❍❆◆❖■ P❊❉❆●❖●■❈❆▲ ❯◆■❱❊❘❙■❚❨ ✷
❋❆❈❯▲❚❨ ❖❋ ▼❆❚❍❊▼❆❚■❈❙
✖✖✖✖♦✵♦✖✖✖✖
❉❖❆◆ ❚❍■ P❍❯❖◆●
❍❆❯❙❉❖❘❋❋ ▼❊❆❙❯❘❊❙ ❆◆❉ ❉■▼❊◆❙■❖◆
❇❆❈❍❊▲❖❘ ❚❍❊❙■❙
▼❛❥♦r✿ ❆♥❛❧②s✐s
❍❛♥♦✐ ✕ ✷✵✶✾
❍❆◆❖■ P❊❉❆●❖●■❈❆▲ ❯◆■❱❊❘❙■❚❨ ✷
❋❆❈❯▲❚❨ ❖❋ ▼❆❚❍❊▼❆❚■❈❙
✖✖✖✖♦✵♦✖✖✖✖
❉❖❆◆ ❚❍■ P❍❯❖◆●
❍❆❯❙❉❖❘❋❋ ▼❊❆❙❯❘❊❙ ❆◆❉ ❉■▼❊◆❙■❖◆
❇❆❈❍❊▲❖❘ ❚❍❊❙■❙
▼❛❥♦r✿ ❆♥❛❧②s✐s
❙✉♣❡r✈✐s♦r✿
❉r✳ ❉♦ ❍♦❛♥❣ ❙♦♥
❍❛♥♦✐ ✕ ✷✵✶✾
❆❝❦♥♦✇❧❡❞❣♠❡♥t
■ ✇♦✉❧❞ ❧✐❦❡ t♦ ❡①♣r❡ss ♠② ❣r❛t✐t✉❞❡ t♦ t❤❡ t❡❛❝❤❡r ♦❢ t❤❡ ❋❛❝✉❧t② ♦❢
▼❛t❤❡♠❛t✐❝s✱ ❍❛♥♦✐ P❡❞❛❣♦❣✐❝❛❧ ❯♥✐✈❡rs✐t② ✷✱ ■♥st✐t✉t❡ ♦❢ ▼❛t❤❡♠❛t✐❝s
❛♥❞ t❤❡ t❡❛❝❤❡rs ✐♥ t❤❡ ❛♥❛❧②s✐s ❣r♦✉♣ ❛s ✇❡❧❧ ❛s t❤❡ t❡❛❝❤❡rs ✐♥✈♦❧✈❡❞✳
❚❤❡ ❧❡❝t✉r❡rs ❤❛✈❡ ✐♠♣❛rt❡❞ ✈❛❧✉❛❜❧❡ ❦♥♦✇❧❡❞❣❡ ❛♥❞ ❢❛❝✐❧✐t❛t❡❞ ❢♦r ♠❡
t♦ ❝♦♠♣❧❡t❡ t❤❡ ❝♦✉rs❡ ❛♥❞ t❤❡ t❤❡s✐s✳
■♥ ♣❛rt✐❝✉❧❛r✱ ■ ✇♦✉❧❞ ❧✐❦❡ t♦ ❡①♣r❡ss ♠② ❞❡❡♣ r❡s♣❡❝t ❛♥❞ ❣r❛t✐t✉❞❡
t♦ ❉r✳ ❉♦ ❍♦❛♥❣ ❙♦♥✱ ✇❤♦ ❤❛s ❞✐r❡❝t ❣✉✐❞❛♥❝❡✱ ❤❡❧♣ ♠❡ ❝♦♠♣❧❡t❡ t❤✐s
t❤❡s✐s✳
❍❛♥♦✐✱ ▼❛② ✻✱ ✷✵✶✾
❙t✉❞❡♥t
❉♦❛♥ ❚❤✐ P❤✉♦♥❣
❈♦♥❢✐r♠❛t✐♦♥
■ ❛ss✉r❡ t❤❛t t❤❡ r❡s✉❧ts ✐♥ t❤✐s t❤❡s✐s ❛r❡ tr✉❡ ❛♥❞ t❤❡ t♦♣✐❝ ♦❢ t❤✐s
t❤❡s✐s ✐s ♥♦t ✐❞❡♥t✐❝❛❧ t♦ ♦t❤❡r t♦♣✐❝s✳ ■ ❛❧s♦ ❛ss✉r❡ t❤❛t t❤❡ ✉s❡❞ ❧✐t❡r❛t✉r❡
❛♥❞ t❤❡ ♦t❤❡r ❛✉①✐❧✐❛r② r❡s♦✉r❝❡s ❤❛✈❡ ❜❡❡♥ ❝♦♠♣❧❡t❡❧② r❡❢❡r❡♥❝❡❞✳
❍❛♥♦✐✱ ▼❛② ✻✱ ✷✵✶✾
❙t✉❞❡♥t
❉♦❛♥ ❚❤✐ P❤✉♦♥❣
❈♦♥t❡♥ts
❚❛❜❧❡ ♦❢ ◆♦t❛t✐♦♥s
✐✐✐
Pr❡❢❛❝❡
✶
✶ ❇❛❝❦❣r♦✉♥❞ ✐♥ ♠❡❛s✉r❡ t❤❡♦r②
✷
✶✳✶✳ ▼❡❛s✉r❡ ♦♥ ❛ s❡t ❛❧❣❡❜r❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷
✶✳✷✳ ❉✐❢❢✉s❡ ♠❡❛s✉r❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹
✶✳✷✳✶✳ ❖✉t❡r ♠❡❛s✉r❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹
✶✳✷✳✷✳ ❉✐❢❢✉s❡ t❤❡♦r❡♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹
✶✳✸✳ ▲❡❜❡s❣✉❡ ♠❡❛s✉r❡ ♦♥ Rn ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺
✶✳✸✳✶✳ ▲❡❜❡s❣✉❡ ♦✉t❡r ♠❡❛s✉r❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺
✶✳✸✳✷✳ ▼❡❛s✉r❛❜❧❡ s❡ts ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✼
✶✳✸✳✸✳ ❙❡ts ♦❢ ♠❡❛s✉r❡ ③❡r♦ ❛♥❞ ❝♦♠♣❧❡t❡♥❡ss ✳ ✳ ✳ ✳ ✳ ✳ ✳
✽
✶✳✸✳✹✳ ❚r❛♥s❧❛t✐♦♥❛❧ ✐♥✈❛r✐❛♥❝❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✽
✶✳✸✳✺✳ ❇♦r❡❧ s❡ts ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✾
✶✳✸✳✻✳ ❇♦r❡❧ r❡❣✉❧❛r✐t② ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✾
✷ ❚❤❡ ❞❡❢✐♥✐t✐♦♥ ❛♥❞ s♦♠❡ ♣r♦♣❡rt✐❡s ♦❢ ❍❛✉s❞♦r❢❢ ♠❡❛s✉r❡s
❛♥❞ ❞✐♠❡♥s✐♦♥
✶✷
✐
✷✳✶✳ ❍❛✉s❞♦r❢❢ ♠❡❛s✉r❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✷
✷✳✶✳✶✳ ❉❡❢✐♥✐t✐♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✷
✷✳✶✳✷✳ ❙♦♠❡ ♣r♦♣❡rt✐❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✸
✷✳✷✳ ❍❛✉s❞♦r❢❢ ❞✐♠❡♥s✐♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✵
✷✳✷✳✶✳ ❉❡❢✐♥✐t✐♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✵
✷✳✷✳✷✳ ❙♦♠❡ ♣r♦♣❡rt✐❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✵
✸ ❙♦♠❡ ❡①❛♠♣❧❡s
✷✹
✸✳✶✳ ❍❛✉s❞♦r❢❢ ❞✐♠❡♥s✐♦♥ ♦❢ ❈❛♥t♦r s❡ts ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✹
✸✳✶✳✶✳ ❈❛♥t♦r s❡ts ✐♥ R1 ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✹
✸✳✶✳✷✳ ●❡♥❡r❛❧✐③❡❞ ❈❛♥t♦r s❡ts ✐♥ R1 ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✼
✸✳✶✳✸✳ ❈❛♥t♦r s❡ts ✐♥ Rn ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✽
✸✳✷✳ ❲❡✐❡rstr❛ss ❢✉♥❝t✐♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✵
✸✳✸✳ ❙✐❡r♣✐♥s❦✐ tr✐❛♥❣❧❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✵
✸✳✹✳ ❋✐❜♦♥❛❝❝✐ ✇♦r❞ ❢r❛❝t❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✷
❈♦♥❝❧✉s✐♦♥s
✸✹
❘❡❢❡r❡♥❝❡s
✸✺
✐✐
❚❛❜❧❡ ♦❢ ◆♦t❛t✐♦♥s
R
t❤❡ s❡t ♦❢ r❡❛❧ ♥✉♠❜❡rs✳
Rn
t❤❡ n✲❞✐♠❡♥s✐♦♥❛❧ ❊✉❝❧✐❞❡❛♥ s♣❛❝❡✳
d(E)
sup {d(x, y)|x ∈ E, y ∈ E}✳
E
t❤❡ ❝❧♦s✉r❡ ❤✉❧❧ ♦❢ ❛ s❡t ❊✳
x
B(x, r)
t❤❡ ❊✉❝❧✐❞❡❛♥ ♥♦r♠ ♦❢ ❛ ✈❡❝t♦r x✳
{y : d(x, y) < r}✱ t❤❡ ♦♣❡♥ ❜❛❧❧ ♦❢ ❝❡♥t❡r x ❛♥❞ ♦❢ r❛✲
❞✐✉s r ✐♥ Rn ✳
Ln
t❤❡ ▲❡❜❡s❣✉❡ ♠❡❛s✉r❡ ♦♥ Rn ✳
A+a
{x + a : x ∈ A}✳
❝❛r❞ A
t❤❡ ♥✉♠❜❡r ♣♦✐♥ts ✐♥ t❤❡ s❡t ❆❀ ♣♦ss✐❜❧② 0 ♦r ∞✳
α(n)
Ln {x ∈ Rn : |x| ≤ 1}✱ t❤❡ ✈♦❧✉♠❡ ♦❢ t❤❡ ✉♥✐t ❜❛❧❧✳
✐✐✐
Pr❡❢❛❝❡
❍❛✉s❞♦r❢❢ ❞✐♠❡♥s✐♦♥✱ ❢✐rst ✐♥tr♦❞✉❝❡❞ ❜② ❋❡❧✐① ❍❛✉s❞♦r❢❢ ✐♥ ✶✾✶✽✱ ✐s
❛♥ ❡①t❡♥❞❡❞ ❝♦♥❝❡♣t ♦❢ t❤❡ ❞✐♠❡♥s✐♦♥❛❧ ❝♦♥❝❡♣t ♦❢ r❡❛❧ s♣❛❝❡✳ ■t ✐s ❝❤❛r✲
❛❝t❡r✐③❡❞ ❜② ❛ s♣❡❝✐❛❧ ♠❡❛s✉r❛❜❧❡ ❝❧❛ss✱ ❝❛❧❧❡❞ ❍❛✉s❞♦r❢❢ ♠❡❛s✉r❡✳ ❚❤❡
❍❛✉s❞♦r❢❢ ♠❡❛s✉r❡s ❛♥❞ t❤❡ ❍❛✉s❞♦r❢❢ ❞✐♠❡♥s✐♦♥ ❜❡❝♦♠❡ ❛♥ ✐♠♣♦rt❛♥t
t♦♦❧ ✐♥ t❤❡ st✉❞② ♦❢ t❤❡ ❣❡♦♠❡tr✐❝ ♣r♦♣❡rt✐❡s ♦❢ s❡ts✳
❚❤❡ ❛✐♠ ♦❢ t❤✐s t❤❡s✐s ✐s t♦ ♣r❡s❡♥t t❤❡ ❍❛✉s❞♦r❢❢ ♠❡❛s✉r❡s ❛♥❞
❞✐♠❡♥s✐♦♥ ♦♥ Rn ✳ ❇❡s✐❞❡s✱ ✇❡ ❛❧s♦ ♣r♦✈✐❞❡ s♦♠❡ ❡①❛♠♣❧❡s ❛s ❛♣♣❧✐❝❛t✐♦♥s
♦❢ t❤❡ ❍❛✉s❞♦r❢❢ ♠❡❛s✉r❡s ❛♥❞ ❞✐♠❡♥s✐♦♥✳
❚❤❡ t❤❡s✐s ❝♦♥s✐sts ♦❢ t❤r❡❡ ❝❤❛♣t❡rs ❛s ❢♦❧❧♦✇s✳
■♥ ❈❤❛♣t❡r ✶✱ ✇❡ ✇✐❧❧ r❡✈✐❡✇ ♠❡❛s✉r❡ t❤❡♦r② ♥❡❡❞❡❞ ❢♦r t❤❡ r❡s✉❧ts
♦❢ t❤✐s t❤❡s✐s✳
■♥ ❈❤❛♣t❡r ✷✱ ✇❡ ♣r❡s❡♥t t❤❡ ❞❡❢✐♥✐t✐♦♥ ❛♥❞ s♦♠❡ ♣r♦♣❡rt✐❡s ♦❢
❍❛✉s❞♦r❢❢ ♠❡❛s✉r❡s ❛♥❞ ❞✐♠❡♥s✐♦♥✳ ❲❡ ❜❡❣✐♥ ✇✐t❤ ❍❛✉s❞♦r❢❢ ♠❡❛s✉r❡✳
❚❤❡♥ ✇❡ ✐♥tr♦❞✉❝❡ t❤❡ ♥♦t✐♦♥ ♦❢ ❍❛✉s❞♦r❢❢ ❞✐♠❡♥s✐♦♥✳ ◆❡①t✱ ✇❡ s❤♦✇
s♦♠❡ ♣r♦♣❡rt✐❡s ♦❢ ❍❛✉s❞♦r❢❢ ❞✐♠❡♥s✐♦♥✱ ❡s♣❡❝✐❛❧❧② t❤❡ ❞✐♠❡♥s✐♦♥ ♦❢ t❤❡
n✲❞✐♠❡♥s✐♦♥❛❧ ❊✉❝❧✐❞❡❛♥ s♣❛❝❡ ✐s ❡q✉❛❧ t♦ n✳
■♥ ❈❤❛♣t❡r ✸✱ ✇❡ ❣✐✈❡ s♦♠❡ ❡①❛♠♣❧❡s ♦❢ ❍❛✉s❞♦r❢❢ ♠❡❛s✉r❡s ❛♥❞
❞✐♠❡♥s✐♦♥✳
✶
❈❤❛♣t❡r ✶
❇❛❝❦❣r♦✉♥❞ ✐♥ ♠❡❛s✉r❡ t❤❡♦r②
■♥ t❤✐s ❝❤❛♣t❡r✱ ✇❡ ✇✐❧❧ r❡✈✐❡✇ s♦♠❡ r❡s✉❧ts ✐♥ ♠❡❛s✉r❡ t❤❡♦r②✳ ❚❤❡
❝♦♥t❡♥t ♦❢ t❤✐s ❝❤❛♣t❡r ✐s ❜❛s❡❞ ♦♥ ❬✶✱ ✻❪✳
✶✳✶✳
▼❡❛s✉r❡ ♦♥ ❛ s❡t ❛❧❣❡❜r❛
❉❡❢✐♥✐t✐♦♥ ✶✳✶✳ ▲❡t ❳ ❜❡ ❛ s❡t✳ ❆ ❢❛♠✐❧② M ♦❢ s✉❜s❡ts ♦❢ ❳ ✐s ❝❛❧❧❡❞ ❛♥
❛❧❣❡❜r❛ ✐❢✿
a) ∅ ∈ M
❛♥❞ ❳
∈ M✱
b)
■❢
A ∈ M✱
c)
■❢
A1 , A2 , · · ·, An ∈ M✱
t❤❡♥ ❳
\
❆
∈ M✱
n
Ai ∈ M✳
t❤❡♥
i=1
❉❡❢✐♥✐t✐♦♥ ✶✳✷✳
σ ✲❛❧❣❡❜r❛
a) ∅ ∈ M
▲❡t ❳ ❜❡ ❛ s❡t✳ ❆ ❢❛♠✐❧②
M
♦❢ s✉❜s❡ts ♦❢ ❳ ✐s ❝❛❧❧❡❞ ❛
✐❢✿
❛♥❞ ❳
∈ M✱
b)
■❢
A ∈ M✱
c)
■❢
A1 , A2 , · · · ∈ M✱
t❤❡♥ ❳
\
❆
∈ M✱
∞
Ai ∈ M✳
t❤❡♥
i=1
❉❡❢✐♥✐t✐♦♥ ✶✳✸✳ ▲❡t M ❜❡ ❛♥ ❛❧❣❡❜r❛✳ ❆ s❡t ❢✉♥❝t✐♦♥ µ : M → [0, ∞] =
{t : 0 ≤ t ≤ ∞}
✐s ❝❛❧❧❡❞ ❛ ♠❡❛s✉r❡ ✐❢✿
a) µ(∅) = 0✱
b) µ(A) ≤ µ(B)
✇❤❡♥❡✈❡r
A⊂B
❛♥❞
✷
A, B ∈ M,
∞
∞
c) µ
≤
Ai
i=1
µ(Ai )
A1 , A2 , · · · ∈ M✳
✇❤❡♥❡✈❡r
i=1
❉❡❢✐♥✐t✐♦♥ ✶✳✹✳
+∞; σ ✲❢✐♥✐t❡
▲❡t
M
µ
❜❡ ❛♥ ❛❧❣❡❜r❛✳ ❆ ♠❡❛s✉r❡
✐s ❢✐♥✐t❡ ✐❢
µ(X) <
✐❢
X = ∪∞
i=1 Xi ; Xi ∈ M, µ(Xi ) < +∞.
❉❡❢✐♥✐t✐♦♥ ✶✳✺✳
❆ s❡t
A⊂X
✐s
µ
♠❡❛s✉r❛❜❧❡ ✐❢
µ(E) = µ(E ∩ A) + µ(E \ A)
❢♦r ❛❧❧
E ⊂ X.
❲❡ s❤❛❧❧ ❣✐✈❡ ❛ ❢❡✇ s✐♠♣❧❡ ❡①❛♠♣❧❡s✳
❊①❛♠♣❧❡ ✶✳✶✳ 1) M
♠❡♥ts ♦❢
2) M
✐s ❛♥ ❛❧❣❡❜r❛ ❛♥❞
µ(A)
❡q✉❛❧s t❤❡ ♥✉♠❜❡r ♦❢ ❡❧❡✲
A✳
✐s ❛♥ ❛❧❣❡❜r❛✳ ▲❡t
x0
❜❡ ❛♥ ❛r❜✐tr❛r② ♣♦✐♥t ♦❢
µ(A) =
1
✐❢
x0 ∈ A,
0
✐❢
x0 ∈
/ A.
X
❛♥❞
∀A ∈ M✿
❲❡ ❝♦❧❧❡❝t t❤❡ ✇❡❧❧✲❦♥♦✇♥ ❜❛s✐❝ ♣r♦♣❡rt✐❡s ♦❢ ♠❡❛s✉r❛❜❧❡ s❡ts ✐♥
t❤❡ ❢♦❧❧♦✇✐♥❣ t❤❡♦r❡♠✳
❚❤❡♦r❡♠ ✶✳✶✳
µ
▲❡t
µ
❜❡ ❛ ♠❡❛s✉r❡ ♦♥
■❢
µ(A) = 0✱
(2)
■❢
A1 , A2 , · · · ∈ C
t❤❡♥
A ∈ C.
❛r❡ ♣❛✐r✇✐s❡ ❞✐s❥♦✐♥t✱ t❤❡♥
∞
µ
∞
Ai
=
i=1
(3)
■❢ ■❢
❛♥❞ ❧❡t
X✳
♠❡❛s✉r❛❜❧❡ s✉❜s❡ts ♦❢
(1)
X
A1 , A2 , · · · ∈ C ✱
µ (Ai ).
i=1
t❤❡♥
∞
i) µ
Ai
i=1
= lim µ (Ai )
i→∞
♣r♦✈✐❞❡❞
A1 ⊂ A2 ⊂ ...✱
✸
C
❜❡ t❤❡ ❢❛♠✐❧② ♦❢ ❛❧❧
∞
ii) µ
Ai
= lim µ (Ai )
i=1
✶✳✷✳
♣r♦✈✐❞❡❞
i→∞
A1 ⊃ A2 ⊃ ...
❛♥❞
µ(A1 ) < ∞.
❉✐❢❢✉s❡ ♠❡❛s✉r❡
✶✳✷✳✶✳
❖✉t❡r ♠❡❛s✉r❡
▲❡t ❛ s❡t ❢✉♥❝t✐♦♥ µ∗ ❜❡ ❞❡❢✐♥❡❞ ♦♥ ❝❧❛ss ♦❢ ❛❧❧ s✉❜s❡ts ♦❢ X ✳ ❚❤❡
s❡t ❢✉♥❝t✐♦♥ µ∗ ✐s ❝❛❧❧❡❞ ❛♥ ♦✉t❡r
a) µ∗ (A) ≥ 0
∀A ⊂ X.
♠❡❛s✉r❡
✐❢
b) µ∗ (∅) = 0 ;
c) A ⊂
∪∞
i=1 Ai
∞
∗
µ∗ (Ai ).
⇒ µ (A) ≤
i=1
◆♦t❛t✐♦♥✿ ❋r♦♠ ❝✮✱ ✇❡ ✐♥❢❡r t❤❛t A ⊂ B ⇒ µ∗ (A) ≤ µ∗ (B).
❚❤❡♦r❡♠ ✶✳✷ ✭❈❛r❛t❤➨♦❞♦r②✮✳ ▲❡t µ∗
❜❡ ❛♥ ♦✉t❡r ♠❡❛s✉r❡ ♦♥ ❳ ❛♥❞
L
❜❡ ❝❧❛ss ♦❢ ❛❧❧ s✉❜s❡ts ❆ ♦❢ ❳ s✉❝❤ t❤❛t
µ∗ (E) = µ∗ (E ∩ A) + µ∗ (E\A)
L
✐s ❛
σ ✲❛❧❣❡❜r❛
❛♥❞ t❤❡ ❢✉♥❝t✐♦♥
❚❤❡ s❡t ❆ s❛t✐s❢②✐♥❣
✶✳✷✳✷✳
(1.1)
µ = µ∗ /L
✐s ❝❛❧❧❡❞
µ∗
✭✶✳✶✮
∀E ⊂ X.
✐s ❛ ♠❡❛s✉r❡ ♦✈❡r
L.
✲ ♠❡❛s✉r❛❜❧❡✳
❉✐❢❢✉s❡ t❤❡♦r❡♠
❚❤❡♦r❡♠ ✶✳✸✳
❋♦r ❡❛❝❤
▲❡t ♠ ❜❡ ❛ ♠❡❛s✉r❡ ♦✈❡r ❛♥ ❛❧❣❡❜r❛
C✳
A ⊂ X✿
∞
∗
m(Pi ) : ∪∞
i=1 Pi ⊃ A; Pi ∈ C
µ (A) = inf
,
✭✶✳✷✮
i=1
t❤❡♥
µ∗
✐s ❛♥ ♦✉t❡r ♠❡❛s✉r❡ ❛♥❞
❜❡❧♦♥❣s t♦
σ ✲❛❧❣❡❜r❛ F(C)
✐s
µ∗
µ∗ (A) = m(A) ∀A ∈ C
✲ ♠❡❛s✉r❛❜❧❡✳
✹
❛♥❞ ❡✈❡r② s❡t
❚❤❡♦r❡♠ ✶✳✹✳ ▲❡t ♠ ❜❡ ❛ ♠❡❛s✉r❡ ♦✈❡r ❛♥ ❛❧❣❡❜r❛ C ✳ ❚❤❡r❡ ✐s ❛ ♠❡❛s✉r❡
σ ✲❛❧❣❡❜r❛ L ⊃ F(C) ⊃ C
µ
♦♥
✐✮
µ(A) = m(A)
✐✐✮
✐✐✐✮
µ
s✉❝❤ t❤❛t✿
∀A ∈ C.
σ
σ
✐s ❢✐♥✐t❡ ✭ ✲❢✐♥✐t❡✮ ✐❢ ♠ ✐s ❢✐♥✐t❡ ✭ ✲❢✐♥✐t❡✮✳
µ
✐s ❢✉❧❧ ♠❡❛s✉r❡✳
✐✈✮ ❆ s❡t ❆ ❜❡❧♦♥❣s t♦ ❢❛♠✐❧②
L
✐❢ ❛♥❞ ♦♥❧② ✐❢ ❆ ❝❛♥ ❜❡ r❡♣r❡s❡♥t❡❞ ✐♥ t❤❡
❢♦r♠✿
A=B\N
♦r
A = B ∪ N,
B ∈ F(C), N ⊂ E ∈ F(C), µ∗ (E) = µ(E) = 0
✇❤❡r❡
♠❡❛s✉r❡ t❤❛t ✐s ❞❡❢✐♥❡❞ ❢r♦♠ ♠ ❜② t❤❡ ❢♦r♠✉❧❛
✶✳✸✳
▲❡❜❡s❣✉❡ ♠❡❛s✉r❡ ♦♥
✶✳✸✳✶✳
❛♥❞
µ∗
✐s ♦✉t❡r
(1.2)✳
Rn
▲❡❜❡s❣✉❡ ♦✉t❡r ♠❡❛s✉r❡
❲❡ ✉s❡ r❡❝t❛♥❣❧❡s ❛s ♦✉r ❡❧❡♠❡♥t❛r② s❡ts✱ ❞❡❢✐♥❡❞ ❛s ❢♦❧❧♦✇s✳
❉❡❢✐♥✐t✐♦♥ ✶✳✻✳
❆♥
n✲❞✐♠❡♥s✐♦♥❛❧✱❝❧♦s❡❞
r❡❝t❛♥❣❧❡ ✇✐t❤ s✐❞❡s ♦r✐❡♥t❡❞
♣❛r❛❧❧❡❧ t♦ t❤❡ ❝♦♦r❞✐♥❛t❡ ❛①❡s✱ ♦r r❡❝t❛♥❣❧❡ ❢♦r s❤♦rt✱ ✐s ❛ s✉❜s❡t
R ⊂ Rn
♦❢ t❤❡ ❢♦r♠
R = [a1 , b1 ] × [a2 , b2 ] × ... × [an , bn ] ,
✇❤❡r❡
−∞ < ai ≤ bi < ∞
❢♦r
i = 1, ..., n.
❚❤❡ ✈♦❧✉♠❡
µ(R)
♦❢
R
✐s
µ(R) = (b1 − a1 ) (b2 − a2 ) ... (bn − an ) .
■❢
n = 1
♦r
n = 2✱
t❤❡ ✈♦❧✉♠❡ ♦❢ ❛ r❡❝t❛♥❣❧❡ ✐s ✐ts ❧❡♥❣t❤ ♦r
❛r❡❛✱ r❡s♣❡❝t✐✈❡❧②✳ ❲❡ ❛❧s♦ ❝♦♥s✐❞❡r t❤❡ ❡♠♣t② s❡t t♦ ❜❡ ❛ r❡❝t❛♥❣❧❡ ✇✐t❤
µ(∅) = 0✳
R(Rn )✱
♦r
❲❡ ❞❡♥♦t❡ t❤❡ ❝♦❧❧❡❝t✐♦♥ ♦❢ ❛❧❧
R
✇❤❡♥
n
n✲❞✐♠❡♥s✐♦♥❛❧
✐s ✉♥❞❡rst♦♦❞✱ ❛♥❞ t❤❡♥
R → µ(R)
µ : R (Rn ) → [0, ∞) .
✺
r❡❝t❛♥❣❧❡s ❜②
❞❡❢✐♥❡s ❛ ♠❛♣
❚❤❡ ✉s❡ ♦❢ t❤✐s ♣❛rt✐❝✉❧❛r ❝❧❛ss ♦❢ ❡❧❡♠❡♥t❛r② s❡ts ✐s ❢♦r ❝♦♥✈❡♥✐❡♥❝❡✳ ❲❡
❝♦✉❧❞ ❡q✉❛❧❧② ✇❡❧❧ ✉s❡ ♦♣❡♥ ♦r ❤❛❧❢✲♦♣❡♥ r❡❝t❛♥❣❧❡s✱ ❝✉❜❡s✱ ❜❛❧❧s✱ ♦r ♦t❤❡r
s✉✐t❛❜❧❡ ❡❧❡♠❡♥t❛r② s❡ts❀ t❤❡ r❡s✉❧t ✇♦✉❧❞ ❜❡ t❤❡ s❛♠❡✳
❉❡❢✐♥✐t✐♦♥ ✶✳✼✳ ❚❤❡ ♦✉t❡r ▲❡❜❡s❣✉❡ ♠❡❛s✉r❡ µ∗ (E) ♦❢ ❛ s✉❜s❡ts E ⊂ Rn ✱
♦r ♦✉t❡r ♠❡❛s✉r❡ ❢♦r s❤♦rt✱ ✐s
∞
∗
∞
µ(Ri ) : E ⊂
µ (E) = inf
i=1
i=1
Ri , Ri ∈ R(Rn ) ,
✇❤❡r❡ t❤❡ ✐♥❢✐♠✉♠ ✐s t❛❦❡♥ ♦✈❡r ❛❧❧ ❝♦✉♥t❛❜❧❡ ❝♦❧❧❡❝t✐♦♥s ♦❢ r❡❝t❛♥❣❧❡s
✇❤♦s❡ ✉♥✐♦♥ ❝♦♥t❛✐♥s
E✳
❚❤❡ ♠❛♣
µ∗ : P(Rn ) → [0, ∞] ,
µ∗ : E → µ∗ (E),
✐s ❝❛❧❧❡❞ ♦✉t❡r ▲❡❜❡s❣✉❡ ♠❡❛s✉r❡✳
∞
µ(Ri )
■♥ t❤✐s ❞❡❢✐♥✐t✐♦♥✱ ❛ s✉♠
µ∗ (E)
❛♥❞
♠❛② t❛❦❡ t❤❡ ✈❛❧✉❡
∞✳
i=1
❊①❛♠♣❧❡ ✶✳✷✳ ▲❡t E = Q ∩ [0, 1] ❜❡ t❤❡ s❡t ♦❢ r❛t✐♦♥❛❧ ♥✉♠❜❡rs ❜❡t✇❡❡♥
✵ ❛♥❞ ✶✳ ❚❤❡♥
E
❤❛s ♦✉t❡r ♠❡❛s✉r❡ ③❡r♦✳ ❚♦ ♣r♦✈❡ t❤✐s✱ ❧❡t
❜❡ ❛♥ ❡♥✉♠❡r❛t✐♦♥ ♦❢ t❤❡ ♣♦✐♥ts ✐♥
/2i
✇❤✐❝❤ ❝♦♥t❛✐♥s
qi ✳
❚❤❡♥
E⊂
E✳
●✐✈❡♥
> 0✱
❧❡t
Ri
{qi : i ∈ N}
❜❡ ❛♥ ✐♥t❡r✈❛❧
∞
i=1 µ(Ri ) s♦
∞
∗
0 ≤ µ (E) ≤
µ(Ri ) = .
i=1
❍❡♥❝❡
µ∗ (E) = 0
s✐♥❝❡
> 0
✐s ❛r❜✐tr❛r②✳ ❚❤❡ s❛♠❡ ❛r❣✉♠❡♥t s❤♦✇s
t❤❛t ❛♥② ❝♦✉♥t❛❜❧❡ s❡t ❤❛s ♦✉t❡r ♠❡❛s✉r❡ ③❡r♦✳ ◆♦t❡ t❤❛t ✐❢ ✇❡ ❝♦✈❡r
E
❜② ❛ ❢✐♥✐t❡ ❝♦❧❧❡❝t✐♦♥ ♦❢ ✐♥t❡r✈❛❧s✱ t❤❡♥ t❤❡ ✉♥✐♦♥ ♦❢ t❤❡ ✐♥t❡r✈❛❧s ✇♦✉❧❞
❤❛✈❡ t♦ ❝♦♥t❛✐♥
[0, 1]
s✐♥❝❡
E
✐s ❞❡♥s❡ ✐♥
❧❡❛st ♦♥❡✳
✻
[0, 1]
s♦ t❤❡✐r ❧❡♥❣t❤s s✉♠ t♦ ❛t
❚❤❡♦r❡♠ ✶✳✺✳
▲❡❜❡s❣✉❡ ♦✉t❡r ♠❡❛s✉r❡
µ∗
❤❛s t❤❡ ❢♦❧❧♦✇✐♥❣ ♣r♦♣❡rt✐❡s✳
(a) µ∗ (∅) = 0;
(b)
✐❢
E ⊂ F, t❤❡♥ µ∗ (E) ≤ µ∗ (F );
(c)
✐❢
{Ei ⊂ Rn : i ∈ N } ✐s
❛ ❝♦✉♥t❛❜❧❡ ❝♦❧❧❡❝t✐♦♥ ♦❢ s✉❜s❡ts ♦❢
∞
∗
µ
t❤❡♥
∞
Ei
µ∗ (Ei ).
≤
i=1
✶✳✸✳✷✳
Rn ✱
i=1
▼❡❛s✉r❛❜❧❡ s❡ts
❚❤❡ ❢♦❧❧♦✇✐♥❣ ✐s t❤❡ ❈❛r❛t❤➨♦❞♦r② ❞❡❢✐♥✐t✐♦♥ ♦❢ ♠❡❛s✉r❛❜✐❧✐t②✳
❉❡❢✐♥✐t✐♦♥ ✶✳✽✳
❆ s✉❜s❡t
A ⊂ Rn
✐s ▲❡❜❡s❣✉❡ ♠❡❛s✉r❛❜❧❡ ✐❢
µ∗ (E) = µ∗ (E ∩ A) + µ∗ (E ∩ Ac ),
❢♦r ❡✈❡r② s✉❜s❡t
s❡ts ✐♥
Rn
❜②
E ⊂ Rn ✳ ❲❡ ❞❡♥♦t❡ t❤❡ ❝♦❧❧❡❝t✐♦♥ ♦❢ ▲❡❜❡s❣✉❡ ♠❡❛s✉r❛❜❧❡
L(Rn )✳
❚❤❡♦r❡♠ ✶✳✻✳
σ ✲❛❧❣❡❜r❛
L(Rn )
♦♥
❚❤❡ ❝♦❧❧❡❝t✐♦♥
Rn ✱
♦❢ ▲❡❜❡s❣✉❡ ♠❡❛s✉r❛❜❧❡ s❡ts ✐s ❛
❛♥❞ t❤❡ r❡str✐❝t✐♦♥ ♦❢ ▲❡❜❡s❣✉❡ ♦✉t❡r ♠❡❛s✉r❡
✐s ❛ ♠❡❛s✉r❡ ♦♥
❉❡❢✐♥✐t✐♦♥ ✶✳✾✳
L(Rn )
t♦
L(Rn )✳
▲❡❜❡s❣✉❡ ♠❡❛s✉r❡
µ : L(Rn ) → [0, ∞] ,
µ = µ∗ |L(Rn )
✐s t❤❡ r❡str✐❝t✐♦♥ ♦❢ ▲❡❜❡s❣✉❡ ♦✉t❡r ♠❡❛s✉r❡
❛❜❧❡ s❡ts
µ∗
µ∗
t♦ t❤❡ ▲❡❜❡s❣✉❡ ♠❡❛s✉r✲
L(Rn )✳
Pr♦♣♦s✐t✐♦♥ ✶✳✶✳
❊✈❡r② r❡❝t❛♥❣❧❡ ✐s ▲❡❜❡s❣✉❡ ♠❡❛s✉r❛❜❧❡✳
✼
✶✳✸✳✸✳
❙❡ts ♦❢ ♠❡❛s✉r❡ ③❡r♦ ❛♥❞ ❝♦♠♣❧❡t❡♥❡ss
Pr♦♣♦s✐t✐♦♥ ✶✳✷✳
■❢
N ⊂ Rn
❛♥❞
s✉r❛❜❧❡✱ ❛♥❞ t❤❡ ♠❡❛s✉r❡ s♣❛❝❡
❉❡❢✐♥✐t✐♦♥ ✶✳✶✵✳
>0
❡✈❡r②
❆ s✉❜s❡t
µ∗ (N ) = 0✱
(Rn , L(Rn ), µ)
N ⊂ Rn
N
✐s ▲❡❜❡s❣✉❡ ♠❡❛✲
✐s ❝♦♠♣❧❡t❡✳
❤❛s ▲❡❜❡s❣✉❡ ♠❡❛s✉r❡ ③❡r♦ ✐❢ ❢♦r
t❤❡r❡ ❡①✐sts ❛ ❝♦✉♥t❛❜❧❡ ❝♦❧❧❡❝t✐♦♥ ♦❢ r❡❝t❛♥❣❧❡s
s✉❝❤ t❤❛t
∞
Ri ,
µ(Ri ) < .
i=1
❊①❛♠♣❧❡ ✶✳✸✳
{Ri : i ∈ N}
∞
N⊂
t❤✐r❞s✬ ❢r♦♠
t❤❡♥
i=1
❚❤❡ st❛♥❞❛r❞ ❈❛♥t♦r s❡t✱ ♦❜t❛✐♥❡❞ ❜② r❡♠♦✈✐♥❣ ✬♠✐❞❞❧❡
[0, 1]✱ ✐s ❛♥ ✉♥❝♦✉♥t❛❜❧❡ s❡t ♦❢ ③❡r♦ ♦♥❡✲❞✐♠❡♥s✐♦♥❛❧ ▲❡❜❡s❣✉❡
♠❡❛s✉r❡✳
❊①❛♠♣❧❡ ✶✳✹✳
❚❤❡
x✲❛①✐s
✐♥
R2
A = (x, 0) ∈ R2 : x ∈ R ,
❤❛s ③❡r♦ t✇♦✲❞✐♠❡♥s✐♦♥❛❧ ▲❡❜❡s❣✉❡ ♠❡❛s✉r❡✳
✶✳✸✳✹✳
❚r❛♥s❧❛t✐♦♥❛❧ ✐♥✈❛r✐❛♥❝❡
❆♥ ✐♠♣♦rt❛♥t ❣❡♦♠❡tr✐❝ ♣r♦♣❡rt② ♦❢ ▲❡❜❡s❣✉❡ ♠❡❛s✉r❡ ✐s ✐ts tr❛♥s✲
❧❛t✐♦♥❛❧ ✐♥✈❛r✐❛♥❝❡✳ ■❢ A ⊂ Rn ❛♥❞ h ∈ Rn ✱ ❧❡t
A + h = {x + h : x ∈ A} ,
❞❡♥♦t❡ t❤❡ tr❛♥s❧❛t✐♦♥ ♦❢ A ❜② h✳
Pr♦♣♦s✐t✐♦♥ ✶✳✸✳
■❢
A ⊂ Rn
❛♥❞
h ∈ Rn ✱
t❤❡♥
µ∗ (A + h) = µ∗ (A),
❛♥❞
A+h
✐s ♠❡❛s✉r❛❜❧❡ ✐❢ ❛♥❞ ♦♥❧② ✐❢
✽
A
✐s ♠❡❛s✉r❛❜❧❡✳
✶✳✸✳✺✳
❇♦r❡❧ s❡ts
❚❤❡ r❡❧❛t✐♦♥s❤✐♣ ❜❡t✇❡❡♥ ♠❡❛s✉r❡ ❛♥❞ t♦♣♦❧♦❣② ✐s ♥♦t ❛ s✐♠♣❧❡
♦♥❡✳ ■♥ t❤✐s s❡❝t✐♦♥✱ ✇❡ s❤♦✇ t❤❛t ❛❧❧ ♦♣❡♥ ❛♥❞ ❝❧♦s❡❞ s❡ts ✐♥ Rn ✱ ❛♥❞
t❤❡r❡❢♦r❡ ❛❧❧ ❇♦r❡❧ s❡ts ✭✐✳❡✳ s❡ts t❤❛t ❜❡❧♦♥❣ t♦ t❤❡ σ ✲❛❧❣❡❜r❛ ❣❡♥❡r❛t❡❞
❜② t❤❡ ♦♣❡♥ s❡ts✮✱ ❛r❡ ▲❡❜❡s❣✉❡ ♠❡❛s✉r❛❜❧❡✳
▲❡t T (Rn ) ⊂ P(Rn ) ❞❡♥♦t❡ t❤❡ st❛♥❞❛r❞ t♦♣♦❧♦❣② ♦♥ Rn ❝♦♥s✐st✐♥❣
♦❢ ❛❧❧ ♦♣❡♥ s❡ts✳ ❚❤❛t ✐s✱ G ⊂ Rn ❜❡❧♦♥❣s t♦ T (Rn ) ✐❢ ❢♦r ❡✈❡r② x ∈ G
t❤❡r❡ ❡①✐sts r > 0 s✉❝❤ t❤❛t Br (x) ⊂ G✱ ✇❤❡r❡
Br (x) = {y ∈ Rn : |x − y| < r} ,
✐s t❤❡ ♦♣❡♥ ❜❛❧❧ ♦❢ r❛❞✐✉s r ❝❡♥t❡r❡❞ ❛t x ∈ Rn ✳
❉❡❢✐♥✐t✐♦♥ ✶✳✶✶✳
❚❤❡ ❇♦r❡❧
❣❡♥❡r❛t❡❞ ❜② t❤❡ ♦♣❡♥ s❡ts✱
❇♦r❡❧
σ ✲❛❧❣❡❜r❛
❙✐♥❝❡
σ ✲❛❧❣❡❜r❛ B(Rn )
B(Rn ) = σ(T (Rn ))✳
σ ✲❛❧❣❡❜r❛
σ ✲❝♦♠♣❛❝t
Rn
✐s t❤❡
σ ✲❛❧❣❡❜r❛
❆ s❡t t❤❛t ❜❡❧♦♥❣s t♦ t❤❡
✐s ❝❛❧❧❡❞ ❛ ❇♦r❡❧ s❡t✳
❛r❡ ❝❧♦s❡❞ ✉♥❞❡r ❝♦♠♣❧❡♠❡♥t❛t✐♦♥✱ t❤❡ ❇♦r❡❧
❛❧❣❡❜r❛ ✐s ❛❧s♦ ❣❡♥❡r❛t❡❞ ❜② t❤❡ ❝❧♦s❡❞ s❡ts ✐♥
✐s
♦♥
Rn ✳
▼♦r❡♦✈❡r✱ s✐♥❝❡
✭✐✳❡✳ ✐t ✐s ❛ ❝♦✉♥t❛❜❧❡ ✉♥✐♦♥ ♦❢ ❝♦♠♣❛❝t s❡ts✮ ✐ts ❇♦r❡❧
σ✲
Rn
σ✲
❛❧❣❡❜r❛ ✐s ❣❡♥❡r❛t❡❞ ❜② t❤❡ ❝♦♠♣❛❝t s❡ts✳
Pr♦♣♦s✐t✐♦♥ ✶✳✹✳
❊✈❡r② ♦♣❡♥ s❡t ✐♥
Rn
✐s ❛ ❝♦✉♥t❛❜❧❡ ✉♥✐♦♥ ♦❢ ❛❧♠♦st
❞✐s❥♦✐♥t r❡❝t❛♥❣❧❡s✳
Pr♦♣♦s✐t✐♦♥ ✶✳✺✳ ❚❤❡ ❇♦r❡❧ ❛❧❣❡❜r❛ B(Rn ) ✐s ❣❡♥❡r❛t❡❞ ❜② t❤❡ ❝♦❧❧❡❝t✐♦♥
♦❢ r❡❝t❛♥❣❧❡s
✶✳✸✳✻✳
R(Rn )✳
❊✈❡r② ❇♦r❡❧ s❡t ✐s ▲❡❜❡s❣✉❡ ♠❡❛s✉r❛❜❧❡✳
❇♦r❡❧ r❡❣✉❧❛r✐t②
❘❡❣✉❧❛r✐t② ♣r♦♣❡rt✐❡s ♦❢ ♠❡❛s✉r❡s r❡❢❡r t♦ t❤❡ ♣♦ss✐❜✐❧✐t② ♦❢ ❛♣✲
♣r♦①✐♠❛t✐♥❣ ✐♥ ♠❡❛s✉r❡ ♦♥❡ ❝❧❛ss ♦❢ s❡ts ✭❢♦r ❡①❛♠♣❧❡✱ ♥♦♥ ♠❡❛s✉r❛❜❧❡
✾
s❡ts✮ ❜② ❛♥♦t❤❡r ❝❧❛ss ♦❢ s❡ts ✭❢♦r ❡①❛♠♣❧❡✱ ♠❡❛s✉r❛❜❧❡ s❡ts✮✳ ▲❡❜❡s❣✉❡
♠❡❛s✉r❡ ✐♥ ❇♦r❡❧ r❡❣✉❧❛r ✐♥ t❤❡ s❡♥s❡ t❤❛t ▲❡❜❡s❣✉❡ ♠❡❛s✉r❛❜❧❡ s❡ts ❝❛♥
❜❡ ❛♣♣r♦①✐♠❛t❡❞ ✐♥ ♠❡❛s✉r❡ ❢r♦♠ t❤❡ ♦✉ts✐❞❡ ❜② ♦♣❡♥ s❡ts ❛♥❞ ❢r♦♠ t❤❡
✐♥s✐❞❡ ❜② ❝❧♦s❡❞ s❡ts✱ ❛♥❞ t❤❡② ❝❛♥ ❜❡ ❛♣♣r♦①✐♠❛t❡❞ ❜② ❇♦r❡❧ s❡ts ✉♣ t♦
s❡ts ♦❢ ♠❡❛s✉r❡ ③❡r♦✳ ▼♦r❡♦✈❡r✱ t❤❡r❡ ✐s ❛ s✐♠♣❧❡ ❝r✐t❡r✐♦♥ ❢♦r ▲❡❜❡s❣✉❡
♠❡❛s✉r❛❜✐❧✐t② ✐♥ t❡r♠s ♦❢ ♦♣❡♥ ❛♥❞ ❝❧♦s❡❞ s❡ts✳
❚❤❡ ❢♦❧❧♦✇✐♥❣ t❤❡♦r❡♠ ❡①♣r❡ss❡s ❛ ❢✉♥❞❛♠❡♥t❛❧ ❛♣♣r♦①✐♠❛t✐♦♥ ♣r♦♣✲
❡rt② ♦❢ ▲❡❜❡s❣✉❡ ♠❡❛s✉r❛❜❧❡ s❡ts ❜② ♦♣❡♥ ❛♥❞ ❝♦♠♣❛❝t s❡ts✳
❚❤❡♦r❡♠ ✶✳✼✳
■❢
A ⊂ Rn ✱
t❤❡♥
µ∗ (A) = inf {µ(G) : A ⊂ G, G
❛♥❞ ✐❢
A
♦♣❡♥
},
✐s ▲❡❜❡s❣✉❡ ♠❡❛s✉r❛❜❧❡✱ t❤❡♥
µ(A) = sup {µ(K) : K ⊂ A, K
❚❤❡♦r❡♠ ✶✳✽✳
>0
❢♦r ❡✈❡r②
❆ s✉❜s❡t
A ⊂ Rn
❝♦♠♣❛❝t
}.
✐s ▲❡❜❡s❣✉❡ ♠❡❛s✉r❛❜❧❡ ✐❢ ❛♥❞ ♦♥❧② ✐❢
t❤❡r❡ ✐s ❛♥ ♦♣❡♥ s❡t
G⊃A
s✉❝❤ t❤❛t
µ∗ (G \ A) < .
❚❤❡♦r❡♠ ✶✳✾✳
❆ s✉❜s❡t
❢♦r ❡✈❡r②
> 0
G⊃A⊃F
❛♥❞
A ⊂ Rn
✐s ▲❡❜❡s❣✉❡ ♠❡❛s✉r❛❜❧❡ ✐❢ ❛♥❞ ♦♥❧② ✐❢
t❤❡r❡ ✐s ❛♥ ♦♣❡♥ s❡t
G
❛♥❞ ❛ ❝❧♦s❡❞ s❡t
F
s✉❝❤ t❤❛t
µ(G \ F ) < .
■❢
µ(A) < ∞✱
t❤❡♥
❉❡❢✐♥✐t✐♦♥ ✶✳✶✷✳
F
♠❛② ❜❡ ❝❤♦s❡♥ t♦ ❜❡ ❝♦♠♣❛❝t✳
❚❤❡ ❝♦❧❧❡❝t✐♦♥ ♦❢ s❡ts ✐♥
s❡❝t✐♦♥s ♦❢ ♦♣❡♥ s❡ts ✐s ❞❡♥♦t❡❞ ❜②
Rn
Gδ (Rn )✱
Rn
t❤❛t ❛r❡ ❝♦✉♥t❛❜❧❡ ✐♥t❡r✲
❛♥❞ t❤❡ ❝♦❧❧❡❝t✐♦♥ ♦❢ s❡ts ✐♥
t❤❛t ❛r❡ ❝♦✉♥t❛❜❧❡ ✉♥✐♦♥s ♦❢ ❝❧♦s❡❞ s❡ts ✐s ❞❡♥♦t❡❞ ❜②
Gδ
❛♥❞
Fσ
Fσ (Rn )✳
s❡ts ❛r❡ ❇♦r❡❧✳ ❚❤✉s✱ ✐t ❢♦❧❧♦✇s ❢r♦♠ t❤❡ ♥❡①t r❡s✉❧t t❤❛t
✶✵
❡✈❡r② ▲❡❜❡s❣✉❡ ♠❡❛s✉r❛❜❧❡ s❡t ❝❛♥ ❜❡ ❛♣♣r♦①✐♠❛t❡❞ ✉♣ t♦ ❛ s❡t ♦❢ ♠❡❛s✉r❡
③❡r♦ ❜② ❛ ❇♦r❡❧ s❡t✳ ❚❤✐s ✐s t❤❡ ❇♦r❡❧ r❡❣✉❧❛r✐t② ♦❢ ▲❡❜❡s❣✉❡ ♠❡❛s✉r❡✳
❚❤❡♦r❡♠ ✶✳✶✵✳
t❤❡r❡ ❡①✐sts s❡ts
❙✉♣♣♦s❡ t❤❛t
G ∈ Gδ (Rn )
❛♥❞
G ⊃ A ⊃ F,
❚❤❡♦r❡♠ ✶✳✶✶✳
❇♦r❡❧
A ⊂ Rn
❚❤❡ ▲❡❜❡s❣✉❡
✐s ▲❡❜❡s❣✉❡ ♠❡❛s✉r❛❜❧❡✳ ❚❤❡♥
F ∈ Fσ (Rn )
s✉❝❤ t❤❛t
µ(G \ A) = µ(A \ F ) = 0.
σ ✲❛❧❣❡❜r❛ L(Rn )
σ ✲❛❧❣❡❜r❛ B(Rn )✳
✶✶
✐s t❤❡ ❝♦♠♣❧❡t✐♦♥ ♦❢ t❤❡
❈❤❛♣t❡r ✷
❚❤❡ ❞❡❢✐♥✐t✐♦♥ ❛♥❞ s♦♠❡ ♣r♦♣❡rt✐❡s
♦❢ ❍❛✉s❞♦r❢❢ ♠❡❛s✉r❡s ❛♥❞
❞✐♠❡♥s✐♦♥
❚❤❡ ❛✐♠ ♦❢ t❤✐s ❝❤❛♣t❡r ✐s t♦ ♣r❡s❡♥t t❤❡ ♥♦t✐♦♥ ♦❢ ❍❛✉s❞♦r❢❢ ♠❡❛✲
s✉r❡s ❛♥❞ ❞✐♠❡♥s✐♦♥✳ ❲❡ ❛❧s♦ ♣r♦✈✐❞❡ s♦♠❡ ♦❢ ✐ts ✐♠♣♦rt❛♥t t❤❡♦r❡♠s
❛♥❞ ❧❡♠♠❛s✳
❚❤❡ ♣r❡s❡♥t❛t✐♦♥ ❣✐✈❡♥ ✐♥ t❤✐s ❝❤❛♣t❡r ❝♦♠❡s ❢r♦♠ t❤❡ r❡s✉❧ts ✐♥ ❬✻❪✳
✷✳✶✳
❍❛✉s❞♦r❢❢ ♠❡❛s✉r❡s
✷✳✶✳✶✳
❉❡❢✐♥✐t✐♦♥
▲❡t (X, d) ❜❡ ❛ ♠❡tr✐❝ s♣❛❝❡✱ F ❛ ❢❛♠✐❧② ♦❢ s✉❜s❡ts ♦❢ X ❛♥❞ ζ ❛
♥♦♥✲♥❡❣❛t✐✈❡ ❢✉♥❝t✐♦♥ ♦♥ F ✳ ❲❡ ♠❛❦❡ t❤❡ ❢♦❧❧♦✇✐♥❣ t✇♦ ❛ss✉♠♣t✐♦♥s✳
✭✶✮ ❋♦r ❡✈❡r② δ > 0 t❤❡r❡ ❛r❡ E1 , E2 , · · · ∈ F s✉❝❤ t❤❛t X =
∞
i=1 Ei
❛♥❞
d(Ei ) ≤ δ.
✭✷✮ ❋♦r ❡✈❡r② δ > 0 t❤❡r❡ ✐s E ∈ F s✉❝❤ t❤❛t ζ(E) ≤ δ ❛♥❞ d(E) ≤ δ.
✶✷
❋♦r 0 < δ ≤ ∞ ❛♥❞ A ⊂ X ✇❡ ❞❡❢✐♥❡
∞
∞
ζ(Ei ) : A ⊂
ψ(A) = lim inf
δ→0
i=1
Ei , d(Ei ) ≤ δ, Ei ∈ F
.
i=1
▲❡t s ∈ [0, ∞) ❛♥❞ ❝❤♦♦s❡
F = {E : E ⊂ X} ,
ζ(E) = ζs (E) = d(E)s ,
✇✐t❤ 00 = 1 ❛♥❞ d(0)s = 0.
❚❤❡♥ t❤❡ ♠❡❛s✉r❡ ψ ✐s ❝❛❧❧❡❞ t❤❡ s✲❞✐♠❡♥s✐♦♥❛❧ ❍❛✉s❞♦r❢❢ ♠❡❛s✉r❡✱
❞❡♥♦t❡❞ ❜② Hs ✳ ❲❡ ❤❛✈❡
Hs = lim Hδs (A),
δ−→0
✇❤❡r❡ Hδs (A) = inf
d(Ei )s | A ⊂
i
Ei ; d(Ei ) ≤ δ .
i
◆♦t❡✿ ❚❤❡ ✐♥t❡❣r❛❧ ❞✐♠❡♥s✐♦♥❛❧ ❍❛✉s❞♦r❢❢ ♠❡❛s✉r❡s ♣❧❛② ❛ s♣❡❝✐❛❧ r♦❧❡✳
✰ ❋♦r s = 0✿ H0 ✐s t❤❡ ❝♦✉♥t✐♥❣ ♠❡❛s✉r❡✳ ■♥❞❡❡❞✱
H0 (A) ❂ ❝❛r❞ ❆ ❂ t❤❡ ♥✉♠❜❡r ♦❢ ♣♦✐♥ts ♦❢ ❆✳
✰ ❋♦r s = 1✿ H1 ✐s ❡q✉❛❧ t♦ t❤❡ ❧❡♥❣t❤ ♦❢ ❆ ✐❢ ❆ ✐s ❛ r❡❝t✐❢✐❛❜❧❡ ❝✉r✈❡✳
✰ ❋♦r s = n ✐♥ Rn ✿ Hn = 2n .α(n)−1 .Ln ✳
✰ ❋♦r s > n✿ Hs ✐♥ Rn ✐s ✉♥✐♥t❡r❡st✐♥❣ s✐♥❝❡ Hs (Rn ) = 0.
❲❡ s❤❛❧❧ ♥♦✇ ❞❡r✐✈❡ s♦♠❡ s✐♠♣❧❡ ♣r♦♣❡rt✐❡s ♦❢ ❍❛✉s❞♦r❢❢ ♠❡❛s✉r❡s
✐♥ ❛ ❣❡♥❡r❛❧ s❡♣❛r❛❜❧❡ ♠❡tr✐❝ s♣❛❝❡ ❳✳
✷✳✶✳✷✳
❙♦♠❡ ♣r♦♣❡rt✐❡s
❚❤❡♦r❡♠ ✷✳✶✳ ▲❡t (X, d) ❜❡ ❛ ♠❡tr✐❝ s♣❛❝❡✱ s ∈ [0, n) ❛♥❞ ζ(E) = d(E)s
❢♦r ❊
⊂
❳✳ ■❢
✶✸
(1) F1 = {F ⊂ X : ❋
✐s ❝❧♦s❡❞
(2) F2 = {U ⊂ X : ❯
✐s ♦♣❡♥
(3) X = Rn
t❤❡♥
❛♥❞
}
}
♦r
F3 = {K ⊂ Rn : ❑
ψ(Fi , ζ) = Hs
Pr♦♦❢✳
♦r
✐s ❝♦♥✈❡①
},
(i = 1, 2, 3).
✭✶✮ ❚❛❦❡ ❛♥② A ⊂ X ✳ ❋♦r ❛❧❧ δ > 0✱ ✇❡ ❤❛✈❡
Hδs (A) = inf
d(Ei )s | A ⊂
Ei ; d(Ei ) ≤ δ; Ei ∈ F
i
i
d(Ei )s | A ⊂
≤ inf
Ei ; d(Ei ) ≤ δ; Ei ∈ F1
i
.
i
❍❡♥❝❡✱ ✇❡ ❤❛✈❡
Hs (A) = lim Hδs (A)
δ−→0
d(Ei )s | A ⊂
≤ lim inf
δ−→0
i
Ei ; d(Ei ) ≤ δ; Ei ∈ F1
i
✭✷✳✶✮
= ψ(F1 , ζ)(A).
❙✐♥❝❡ d(Ei ) = d(Ei )✳ ■t ❢♦❧❧♦✇s t❤❛t ✐❢ (Ei ) ✐s δ ✲ ❝♦✈❡r ♦❢ ❆ t❤❡♥ (Ei ) ✐s
❛❧s♦ δ ✲ ❝♦✈❡r ♦❢ ❆✳
Hδs (A) = inf
d(Ei )s | A ⊂
i
i
d(Ei )s | A ⊂
= inf
Ei ; d(Ei ) ≤ δ; Ei ∈ F
i
i
❚❤❡♥✱ Hδs (A) ≥ inf
Ei ; d(Ei ) ≤ δ; Ei ∈ F
d(Ei )s | A ⊂
i
Ei ; d(Ei ) ≤ δ; Ei ∈ F1 .
i
✶✹
❚❤✐s ✐♠♣❧✐❡s✱
Hs (A) = lim Hδs (A)
δ→0
d(Ei )s | A ⊂
≥ lim inf
δ−→0
i
Ei ; d(Ei ) ≤ δ; Ei ∈ F1
i
✭✷✳✷✮
= ψ(F1 , ζ)(A).
❈♦♠❜✐♥✐♥❣ (2.1) ✇✐t❤ (2.2) ②✐❡❧❞s ψ(F1 , ζ)(A) = Hs .
✭✷✮ ❚❛❦❡ ❛♥② A ⊂ X ✳ ❋♦r ❛❧❧ δ > 0✱ ✇❡ ❤❛✈❡
Hδs (A) = inf
d(Ei )s | A ⊂
i
Ei ; d(Ei ) ≤ δ; Ei ∈ F
i
d(Ei )s | A ⊂
≤ inf
i
Ei ; d(Ei ) ≤ δ; Ei ∈ F2
.
i
❍❡♥❝❡✱ ✇❡ ❤❛✈❡
Hs (A) = lim Hδs (A)
δ→0
d(Ei )s | A ⊂
≤ lim inf
δ→0
i
Ei ; d(Ei ) ≤ δ; Ei ∈ F2
i
✭✷✳✸✮
= ψ(F2 , ζ)(A).
■t r❡♠❛✐♥s t♦ ♣r♦✈❡ Hδs (A) ≥ ψ(F2 , ζ)(A).
▲❡t {Ei }∞
i=1 s✉❝❤ t❤❛t d(Ei ) ≤ δ; A ⊂
❛♥❞
i
d(Ei )s < Hδs (A) + δ ✳
∀ε > 0✱ ✇❡ ❞❡♥♦t❡ Eiε = Ei + B(0, ε)✳
❲❡ ❤❛✈❡✿
✰ Eiε ✐s ♦♣❡♥ ∀i✱
✰A⊂
✰
∞
i=1
ε/2i
d(Ei )
ε/2i
Ei
≤ d(Ei ) +
∀ε > 0✱
ε
2i−1 ✳
✶✺
Ei ; Ei ∈ F
i
❚❤❡♥✱ ❢♦r ❡✈❡r② 0 < ε < δ
∞
s
d(Ui ) |d(Ui ) ≤ 2δ, Ui ⊂ F2
inf
ε/2i s
≤
i
d(Ei
)
i=1
∞
≤
d(Ei ) +
i=1
▲❡t ε → 0✱ ✇❡ ♦❜t❛✐♥
∞
i=1
❍❡♥❝❡✱
δ→0
2i−1
s
.
d(Ei )s ≤Hδs (A) + δ ✳
d(Ui )s |d(Ui ) ≤ 2δ, Ui ⊂ F2
ψ(F2 , ζ) = lim inf
ε
i
≤ lim (Hδs (A) + δ)
δ→0
= Hs (A).
✭✷✳✹✮
❋r♦♠ ✭2.3✮ ❛♥❞ ✭2.4✮✱ ✇❡ ❝♦♥❝❧✉❞❡ t❤❛t ψ(F2 , ζ) = Hs (A).
✭✸✮ ❋♦r ❛❧❧ A ⊂ Rn ✳ ▲❡t A(c) ❜❡ ❝♦♥✈❡① ❤✉❧❧ ♦❢ ❆✳
❲❡ ✇✐❧❧ ♣r♦✈❡ t❤❛t d(A) = d(A(c) )✳ ■♥❞❡❡❞✱
m
A(c) =
k=1
❋♦r ❛❧❧ x =
✇❤❡r❡
m1
m2
λk xk ; y =
k=1
m1
tk = 1; xk ∈ A .
tk xk | m ∈ N, tk ≥ 0, ∀k = 1, m,
λk = 1;
µl y l ∈ A(c) ,
l=1
m2
k=1
k
µl = 1.
l=1
❲❡ ❤❛✈❡✿
d(x, y) = x − y
m2
µl y l
= x−
l=1
m2
µl (x − y l )
=
l=1
m2
≤
µl x − y
m2
l
l
≤ max x − y .
l=1
(s✐♥❝❡
µl = 1)
l=1
✶✻
∀l = 1, m2 ✱ ✇❡ ❤❛✈❡
x − yl =
m1
λk (xk − y l ) ≤
k=1
❚❤✐s ❧❡❛❞s t♦ d(x, y) ≤ d(A)✳
m1
λk xk − y l ≤ max xk − y l ≤ d(A)✳
1,m2
k=1
❙✐♥❝❡ x, y ∈ A(c) ❛r❡ ❛r❜✐tr❛r②✱ ♦♥❡ ❤❛s d(A(c) ) = sup ≤ d(A)✳
x,y∈A(c)
❇✉t A ⊂ A(c) ✱ ✇❡ ♦❜t❛✐♥ d(A) ≤ d(A(c) )✳
❚❤✐s ✐♠♣❧✐❡s t❤❛t d(A) = d(A(c) ) ❢♦r ❛❧❧ A ∈ Rn ✳
❙✐♠✐❧❛r❧② ♣❛rt ✭✶✮✱ ✇❡ ❛❧s♦ ❤❛✈❡ ψ(F3 , ζ) = Hs ✇✐t❤ X = Rn ✳
❚❤❡ ♣r♦♦❢ ✐s ❝♦♠♣❧❡t❡✳
❈♦r♦❧❧❛r② ✷✳✶✳
▲❡t
X = Rn .
❚❤❡♥✱ ❢♦r ❡❛❝❤
s > 0, Hs
✐s ❇♦r❡❧ r❡❣✉❧❛r✳
❖❢t❡♥ ♦♥❡ ✐s ♦♥❧② ✐♥t❡r❡st❡❞ ✐♥ ❦♥♦✇✐♥❣ ✇❤✐❝❤ s❡ts ❤❛✈❡ Hs ♠❡❛s✉r❡
③❡r♦✳ ❋♦r t❤✐s ✐t ✐s ❡♥♦✉❣❤ t♦ ✉s❡ ❛♥② ♦❢ t❤❡ ❛♣♣r♦①✐♠❛t✐♥❣ ♠❡❛s✉r❡s Hδs ✱
s
❀ ✐♥ ❢❛❝t ✇❡ ❞♦♥✬t r❡❛❧❧② ♥❡❡❞ ❛♥② ♠❡❛s✉r❡ ❛t ❛❧❧✳ ❲❡
❢♦r ❡①❛♠♣❧❡ H∞
❤❛✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ❧❡♠♠❛✳
▲❡♠♠❛ ✷✳✶✳
▲❡t
A ⊂ X, s ∈ [0, ∞)
❛♥❞
δ ∈ (0, ∞).
❚❤❡♥ t❤❡ ❢♦❧❧♦✇✐♥❣
❝♦♥❞✐t✐♦♥s ❛r❡ ❡q✉✐✈❛❧❡♥t✿
(1) Hs (A) = 0✳
(2) Hδs (A) = 0✳
(3) ∀ε > 0, ∃E1 , E2 , ... ⊂ X
s✉❝❤ t❤❛t
A⊂
Ei
i
Pr♦♦❢✳
d(Ei )s < ε✳
❛♥❞
i
(1) ⇒ (2) : ❖❜✈✐♦✉s❧②
(2) ⇒ (3) : ❲❡ ❤❛✈❡ Hδs (A) = inf
d(Ei )s |A ⊂
Ei ; d(Ei ) ≤ δ ✳
i
i
■t ❢♦❧❧♦✇s t❤❛t ∀ε > 0, ∃E1 , E2 , ... ⊂ X s✉❝❤ t❤❛t✿ A ⊂
❛♥❞
i
i
d(Ei )s − ε < Hδs (A).
❚❤✉s✱
i
Ei ; d(Ei ) ≤ δ
d(Ei )s < ε. ✭s✐♥❝❡ Hδs (A) = 0 ✮
(3) ⇒ (2) :
∀ε > 0, ∃E1 , E2 , ... ⊂ X s✉❝❤ t❤❛t A ⊂
Ei ❛♥❞
i
1
s
❲❡ ♦❜t❛✐♥ ∀i : d(Ei ) < ε ✳
✶✼
d(Ei )s < ε✳
i
❋♦r ❛❧❧ δ > 0✱ ❧❡t ε = δ s ✱ ✇❡ ❤❛✈❡ Hδs (A) = Hs (A) ≤
❚❤✐s ✐♠♣❧✐❡s 0 ≤
lim Hδs (A)
δ→0
≤ lim δ = 0✳
s
d(Ei )s < ε = δ s ✳
i
δ→0
❚❤❡r❡❢♦r❡✱ Hδs (A) = 0✳ ❚❤✐s ❢✐♥✐s❤❡s t❤❡ ♣r♦♦❢✳
❲❡ ✇✐❧❧ ❝♦♠♣❛r❡ ♠❡❛s✉r❡ Hs ✇✐t❤ ❡❛❝❤ ♦t❤❡r✳
❚❤❡♦r❡♠ ✷✳✷✳
▲❡t ❳ ❜❡ ❛ ♠❡tr✐❝ s♣❛❝❡✱
(1) Hs (A) < ∞
✐♠♣❧✐❡s
(2) Ht (A) > 0
Pr♦♦❢✳
✐♠♣❧✐❡s
A ⊂ X ✱ 0 ≤ s < t < ∞✳
❚❤❡♥
Ht (A) = 0✱
Hs (A) = ∞✳
(1)✳ ❙✉♣♣♦s❡ t❤❛t Hs (A) < ∞✳ ❚❤❡♥✱ ∀0 < δ < 1✱ ✇❡ ❤❛✈❡
Hδs (A) < ∞✳
❋♦r s = 1✱ ∃A ⊂
Ei ✇✐t❤ d(Ei ) ≤ δ s✉❝❤ t❤❛t
i
d(Ei )s ≤ Hδs (A) + 1 < ∞.
i
■t ✐♠♣❧✐❡s t❤❛t
Hδt (A) ≤
d(Ei )t =
i
d(Ei )s .d(Ei )t−s
i
d(Ei )s .δ t−s ≤ δ t−s .
≤
i
d(Ei )s ≤ δ t−s .(Hδs (A) + 1).
i
❚❤❡♥ Ht (A) = lim Hδt (A) ≤ lim δ t−s (Hδs (A) + 1) = 0✳
δ→0
δ→0
(2). ■❢ Hδs (A) < ∞✱ t❤❡♥ ❜② t❤❡ ♣❛rt (1) ✇❡ ❤❛✈❡ Ht (A) = 0✳ ❲❡
❣❡t t❤❡ ❝♦♥tr❛❞✐❝t✐♦♥✳ ❚❤❡ ♣r♦♦❢ ✐s ❝♦♠♣❧❡t❡❞✳
❚❤❡ ❢♦❧❧♦✇✐♥❣ t❤❡♦r❡♠ s❛②s t❤❛t ❍❛✉s❞♦r❢❢ ♠❡❛s✉r❡s ❜❡❤❛✈❡ ♥✐❝❡❧②
✉♥❞❡r tr❛♥s❧❛t✐♦♥s ❛♥❞ ❞✐❧❛t✐♦♥s ✐♥ Rn ✳
❚❤❡♦r❡♠ ✷✳✸✳
▲❡t
A ⊂ Rn , a ∈ Rn , 0 < t < ∞
✐✮
Hs (A + a) = Hs (A)
✇❤❡r❡
A + a = {x + a : x ∈ A} ,
✐✐✮
Hs (tA) = ts Hs (A)
✇❤❡r❡
tA = {tx : x ∈ A} .
✶✽