❞♦ ❝❤å♥ ✤➲ t➔✐
❚❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ❣✐ú ♠ët ✈à tr➼ q✉❛♥ trå♥❣ ✈➔ ✤÷ñ❝ ①✉②➯♥ s✉èt tr♦♥❣
❝❤÷ì♥❣ tr➻♥❤ t♦→♥ sì ❝➜♣✳ ▼ët ❜÷î❝ r➜t q✉❛♥ trå♥❣ ❝➛♥ ♣❤↔✐ ❧➔♠ ❦❤✐ ❣✐↔✐
t♦→♥ ❧➔ ❧ü❛ ❝❤å♥ ✤÷ñ❝ ♣❤÷ì♥❣ ♣❤→♣ ❣✐↔✐✳ ▲í✐ ❣✐↔✐ ❝õ❛ ❜➔✐ t♦→♥ ❤❛② ❦❤✐ ❧ü❛
❝❤å♥ ✤÷ñ❝ ♣❤÷ì♥❣ ♣❤→♣ ❣✐↔✐ t❤➼❝❤ ❤ñ♣✳ P❤÷ì♥❣ ♣❤→♣ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ❧➔
♠ët tr♦♥❣ ♥❤ú♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❣✐↔✐ ❤✐➺✉ q✉↔ ✈➔ ❝â ù♥❣ ❞ö♥❣ ♥❤✐➲✉ tr♦♥❣
❣✐↔✐ t♦→♥ sì ❝➜♣✳
❱î✐ ♥❤ú♥❣ ❧þ ❞♦ tr➯♥ ❝ò♥❣ ✈î✐ ❧á♥❣ s❛② ♠➯ t➻♠ tá✐ ♥❣❤✐➯♥ ❝ù✉ ✈➔ ❞÷î✐
sü ❤÷î♥❣ ❞➝♥✱ ❣✐ó♣ ✤ï✱ ❝❤➾ ❜↔♦ t➟♥ t➻♥❤ ❝õ❛ ❚❤❙✳ ❉÷ì♥❣ ❚❤à ▲✉②➳♥ ❡♠
✤➣ ♠↕♥❤ ❞↕♥ ❝❤å♥ ✤➲ t➔✐✿ ✧P❤÷ì♥❣ ♣❤→♣ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ tr♦♥❣
❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤ ✈➔ ❤➺ ♣❤÷ì♥❣ tr➻♥❤✧ ✤➸ t❤ü❝ ❤✐➺♥ ❦❤â❛ ❧✉➟♥ tèt
♥❣❤✐➺♣ ❝õ❛ ♠➻♥❤✳ ❱î✐ ♠♦♥❣ ♠✉è♥ ❣✐ó♣ ❤å❝ s✐♥❤ ❝â ❝→✐ ♥❤➻♥ t♦➔♥ ❞✐➺♥ ❤ì♥
✈➲ ♣❤÷ì♥❣ ♣❤→♣ ❣✐↔✐ ❝❤♦ tø♥❣ ❜➔✐ t♦→♥✳
✷✳ ▼ö❝ ✤➼❝❤ ♥❣❤✐➯♥ ❝ù✉
❇÷î❝ ✤➛✉ ❧➔♠ q✉❡♥ ✈î✐ ❝æ♥❣ ✈✐➺❝ ♥❣❤✐➯♥ ❝ù✉ ❦❤♦❛ ❤å❝ ✈➔ t❤➜② ✤÷ñ❝
t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ❝❤✐➳♠ ✈à tr➼ q✉❛♥ trå♥❣ tr♦♥❣ ❝❤÷ì♥❣ tr➻♥❤ t♦→♥ sì ❝➜♣✳
✸✳ ◆❤✐➺♠ ✈ö ♥❣❤✐➯♥ ❝ù✉
◆❣❤✐➯♥ ❝ù✉ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ✈➔ ù♥❣ ❞ö♥❣ ❝õ❛ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ tr♦♥❣
❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤ ✈➔ ❤➺ ♣❤÷ì♥❣ tr➻♥❤✳
✶
✹✳ ✣è✐ t÷ñ♥❣ ✈➔ ♣❤↕♠ ✈✐ ♥❣❤✐➯♥ ❝ù✉
✹✳✶✳ ✣è✐ t÷ñ♥❣ ♥❣❤✐➯♥ ❝ù✉
❚❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ✈➔ ù♥❣ ❞ö♥❣ ❝õ❛ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ tr♦♥❣ ❣✐↔✐ ♣❤÷ì♥❣
tr➻♥❤ ✈➔ ❤➺ ♣❤÷ì♥❣ tr➻♥❤✳
✹✳✷✳ P❤↕♠ ✈✐ ♥❣❤✐➯♥ ❝ù✉
❈→❝ ❜➔✐ t♦→♥ ❝â sû ❞ö♥❣ ♣❤÷ì♥❣ ♣❤→♣ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐✳
✺✳ P❤÷ì♥❣ ♣❤→♣ ♥❣❤✐➯♥ ❝ù✉
P❤÷ì♥❣ ♣❤→♣ ♥❣❤✐➯♥ ❝ù✉ ❧➼ ❧✉➟♥✱ ♣❤➙♥ t➼❝❤ tê♥❣ ❤ñ♣✳
✻✳ ❈➜✉ tró❝ ❝õ❛ ✤➲ t➔✐
◆❣♦➔✐ ♣❤➛♥ ♠ð ✤➛✉✱ ❦➳t ❧✉➟♥✱ t➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦✱ ❦❤â❛ ❧✉➟♥ ❣ç♠ ✷
❝❤÷ì♥❣✳
• ❈❤÷ì♥❣ ✶✳ ❑✐➳♥ t❤ù❝ ❝ì ❜↔♥ ✈➲ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐✳
• ❈❤÷ì♥❣ ✷✳ Ù♥❣ ❞ö♥❣ tr♦♥❣ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤ ✈➔ ❤➺ ♣❤÷ì♥❣ tr➻♥❤✳
✷
❈❤÷ì♥❣ ✶
❑✐➳♥ t❤ù❝ ❝ì ❜↔♥ ✈➲ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐
✶✳✶✳ ◆❣❤✐➺♠ ❝õ❛ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐
P❤÷ì♥❣ tr➻♥❤ ax2 + bx + c = 0 (a = 0, a, b, c ∈ R) ✤÷ñ❝ ❣å✐ ❧➔ ♣❤÷ì♥❣
tr➻♥❤ ❜➟❝ ❤❛✐✳ ✣❛ t❤ù❝ f (x) = ax2 + bx + c ✤÷ñ❝ ❣å✐ ❧➔ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐✳
◆❣❤✐➺♠ ❝õ❛ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ f (x) ❝ô♥❣ ❝❤➼♥❤ ❧➔ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣
tr➻♥❤ ❜➟❝ ❤❛✐ f (x) = 0✳
✣➸ t➻♠ ♥❣❤✐➺♠ ❝õ❛ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ t❛ ❜✐➳♥ ✤ê✐ ♥❤÷ s❛✉
f (x) = ax2 + bx + c = 0 (1)
b
c
b
⇔x + x=− ⇔ x+
a
a
2a
2
2
b2
c
b
= 2 − ⇔ x+
4a
a
2a
2
b2 − 4ac
=
.
4a2
✣➦t ∆ = b2 − 4ac✱ t❛ ❝â✿
• ◆➳✉ ∆ < 0 t❤➻ ♣❤÷ì♥❣ tr➻♥❤ (1) ✈æ ♥❣❤✐➺♠✳
• ◆➳✉ ∆ = 0 t❤➻ ♣❤÷ì♥❣ tr➻♥❤ (1) ❝â ♥❣❤✐➺♠ ❦➨♣ x =
• ◆➳✉ ∆ > 0 t❤➻ ♣❤÷ì♥❣ tr➻♥❤ (1) ❝â ♥❣❤✐➺♠ x1,2
−b
✳
2a
√
−b ± ∆
=
✳
2a
◆❤➟♥ ①➨t
◆➳✉ ❜ ❧➔ sè ❝❤➤♥✱ b = 2b ✱ ∆ = b 2 − ac t❤➻ t❛ ❝â ❝æ♥❣ t❤ù❝ ♥❣❤✐➺♠
t❤✉ ❣å♥
• ∆ < 0 ♣❤÷ì♥❣ tr➻♥❤ (1) ✈æ ♥❣❤✐➺♠✳
• ∆ = 0 ♣❤÷ì♥❣ tr➻♥❤ (1) ❝â ♥❣❤✐➺♠ ❦➨♣ x =
✸
−b
✳
a
• ∆ > 0 ♣❤÷ì♥❣ tr➻♥❤ (1) ❝â ♥❣❤✐➺♠ x1,2
√
−b ± ∆
=
✳
a
✶✳✷✳ ✣à♥❤ ❧þ ❱✐✲❡t
✶✳✷✳✶✳ ✣à♥❤ ❧þ ❱✐✲❡t tê♥❣ q✉→t
❈❤♦ ♣❤÷ì♥❣ tr➻♥❤
an xn + an−1 xn−1 + an−2 xn−2 + ... + a2 x2 + a1 x + a0 = 0.
●å✐ x1 , x2 , x3 , ..., xn ❧➔ ♥ ♥❣❤✐➺♠✱ ❦➸ ❝↔ ♥❣❤✐➺♠ ❜ë✐✳ ❑❤✐ ✤â
an−1
x1 + x2 + x3 + ... + xn = −
an
x1 x2 + x1 x3 + ... + xn−1 xn =
an−2
an
x1 x2 x3 + x1 x2 x4 + ... + xn−2 xn−1 xn = −
x1 x2 x3 ...xn = (−1)n
an−3
✱✳✳✳✱
an
a0
✳
an
✣↔♦ ❧↕✐✿ ❈❤♦ ♥ sè ❜➜t ❦ý α1 , α2 , α3 , ..., αn t❤ä❛ ♠➣♥
S1 = α1 + α2 + α3 + ... + αn
S2 = α1 α2 + α1 α3 + ... + αn−1 αn
Sk =
αi1 αi2 ...αik ✭ 1 ≤ i1 < i2 < ik ✮
Sn = α1 α2 α3 ...αn ✳
❑❤✐ ✤â α1 , α2 , α3 , ..., αn ❧➔ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤
X n + S1 X n−1 + S2 X n−2 + ... + (−1)n Sn .
✶✳✷✳✷✳ ❱➼ ❞ö ♠✐♥❤ ❤å❛
❱➼ ❞ö ✶✳✷✳✶✳ ✭❈✣❙P❍◆✲✾✾✮ ❈❤♦ ♣❤÷ì♥❣ tr➻♥❤
x2 − 2kx − (k − 1)(k − 3) = 0.
❈▼❘ ✈î✐ ♠å✐ k ✱ ♣❤÷ì♥❣ tr➻♥❤ ❧✉æ♥ ❝â ❤❛✐ ♥❣❤✐➺♠ ♣❤➙♥ ❜✐➺t x1 , x2 t❤ä❛
1
♠➣♥ (x1 + x2 )2 + x1 x2 − 2(x1 + x2 ) + 3 = 0.
4
✹
▲í✐ ❣✐↔✐✳
❚❛ ❝â ∆ = k 2 + (k − 1)(k − 3) = 2k 2 − 4k + 4 = 2 (k − 1)2 + 2 > 0, ∀k.
❙✉② r❛ ♣❤÷ì♥❣ tr➻♥❤ ❧✉æ♥ ❝â ❤❛✐ ♥❣❤✐➺♠ ♣❤➙♥ ❜✐➺t x1 , x2 t❤ä❛ ♠➣♥
x1 + x2 = 2k
.
x1 x2
= −(k − 1)(k − 3)
❑❤✐ ✤â
1
1
(x1 + x2 )2 +x1 x2 −2(x1 +x2 )+3 = (2k)2 −(k−1)(k−3)−2(2k)+3 = 0
4
4
✭✤♣❝♠✮✳
✶✳✸✳ ✣à♥❤ ❧þ t❤✉➟♥ ✈➲ ❞➜✉ ❝õ❛ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐
❛✳ ✣à♥❤ ❧þ
❈❤♦ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ f (x) = ax2 + bx + c (a = 0)
• ◆➳✉ ∆ < 0 t❤➻ af (x) > 0, ∀x ∈ R
b
2a
• ◆➳✉ ∆ > 0 t❤➻ f (x) ❝â ❤❛✐ ♥❣❤✐➺♠ x1 ✈➔ x2 (x1 < x2 )
• ◆➳✉ ∆ = 0 t❤➻ af (x) > 0, ∀x = −
✰ af (x) > 0, ∀x ∈
/ (x1 , x2 )
✰ af (x) < 0, ∀x ∈ (x1 , x2 )
❜✳ Þ ♥❣❤➽❛ ❤➻♥❤ ❤å❝
• ∆>0
❍➻♥❤ ✶✳✶✿ ❛ ✈➔ ❜
✺
❍➻♥❤ ✶✳✶❜✳ a < 0
❍➻♥❤ ✶✳✶❛✳ a > 0
f (x) > 0 ⇔
f (x) > 0 ⇔ x1 < x < x2
x > x2
x < x1
f (x) < 0 ⇔
f (x) < 0 ⇔ x1 < x < x2 .
• ∆=0
❍➻♥❤ ✶✳✷✿ ❛ ✈➔ ❜
❍➻♥❤ ✶✳✷❛✳ a > 0 : f (x) > 0, ∀x = x0 .
❍➻♥❤ ✶✳✷❜✳ a < 0 : f (x) < 0, ∀x = x0 .
• ∆<0
❍➻♥❤ ✶✳✸✿ ❛ ✈➔ ❜
✻
x > x2
x < x1 .
❍➻♥❤ ✶✳✸❛✳ a > 0 : f (x) > 0, ∀x ∈ R.
❍➻♥❤ ✶✳✸❜✳ a < 0 : f (x) < 0, ∀x ∈ R.
❝✳ ◆❤➟♥ ①➨t
• f (x) > 0 ∀x ∈ R ⇔
• f (x) < 0 ∀x ∈ R ⇔
a>0
• f (x) ≥ 0 ∀x ∈ R ⇔
∆<0
a<0
• f (x) ≤ 0 ∀x ∈ R ⇔
∆<0
❞✳ ❱➼ ❞ö ♠✐♥❤ ❤å❛
❱➼ ❞ö ✶✳✸✳✶✳ ❳➨t ❞➜✉ ❝→❝ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ s❛✉
❛✳ f (x) = 3x2 + x + 5
❜✳ g(x) = −4x2 + 12x − 9
❝✳ h(x) = 12x2 + 2(a + 3)x + a.
▲í✐ ❣✐↔✐✳
❛✳ f (x) ❧➔ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ❝õ❛ x ❝â a = 3 > 0✱ ∆ = −59 < 0.
❱➟② f (x) > 0, ∀x ∈ R.
❜✳ g(x) ❧➔ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ❝õ❛ x ❝â a = −4 < 0✱ ∆ = 0.
3
❱➟② g(x) < 0, ∀x = .
2
❝✳ h(x) ❧➔ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ❝õ❛ x ❝â a = 12 > 0✱ ∆ = (a − 3)2 .
✰ ❚r÷í♥❣ ❤ñ♣ ✶✳ ∆ = 0 ⇔ a = 3.
❱➟② h(x) > 0, ∀x = a.
✰ ❚r÷í♥❣ ❤ñ♣ ✷✳ ∆ > 0 ⇔ a = 3.
1
a
❙✉② r❛ ♣❤÷ì♥❣ tr➻♥❤ ❝â ❤❛✐ ♥❣❤✐➺♠ x1 = − ✈➔ x2 = − .
2
6
❳➨t ❤❛✐ ❦❤↔ ♥➠♥❣ s❛✉
❑❤↔ ♥➠♥❣ ✶✳ x1 < x2 ⇔ a < 3.
✼
a>0
∆≤0
a<0
∆≤0
❑❤✐ ✤â
f (x) > 0 ⇔
x>−
a
6
x<−
1
2
1
a
f (x) < 0 ⇔ − < x < −
2
6
❑❤↔ ♥➠♥❣ ✷✳ x1 > x2 ⇔ a > 3.
❑❤✐ ✤â
f (x) > 0 ⇔
x>−
1
2
x<−
a
6
a
1
f (x) < 0 ⇔ − < x < −
6
2
❱➼ ❞ö ✶✳✸✳✷✳ ❈❤♦ t❛♠ t❤ù❝ f (x) = (m + 1) x2 − 2(m − 1)x + 3m − 3.
❛✳ ❱î✐ ❣✐→ trà ♥➔♦ ❝õ❛ m t❤➻ f (x) < 0 ✈î✐ ♠å✐ x.
❜✳ ❱î✐ ❣✐→ trà ♥➔♦ ❝õ❛ m t❤➻ f (x) ≥ 0 ✈î✐ ♠å✐ x.
▲í✐ ❣✐↔✐✳
• ❱î✐ m + 1 = 0 ⇔ m = −1✱ t❛ ❝â f (x) = 4x − 6✱ ❞♦ ✤â ❦❤æ♥❣ t❤➸ ❝â
f (x) < 0 ✈î✐ ♠å✐ ① ❤♦➦❝ f (x) ≥ 0 ✈î✐ ♠å✐ x.
• ❱î✐ m + 1 = 0 ⇔ m = −1.
❛✳ f (x) < 0 ✈î✐ ♠å✐ x
a<0
m+1<0
⇔
⇔
⇔ m < −2.
∆ <0
2 (m − 1) (m + 2) > 0
❱➟②✱ ✈î✐ m < −2 t❤➻ f (x) < 0 ✈î✐ ♠å✐ x✳
❜✳ f (x) ≥ 0 ✈î✐ ♠å✐ x
a>0
m+1>0
⇔
⇔
⇔ m ≥ 1.
∆ ≤0
2 (m − 1) (m + 2) ≥ 0
❱➟②✱ ✈î✐ m ≥ 1 t❤➻ f (x) ≥ 0 ✈î✐ ♠å✐ x✳
✽
✶✳✹✳ ❇➜t ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❤❛✐
✶✳✹✳✶✳ ✣à♥❤ ♥❣❤➽❛
❇➜t ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❤❛✐ ❧➔ ❜➜t ♣❤÷ì♥❣ tr➻♥❤ ❝â ❞↕♥❣ f (x) > 0 ❤♦➦❝
f (x) ≥ 0 ❤♦➦❝ f (x) < 0 ❤♦➦❝ f (x) ≤ 0✳ ❚r♦♥❣ ✤â f (x) ❧➔ ♠ët t❛♠ t❤ù❝
❜➟❝ ❤❛✐✳
✶✳✹✳✷✳ ❈→❝❤ ❣✐↔✐
✰ ❳➨t ❞➜✉ f (x) = ax2 + bx + c✳
✰ ▲ü❛ ❝❤å♥ x ✤➸ f (x) > 0 ❤♦➦❝ f (x) ≥ 0 ❤♦➦❝ f (x) < 0 ❤♦➦❝ f (x) ≤ 0✳
✶✳✹✳✸✳ ❱➼ ❞ö ♠✐♥❤ ❤å❛
❱➼ ❞ö ✶✳✹✳✶✳ ❈❤♦ ❜➜t ♣❤÷ì♥❣ tr➻♥❤ m (m + 2) x2 + 2mx + 2 > 0✳
❛✳ ●✐↔✐ ❜➜t ♣❤÷ì♥❣ tr➻♥❤ ✈î✐ m = 1✳
❜✳ ❱î✐ ❣✐→ trà ♥➔♦ ❝õ❛ m t❤➻ ❜➜t ♣❤÷ì♥❣ tr➻♥❤ ♥❣❤✐➺♠ ✤ó♥❣ ✈î✐ ♠å✐ x✳
▲í✐ ❣✐↔✐✳
❛✳ ❱î✐ m = 1✱ ❜➜t ♣❤÷ì♥❣ tr➻♥❤ trð t❤➔♥❤ 3x2 + 2x + 2 > 0✳
∆f = −5 < 0
✣➦t f (x) = 3x2 + 2x + 2 ❝â
⇒ f (x) > 0, ∀x ∈ R✳
a=3>0
❱➟② ❜➜t ♣❤÷ì♥❣ tr➻♥❤ ❝â ♥❣❤✐➺♠ ✈î✐ ♠å✐ x.
❜✳ ❈â ∆ = m2 − 2m (m + 2) = −m2 − 4m.
✰ ◆➳✉ m = 0 t❤➻ ❜➜t ♣❤÷ì♥❣ tr➻♥❤ ♥❣❤✐➺♠ ✤ó♥❣ ✈î✐ ♠å✐ x✳
✰ ◆➳✉ m = −2 t❤➻ ❜➜t ♣❤÷ì♥❣ tr➻♥❤ trð t❤➔♥❤ −4x+2 > 0✱ ❦❤æ♥❣ ♥❣❤✐➺♠
✤ó♥❣ ✈î✐ ♠å✐ x✳
✰ ◆➳✉ m = 0 ✈➔ m = −2 t❤➻ ❜➜t
♣❤÷ì♥❣ tr➻♥❤ ♥❣❤✐➺♠ ✤ó♥❣ ✈î✐ ♠å✐ x
m < −2
m>0
m (m + 2) > 0
m < −4
⇔
⇔
⇔
.
∆ = −m2 − 4m < 0
m
<
−4
m
>
0
m>0
❱➟② ✈î✐ m < −4 ❤♦➦❝ m ≥ 0 t❤ä❛ ♠➣♥ ②➯✉ ❝➛✉ ❜➔✐ t♦→♥✳
✾
❱➼ ❞ö ✶✳✹✳✷✳ ❈❤♦ ❜➜t ♣❤÷ì♥❣ tr➻♥❤ x2 + 4x + 3 + m ≤ 0. ❱î✐ ❣✐→ trà ♥➔♦
❝õ❛ m t❤➻
❛✳ ❇➜t ♣❤÷ì♥❣ tr➻♥❤ ✈æ ♥❣❤✐➺♠✳
❜✳ ❇➜t ♣❤÷ì♥❣ tr➻♥❤ ❝â ✤ó♥❣ ♠ët ♥❣❤✐➺♠✳
❝✳ ❇➜t ♣❤÷ì♥❣ tr➻♥❤ ❝â ♥❣❤✐➺♠ ❧➔ ♠ët ✤♦↕♥ ❝â ✤ë ❞➔✐ ❜➡♥❣ ✷✳
▲í✐ ❣✐↔✐✳
❛✳ ❇➜t ♣❤÷ì♥❣ tr➻♥❤ ✈æ ♥❣❤✐➺♠ ⇔ ∆ < 0 ⇔ 1 − m < 0 ⇔ m > 1.
❜✳ ❇➜t ♣❤÷ì♥❣ tr➻♥❤ ❝â ✤ó♥❣ ♠ët ♥❣❤✐➺♠
⇔ ∆ = 0 ⇔ 1 − m = 0 ⇔ m = 1.
❝✳ ✣➸ ❜➜t ♣❤÷ì♥❣ tr➻♥❤ ❝â ♥❣❤✐➺♠ ❧➔ ♠ët ✤♦↕♥ tr➯♥ trö❝ sè ❝â ✤ë ❞➔✐ ❜➡♥❣
✷ t❤➻ t❛♠ t❤ù❝ ð ✈➳ tr→✐ ❝õ❛ ❜➜t ♣❤÷ì♥❣ tr➻♥❤ ♣❤↔✐ ❝â ❤❛✐ ♥❣❤✐➺♠ ♣❤➙♥
❜✐➺tx1 ✈➔ x2 t❤ä❛ |x1 − x2 | = 2
∆ >0
1−m>0
√
⇔
⇔ √
⇔ m = 3.
∆
1
−
m
=
2
=2
a
✶✳✺✳ ✣à♥❤ ❧þ ✤↔♦ ✈➲ ❞➜✉ ❝õ❛ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐
✶✳✺✳✶✳ ✣à♥❤ ❧þ ✤↔♦
❛✳ ✣à♥❤ ❧þ
❈❤♦ t❛♠ t❤ù❝ f (x) = ax2 + bx + c (a = 0)✳ ◆➳✉ ❝â sè α s❛♦ ❝❤♦
af (α) < 0 t❤➻ t❛♠ t❤ù❝ ❝â ❤❛✐ ♥❣❤✐➺♠ ♣❤➙♥ ❜✐➺t x1 , x2 (x1 < x2 ) ✈➔
x1 < α < x2 ✳ ❚ø ✤à♥❤ ❧þ tr➯♥ t❛ t❤➜② r➡♥❣✿
❛✳ ◆➳✉ af (α) < 0 ⇒ f (x) = 0 ❝â ❤❛✐ ♥❣❤✐➺♠ ♣❤➙♥ ❜✐➺t x1 , x2 (x1 < x2 )
✈➔ x1 < α < x2 ✳
❜✳ ◆➳✉ af (α) = 0 ⇒ α ❧➔ ♠ët ♥❣❤✐➺♠ ❝õ❛ t❛♠ t❤ù❝✳
❝✳ ◆➳✉ af (α) > 0✱ ❦❤✐ ✤â ❝➛♥ q✉❛♥ t➙♠ tî✐ ❜✐➺t sè ∆ ❝õ❛ t❛♠ t❤ù❝✳
✰ ◆➳✉ ∆ < 0 ⇒ f (x) = 0 ✈æ ♥❣❤✐➺♠ ♥➯♥ ✈✐➺❝ s♦ s→♥❤ sè α ✈î✐ ❝→❝ ♥❣❤✐➺♠
❝õ❛ t❛♠ t❤ù❝ ✈æ ♥❣❤➽❛✳
✰ ◆➳✉ ∆ ≥ 0 ⇒ f (x) = 0 ❝â ♥❣❤✐➺♠ ✈➔ sè α ♥➡♠ ♥❣♦➔✐ ❦❤♦↔♥❣ ❤❛✐
♥❣❤✐➺♠✳
✶✵
• ◆➳✉
•
−b
S
=
> α t❤➻ α < x1 ≤ x2
2
2a
S
< α t❤➻ x1 ≤ x2 < α✳
2
❜✳ ❱➼ ❞ö ♠✐♥❤ ❤å❛
❱➼ ❞ö ✶✳✺✳✶✳ ❑❤æ♥❣ t➼♥❤ ∆ ❝❤ù♥❣ tä ❝→❝ ♣❤÷ì♥❣ tr➻♥❤ s❛✉ ✤➙② ❝â ❤❛✐
♥❣❤✐➺♠
❛✳ x2 − 27x + 3 = 0✳
❜✳ m2 + 1 x2 − 2x − m2 − 1 = 0✳
▲í✐ ❣✐↔✐✳
❛✳ ❚❛ ❝â af (1) = 1 − 27 + 3 = −23 < 0✳
❱➟② ♣❤÷ì♥❣ tr➻♥❤ ❝â ❤❛✐ ♥❣❤✐➺♠ ♣❤➙♥ ❜✐➺t x1 , x2 (x1 < x2 ) ✈➔
x1 < 1 < x2 ✳
❜✳ ❚❛ ❝â af (0) = −m2 − 1 < 0 ✈î✐ ♠å✐ m✳
❱➟② ♣❤÷ì♥❣ tr➻♥❤ ❝â ❤❛✐ ♥❣❤✐➺♠ ♣❤➙♥ ❜✐➺t x1 , x2 (x1 < x2 ) ✈➔
x1 < 0 < x2 ✳
✶✳✺✳✷✳ ❙♦ s→♥❤ ❝→❝ ♥❣❤✐➺♠ ❝õ❛ ♠ët t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ✈î✐ ♠ët
sè α
❛✳ ❈→❝ tr÷í♥❣ ❤ñ♣ ❝â t❤➸ ①↔② r❛
❈❤♦ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ f (x) = ax2 + bx + c, (a = 0)✱ sè t❤ü❝ α✱ f (x)
❝â ❤❛✐ ♥❣❤✐➺♠ t❤ä❛ ♠➣♥
✶✮ x1 < α < x2 ⇔ af (α) < 0
∆>0
✷✮ x1 < x2 < α ⇔ af (α) > 0
S
<α
2
f (α) = 0
✹✮ x1 < α = x2 ⇔
S <α
2
∆>0
✸✮ α < x1 < x2 ⇔ af (α) > 0
S
>α
2
f (α) = 0
✺✮ x1 = α < x2 ⇔
S >α
2
✶✶
∆≥0
✻✮ x1 ≤ x2 < α ⇔ af (α) > 0
S
<α
2
∆≥0
✼✮ α < x1 ≤ x2 ⇔ af (α) > 0
S
>α
2
❈❤ó þ
f (x) = ax2 + bx + c ❝â ♥❣❤✐➺♠ x ∈ D ✭D ❧➔ ♠ët ❦❤♦↔♥❣✱ ♠ët ✤♦↕♥✱ ♥û❛
❦❤♦↔♥❣✱ ♥û❛ ✤♦↕♥✮✳
α < x1 ≤ x2
✶✮f (x) = 0 ❝â ♥❣❤✐➺♠ x > α ⇔
x1 < α < x2
x1 = α < x2
x1 ≤ x2 < α
✷✮f (x) = 0 ❝â ♥❣❤✐➺♠ x < α ⇔
x1 < α < x2
x1 < x2 = α
✸✮f (x) = 0 ❝â ♥❣❤✐➺♠ x ≥ α ⇔
✹✮f (x) = 0 ❝â ♥❣❤✐➺♠ x ≤ α ⇔
α ≤ x1 ≤ x2
x1 ≤ α ≤ x2
x1 ≤ x2 ≤ α
x1 ≤ α ≤ x2
✺✮f (x) = 0 ❝â ✤ó♥❣ ♠ët ♥❣❤✐➺♠ x > α ⇔
✻✮f (x) = 0 ❝â ✤ó♥❣ ♠ët ♥❣❤✐➺♠ x < α ⇔
x1 ≤ α < x2
α < x1 = x2
x1 < α ≤ x2
x1 = x2 < α
✳
✯ ◆➳✉ f (x) ❝â ❝❤ù❛ t❤❛♠ sè t❤➻ t❛ ①➨t t❤➯♠ tr÷í♥❣ ❤ñ♣ a = 0✳
✶✷
❜✳ ❱➼ ❞ö ♠✐♥❤ ❤å❛
❱➼ ❞ö ✶✳✺✳✷✳ ❈❤♦ ♣❤÷ì♥❣ tr➻♥❤
(m + 1) x2 − 2 (m − 1) x + m2 + 4m − 5 = 0.
❱î✐ ❣✐→ trà ♥➔♦ ❝õ❛ ♠ t❤➻
❛✳ P❤÷ì♥❣ tr➻♥❤ ❝â ❤❛✐ ♥❣❤✐➺♠ tr→✐ ❞➜✉✳
❜✳ P❤÷ì♥❣ tr➻♥❤ ❝â ❤❛✐ ♥❣❤✐➺♠ ✤➲✉ ❧î♥ ❤ì♥ ✷✳
❝✳ P❤÷ì♥❣ tr➻♥❤ ❝â ❤❛✐ ♥❣✐➺♠ ✤➲✉ ♥❤ä ❤ì♥ ✶✳
▲í✐ ❣✐↔✐✳
❛✳ P❤÷ì♥❣ tr➻♥❤ ❝â ❤❛✐ ♥❣❤✐➺♠ tr→✐ ❞➜✉
⇔ x1 < 0 < x2 ⇔ af (0) < 0
m < −5
⇔ (m + 1) . m2 + 4m − 5 < 0 ⇔
−1 < m < 1
✳
❜✳ P❤÷ì♥❣ tr➻♥❤ ❝â ❤❛✐ ♥❣❤✐➺♠ ✤➲✉ ❧î♥ ❤ì♥ ✷
(m − 1) m2 + 5m + 6 ≤ 0
∆ ≥0
2
af
(2)
>
0
⇔ 2 < x1 ≤ x2 ⇔
⇔ (m + 1) m + 4m + 3 > 0
m+3
S
>2
<0
m+1
2
⇔ −1 < m ≤ 1.
❝✳ P❤÷ì♥❣ tr➻♥❤ ❝â ❤❛✐ ♥❣❤✐➺♠ ✤➲✉ ♥❤ä ❤ì♥ ✶
(m − 1) m2 + 5m + 6 ≤ 0
∆ ≥0
2
af
(1)
>
0
⇔ x1 ≤ x2 < 1 ⇔
⇔ (m + 1) m + 3m − 2 > 0
−2
S
<1
<0
m+1
2
√
−3 + 17
.
⇔ −1 < m <
2
✶✸
✶✳✺✳✸✳ ❙♦ s→♥❤ ❝→❝ ♥❣❤✐➺♠ ❝õ❛ ♠ët t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ✈î✐ ❤❛✐
sè α, β (α < β)
❛✳ ❚ø ✤ç t❤à ❝õ❛ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ✈➔ ✤à♥❤ ❧➼ ✈➲ ❞➜✉ ❝õ❛ t❛♠ t❤ù❝
❜➟❝ ❤❛✐ t❛ ❝â ❝→❝ tr÷í♥❣ ❤ñ♣ s❛✉
✶✮ α < x1 < x2 < β ⇔
∆>0
af (α) > 0
af (β) > 0
S
α< <β
2
∆>0
✷✮ x1 < x2 < α < β ⇔ af (α) > 0
S
<α
2
✸✮ x1 < α < x2 < β ⇔
af (α) < 0
✹✮ x1 < α < β < x2 ⇔
af (α) < 0
af (β) > 0
af (β) < 0
∆>0
✺✮ α < β < x1 < x2 ⇔ af (β) > 0
S
>β
2
✻✮ α < x1 < β < x2 ⇔
af (α) > 0
✼✮ x1 = α < β < x2 ⇔
f (α) = 0
af (β) < 0
af (β) < 0
✶✹
✽✮ x1 = α < β = x2 ⇔
f (α) = 0
f (β) = 0
f (α) = 0
✾✮ α = x1 < x2 < β ⇔ af (β) > 0
S
<β
2
f (β) = 0
✶✵✮ α < β = x1 < x2 ⇔ af (α) > 0
S
>β
2
f (α) = 0
✶✶✮ x1 < x2 = α < β ⇔
S <α
2
f (β) = 0
✶✷✮ α < x1 < β = x2 ⇔ af (α) > 0
S
<β
2
✶✸✮ x1 < α < β = x2 ⇔
f (β) = 0
af (α) < 0
❈❤ó þ
f (x) = ax2 + bx + c ❝â ♥❣❤✐➺♠ x ∈ D ✭D ❧➔ ♠ët ❦❤♦↔♥❣✱ ♠ët ✤♦↕♥✱ ♥û❛
❦❤♦↔♥❣✱ ♥û❛ ✤♦↕♥✮✳
x1 ≤ α ≤ x2 ≤ β
✶✮ f (x) = 0 ❝â ♥❣❤✐➺♠ x ∈ [α, β] ⇔
α ≤ x1 ≤ β ≤ x2
α ≤ x1 ≤ x2 ≤ β
✶✺
α < x1 < β ≤ x2
✷✮ f (x) = 0 ❝â ♥❣❤✐➺♠ x ∈ (α, β) ⇔
x1 ≤ α < x2 < β
α < x1 ≤ x2 < β
x1 ≤ α < x2 < β
✸✮ f (x) = 0 ❝â ✤ó♥❣ ✶ ♥❣❤✐➺♠ x ∈ (α, β) ⇔
α < x1 < β ≤ x2
α < x1 = x2 < β
x = α < β < x2
1
α≤x =x ≤β
1
2
✹✮ f (x) = 0 ❝â ✤ó♥❣ ✶ ♥❣❤✐➺♠ x ∈ [α, β] ⇔
x1 < α < x2 = β
α < x1 ≤ β < x2
x1 < α ≤ x2 < β
x ≤ α < x2 < β
1
α
1
2
✺✮ f (x) = 0 ❝â ✤ó♥❣ ✶ ♥❣❤✐➺♠ x ∈ (−∞, α)∪[β, +∞) ⇔
β ≤ x1 = x2
x1 = x2 ≤ α
✻✮ f (x) = 0 ❝â ♥❣❤✐➺♠
x>β
x<α
❤♦➦❝ ✭
x≥β
x≤α
✮✳
❳➨t ❜➔✐ t♦→♥ ♥❣÷ñ❝ f (x) = 0 ❦❤æ♥❣ ❝â ♥❣❤✐➺♠ t❤ä❛ ♠➣♥
x>β
x<α
x≥β
x≤α
❦❤✐ ✈➔ ❝❤➾ ❦❤✐ f (x) ✈æ ♥❣❤✐➺♠ ❤♦➦❝ f (x) ❝â ♥❣❤✐➺♠ t❤ä❛ ♠➣♥
α < x1 ≤ x2 < β ✳
✯ ◆➳✉ f (x) ❝â ❝❤ù❛ t❤❛♠ sè t❤➻ ①➨t t❤➯♠ tr÷í♥❣ ❤ñ♣ a = 0✳
✶✻
❤♦➦❝
❜✳ ❱➼ ❞ö ♠✐♥❤ ❤å❛
❱➼ ❞ö ✶✳✺✳✸✳ ❳→❝ ✤à♥❤ m ✤➸ ♣❤÷ì♥❣ tr➻♥❤
(m + 1) x2 − 3mx + 4m = 0 (1) ❝â ♥❣❤✐➺♠ t❤✉ë❝ [0, 1] .
▲í✐ ❣✐↔✐✳
✰ ❚r÷í♥❣ ❤ñ♣ ✶✳ ◆➳✉ m + 1 = 0 ⇔ m = −1.
4
✭❧♦↕✐✮✳
3
❑❤✐ ✤â ♣❤÷ì♥❣ tr➻♥❤ (1) trð t❤➔♥❤ −3x + 4 = 0 ⇔ x =
❱➟② m = −1 ❦❤æ♥❣ t❤ä❛ ♠➣♥✳
✰ ❚r÷í♥❣ ❤ñ♣ ✷✳ ◆➳✉ m + 1 = 0 ⇔ m = −1✳
P❤÷ì♥❣ tr➻♥❤ ✭✶✮ ❝â ♥❣❤✐➺♠ t❤✉ë❝ [0, 1]
x1 ≤ 0 ≤ x2 ≤ 1 (i)
⇔
0 ≤ x1 ≤ 1 ≤ x2 (ii)
0 ≤ x1 ≤ x2 ≤ β (iii)
• (i) ⇔
af (0) ≤ 0
af (1) ≥ 0
⇔
1
⇔ − ≤ m ≤ 0.
2
• (ii) ⇔
af (0) ≥ 0
af (1) ≤ 0
⇔
−1 ≤ m ≤ 0
(m + 1) 4m ≤ 0
m ≤ −1
⇔
(m + 1) (2m + 1) ≥ 0
1
m≥−
2
(m + 1) 4m ≥ 0
(m + 1) (2m + 1) ≤ 0
⇔
✭✈æ ❧þ✮✳
• (iii) ⇔
∆≥0
af (α) ≥ 0
af (β) ≥ 0
S
α≤ ≤β
2
⇔
m2 − 8m − 8 ≥ 0
(m + 1) 4m ≥ 0
(m + 1) (2m + 1) ≥ 0
3m
≤1
0≤
2 (m + 1)
1
❑➳t ❤ñ♣ ✭✐✮✱ ✭✐✐✮✱ ✭✐✐✐✮ t❛ ✤÷ñ❝ − ≤ m ≤ 0.
2
✶✼
m≥0
m ≤ −1
1
−1 ≤ m ≤ −
2
✭✈æ ❧þ✮✳
1
❱➟② ✈î✐ − ≤ m ≤ 0 t❤ä❛ ♠➣♥ ②➯✉ ❝➛✉ ❜➔✐ t♦→♥✳
2
❱➼ ❞ö ✶✳✺✳✹✳ ❈❤♦ ♣❤÷ì♥❣ tr➻♥❤ x2 + 2 (2m − 1) x + m + 1 = 0)✳ (2)
❳→❝ ✤à♥❤ m ✤➸ ♣❤÷ì♥❣ tr➻♥❤ ❝â ♥❣❤✐➺♠ t❤ä❛ ♠➣♥ |x| ≥ 1.
▲í✐ ❣✐↔✐✳
❳➨t ❜➔✐ t♦→♥ ♥❣÷ñ❝ ✧❚➻♠ ✤✐➲✉ ❦✐➺♥ m ✤➸ ♣❤÷ì♥❣ tr➻♥❤ (2) ✈æ ♥❣❤✐➺♠ ❤♦➦❝
♣❤÷ì♥❣ tr➻♥❤ (2) ❝â ❤❛✐ ♥❣❤✐➺♠ t❤✉ë❝ (−1, 1)✧✳
5
• (2) ✈æ ♥❣❤✐➺♠ ⇔ ∆ < 0 ⇔ 4m2 − 5m < 0 ⇔ 0 < m < ✳ (∗)
4
∆ ≥0
af (−1) > 0
• (2) ❝â ❤❛✐ ♥❣❤✐➺♠ t❤✉ë❝ (−1, 1) ⇔ −1 < x1 ≤ x2 < 1 ⇔
af (1) > 0
S
−1 < < 1
2
⇔
4m2 − 5m ≥ 0
4 − 3m > 0
5m > 0
−2 (2m + 1)
−1 <
<1
2
⇔
m≤0
5
m≥
4
✭✈æ ❧þ✮✳ (∗∗)
4
m<
3
m>0
−1 < m < 0
5
❑➳t ❤ñ♣ (∗) ✈➔ (∗∗) t❛ ✤÷ñ❝ 0 < m < ✳
4
5
❱➟② ✤➸ (2) ❝â ♥❣❤✐➺♠ t❤ä❛ ♠➣♥ |x| ≥ 1 ❦❤✐ m ≤ 0 ❤♦➦❝ m ≥ ✳
4
✶✳✻✳ ❉➜✉ t❛♠ t❤ù❝ tr➯♥ ♠ët ♠✐➲♥
✶✳✻✳✶✳ ❇➔✐ t♦→♥ ✶
❈❤♦ t❛♠ t❤ù❝ f (x) = ax2 + bx + c (a = 0) .
❛✳ ❚➻♠ ✤✐➲✉ ❦✐➺♥ ✤➸ f (x) ≥ 0 ∀x✳
❜✳ ❚➻♠ ✤✐➲✉ ❦✐➺♥ ✤➸ f (x) ≤ 0 ∀x✳
✶✽