❚❘×❮◆● ✣❸■ ❍➴❈ ❙× P❍❸▼ ❍⑨ ◆❐■ ✷
❑❍❖❆ ❚❖⑩◆
✖✖✖✖✖✖✖♦✵♦✖✖✖✖✖✖✕
◆●❯❨➍◆ ❍❷■ ❍⑨
✣➚◆❍ ▲Þ ❍❆❍◆✲❇❆◆❆❈❍ ❱⑨ ✣➮■ ◆●❼❯ ❈Õ❆
▼❐❚ ❙➮ ❑❍➷◆● ●■❆◆ ❍⑨▼
❈❤✉②➯♥ ♥❣➔♥❤✿
❚♦→♥ ●✐↔✐ t➼❝❤
❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P
❍⑨ ◆❐■✱ ✺✴✷✵✶✾
❚❘×❮◆● ✣❸■ ❍➴❈ ❙× P❍❸▼ ❍⑨ ◆❐■ ✷
❑❍❖❆ ❚❖⑩◆
✖✖✖✖✖✖✖♦✵♦✖✖✖✖✖✖✕
◆●❯❨➍◆ ❍❷■ ❍⑨
✣➚◆❍ ▲Þ ❍❆❍◆✲❇❆◆❆❈❍ ❱⑨ ✣➮■ ◆●❼❯ ❈Õ❆
▼❐❚ ❙➮ ❑❍➷◆● ●■❆◆ ❍⑨▼
❈❤✉②➯♥ ♥❣➔♥❤✿
❚♦→♥ ●✐↔✐ t➼❝❤
❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P
●✐↔♥❣ ✈✐➯♥ ❤÷î♥❣ ❞➝♥✿
❚❙✳❇Ò■ ❑■➊◆ ❈×❮◆●
❍⑨ ◆❐■✱ ✺✴✷✵✶✾
r q tr ự tỹ õ ợ sỹ ố ừ
t ụ ữ sỹ ữợ ú ù t t ừ t ổ
s t õ
tọ ỏ t ỡ t tợ t t t ổ ổ t
t rữớ ồ ữ P ở t ổ trỹ t
tr t ỳ tự qỵ ổ ụ ữ
ự tr tớ ứ q
t tọ ỏ t ỡ s s t t s ũ
ữớ ữớ t t ú ù ụ ữ ỳ
tự t t õ
t ỡ
ở t
▲❮■ ❈❆▼ ✣❖❆◆
❊♠ ①✐♥ ❝❛♠ ✤♦❛♥ ❞÷î✐ sü ❤÷î♥❣ ❞➝♥ ❝õ❛ t❤➛② ❣✐→♦ ❇ò✐ ❑✐➯♥ ❈÷í♥❣ ❦❤â❛
❧✉➟♥ ❝õ❛ ❡♠ ✤÷ñ❝ ❤♦➔♥ t❤➔♥❤ ❦❤æ♥❣ trò♥❣ ✈î✐ ❜➜t ❦➻ ✤➲ t➔✐ ♥➔♦ ❦❤→❝✱❝→❝ t❤æ♥❣
t✐♥ tr➼❝❤ ❞➝♥ tr♦♥❣ ❦❤â❛ ❧✉➟♥ ✤➣ ✤÷ñ❝ ❝❤➾ rã ♥❣✉ç♥ ❣è❝ rã r➔♥❣✳
❚r♦♥❣ ❦❤✐ t❤ü❝ ❤✐➺♥ ✤➲ t➔✐ ❡♠ ✤➣ sû ❞ö♥❣ ✈➔ t❤❛♠ ❦❤↔♦ ❝→❝ t❤➔♥❤ tü✉ ❝õ❛
❝→❝ ♥❤➔ ❦❤♦❛ ❤å❝ ✈î✐ ❧á♥❣ ❜✐➳t ì♥ tr➙♥ trå♥❣✳
❍➔ ◆ë✐✱ t❤→♥❣ ✺ ♥➠♠ ✷✵✶✾
❙✐♥❤ ✈✐➯♥
◆❣✉②➵♥ ❍↔✐ ❍➔
✐
▼ö❝ ❧ö❝
▼Ð ✣❺❯
✸
✶ ▼ët sè ❦✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à
✻
✶✳✶
❑❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥✱ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✻
✶✳✷
❑❤æ♥❣ ❣✐❛♥ ❞➣② c0
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✽
✶✳✸
❑❤æ♥❣ ❣✐❛♥ ❞➣② lp ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✾
✶✳✹
❑❤æ♥❣ ❣✐❛♥ Lp
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷ ✣à♥❤ ❧þ ❍❛❤♥✲❇❛♥❛❝❤
✶✹
✷✶
✷✳✶
✣è✐ ♥❣➝✉ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥✱ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ✷✶
✷✳✷
✣à♥❤ ❧➼ ❍❛❤♥✲❇❛♥❛❝❤ t❤ü❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✹
✷✳✸
✣à♥❤ ❧➼ ❍❛❤♥✲❇❛♥❛❝❤ ♣❤ù❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✺
✷✳✹
▼ët sè ❤➺ q✉↔ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✻
✸ ✣è✐ ♥❣➝✉ tr♦♥❣ ♠ët sè ❦❤æ♥❣ ❣✐❛♥ ❤➔♠
✸✶
✸✳✶
✣è✐ ♥❣➝✉ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ lp , 1 < p < ∞ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✸✶
✸✳✷
✣è✐ ♥❣➝✉ ❝õ❛ ❦❤æ♥❣ ❣✐❛♥ l1 , ❦❤æ♥❣ ❣✐❛♥ l∞ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✸✺
✸✳✷✳✶✳ ✣è✐ ♥❣➝✉ ❝õ❛ ❦❤æ♥❣ ❣✐❛♥ l1
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✸✺
✸✳✷✳✷✳ ✣è✐ ♥❣➝✉ ❝õ❛ ❦❤æ♥❣ ❣✐❛♥ l∞ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✸✻
✣è✐ ♥❣➝✉ ❝õ❛ ❦❤æ♥❣ ❣✐❛♥ Lp (1 < p < ∞) ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✸✼
✸✳✸
✐✐
❑➌❚ ▲❯❾◆
✹✵
❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦
✹✶
é
ỵ ồ t
t ởt ừ t t ồ ự
ổ tỡ ữủ tr t ởt trú tổổ ũ ủ
t tỷ t t tử ỳ ú t q ữỡ ừ
õ t ữ ỵ tt ữỡ tr
tữớ ữỡ tr r ỵ tt t ỹ
tr ữỡ t ỵ tt ớ
ỳ ừ t t ỗ tứ ổ tr ữỡ
tr t ừ rt r t t ụ
ữủ ỳ t tỹ q trồ õ tr t ỹ tr
ự tr tự t ồ r t
ỵ ởt ổ ử q trồ õ
rở ừ t t tr ởt
ổ ừ ởt ổ tỡ t ở ổ õ õ
ụ ự tọ r õ ừ tử tr ộ
ổ ự ổ ủ õ
t õ ữủ t t t s t ỳ ữớ
ở ự ỵ ỳ ợ ử t
t tự t trữợ r trữớ ữủ sỹ ú
ù t t ừ t ũ ữớ tỹ õ tốt
ợ t ố ừ ởt số ổ
ử ử ự
ự ố tr ổ ổ
tỹ ự ố
tr ởt số ổ
Pữỡ ự
Pữỡ ự tt
Pữỡ t
trú õ
ử ử t t t ử ử
õ ỗ ữỡ
ữỡ ởt số tự ữỡ s tr
ỡ ổ ổ
ổ c0 , lp , Lp
ữỡ ử ừ ữỡ tr
ố tr ổ ổ
ỵ tỹ ỵ ự ởt số q
ữỡ ố tr ởt số ổ ử ừ
ữỡ tr ố ừ ổ
ừ ổ
p
, 1 < p < ố
, 1 ố ừ ổ Lp , 1 < p <
õ ữủ tr tr ỡ s t t ữủ
t tr t õ õ ừ t
ộ ừ ố ỳ ữủ q ừ
✺
❍❛❤♥✲❇❛♥❛❝❤✳ ♥➢♠ ✤÷ñ❝ t➼♥❤ ✤è✐ ♥❣➝✉ ❝õ❛ ♠ët sè ❦❤æ♥❣ ❣✐❛♥ ❤➔♠✳
❉♦ t❤í✐ ❣✐❛♥ t❤ü❝ ❤✐➺♥ ✤➲ t➔✐ ❦❤æ♥❣ ♥❤✐➲✉✱ ❦✐➳♥ t❤ù❝ ❝á♥ ❤↕♥ ❝❤➳ ♥➯♥
❦❤â❛ ❧✉➟♥ ❦❤æ♥❣ t❤➸ tr→♥❤ ❦❤ä✐ ♥❤ú♥❣ s❛✐ sât✳ ❊♠ ♠♦♥❣ ♥❤➟♥ ✤÷ñ❝ sü
✤â♥❣ ❣â♣ þ ❦✐➳♥ ♣❤↔♥ ❜✐➺♥ tø q✉þ t❤➛② ❝æ ✈➔ ❝→❝ ❜↕♥✳
❊♠ ①✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥✦
❈❤÷ì♥❣ ✶
▼ët sè ❦✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à
✶✳✶ ❑❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥✱ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤
✣à♥❤ ♥❣❤➽❛ ✶✳✶✳ ▼ët ❝❤✉➞♥ tr➯♥ ❦❤æ♥❣ ❣✐❛♥ ✈❡❝tì E tr➯♥ tr÷í♥❣ K ❧➔
♠ët →♥❤ ①↕
f :
E −→ [0, ∞)
x −→
x
t❤ä❛ ♠➣♥ ❝→❝ t➼♥❤ ❝❤➜t ❞÷î✐ ✤➙②✿
✭✐✮ ✭❇➜t ✤➥♥❣ t❤ù❝ t❛♠ ❣✐→❝✮ x + y ≤ x + y ✭ ∀ ①✱② ∈ E ✮
✭✐✐✮ αx = |α| x (∀α ∈ K, x ∈ E)
✭✐✐✐✮ x = 0 ⇒ x = 0 ✭∀x∈ E ✮
❑❤æ♥❣ ❣✐❛♥ ✈❡❝tì E tr➯♥ K ❝ò♥❣ ✈î✐ ❝❤✉➞♥ x tr♦♥❣ ♥â ✤÷ñ❝ ❣å✐ ❧➔ ♠ët
❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ ✭tr➯♥ K✮ ✈➔ ✤÷ñ❝ ❦➼ ❤✐➺✉ ❧➔ ✭E, . ✮
❚r÷í♥❣ K ❧➔ tr÷í♥❣ R ❤♦➦❝ tr÷í♥❣ C
✣à♥❤ ♥❣❤➽❛ ✶✳✷✳ ▼ët ♥û❛ ❝❤✉➞♥ tr➯♥ ❦❤æ♥❣ ❣✐❛♥ ✈❡❝tì E ❧➔ ♠ët →♥❤
①↕ p ✿ E → ❬ 0✱ ∞✮ t❤ä❛ ♠➣♥ ❜➜t ✤➥♥❣ t❤ù❝ t❛♠ ❣✐→❝ ✭p✭x + y ✮ ≤ p✭x✮
+ p✭y ✮ ✈î✐ ∀ x✱ y ∈ ❊✮ ✈➔ t➼♥❤ ❝❤➜t t❤✉➛♥ ♥❤➜t ❞÷ì♥❣ ✭ p✭αx✮ = |α|p(x)
✈î✐ x ∈ E ✈➔ α ∈ K✮✳
✼
✣à♥❤ ♥❣❤➽❛ ✶✳✸✳ ❑❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ (E,
. ) ✤÷ñ❝ ❣å✐ ❧➔ ❦❤æ♥❣
❣✐❛♥ ❇❛♥❛❝❤ ♥➳✉ E ✈î✐ ♠❡tr✐❝ d(x, y) = x − y , x, y ∈ E ❧➔ ♠ët ❦❤æ♥❣
❣✐❛♥ ✤➛② ✤õ✳
❱➼ ❞ö ✶✳✶✳✶✳ ◆❤ú♥❣ ✈➼ ❞ö t❤æ♥❣ t❤÷í♥❣ ♥❤➜t ❝õ❛ ❑❤æ♥❣ ❣✐❛♥ ✤à♥❤
❝❤✉➞♥ ❧➔ Rn ✈➔ Cn
• ❊ ❂ Rn ❝ò♥❣ ✈î✐ ( ① 1 , ① 2 , ..., ① n ) ❂
Σni=1 x2i ❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥
✤à♥❤ ❝❤✉➞♥ ✭ tr➯♥ tr÷í♥❣ R✮✳
• ❊ ❂ Cn ❝ò♥❣ ✈î✐ ( ③ 1 , ③ 2 , ..., ③ n ) ❂
Σnj=1 |zj |2 ❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥
✤à♥❤ ❝❤✉➞♥ ✭tr➯♥ tr÷í♥❣ C✮
❱➼ ❞ö ✶✳✶✳✷✳ Kn ❝ò♥❣ ✈î✐ t✐➯✉ ❝❤✉➞♥ ❊✉❝❧✐❞❡❛♥ ❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥ ♠❡tr✐❝
✤➛② ✭✤â ❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤✮
❱➼ ❞ö ✶✳✶✳✸✳ ( ∞,
.
∞)
❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ✭ ✤â ❧➔ ✤➛② ✤õ✱ tr÷î❝
✤â ❝❤ó♥❣ t❛ ✤➣ ❜✐➳t r➡♥❣ ✤â ❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥✮✳
▼➺♥❤ ✤➲ ✶✳✶✳ ◆➳✉ (E,
.
E)
❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ ✈➔ F ⊆ E
❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥ ❣✐❛♥ ✈❡❝tì ❝♦♥✱ ❦❤✐ ✤â F trð t❤➔♥❤ ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤
❝❤✉➞♥ ♥➳✉ t❛ ①→❝ ✤à♥❤ ❝❤✉➞♥ tr➯♥ F ❜ð✐ .
x
❚❛ ❣å✐ (F, .
F)
F
= x
E
F
❜ð✐
✈î✐ ① ∈ F.
❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥ ❝♦♥ ❝õ❛ (E, .
▼➺♥❤ ✤➲ ✶✳✷✳ ◆➳✉ (E,
.
E)
E )✳
❧➔ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ✈➔ (F, .
F)
❧➔ ❦❤æ♥❣
❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ ❝♦♥✱ ❦❤✐ ✤â ❋ ❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ♥➳✉ ✈➔ ❝❤➾ ♥➳✉
❋ ✤â♥❣ tr♦♥❣ ❊✳
▼➺♥❤ ✤➲ ✶✳✸✳ ❈❤♦ (E,
. ) ❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥✳ ❑❤✐ ✤â ❊ ❧➔
ởt ổ ồ ộ ở tử tt ố ở
tử tr
ổ c0
ổ tỡ c0 ỗ tt số ở tử
c0 = {(xn )
n=1 l : lim xn = 0},
n
ừ x = (xn ) c0 ữủ
xn = sup |xn |
1n<
c0 ởt ổ õ ừ l ởt ổ
t .
ự ú t õ t c0 ữ ởt ổ ừ
tt {(xn )
n=1 } ũ ợ lim xn = 0 ở tử
n
tr K ú t s r {(xn )
n=1 } l
ổ tỹ sỹ tt
t t r c0 ởt ổ tỡ lim xn =
0 lim yn = 0 õ lim (xn + yn ) = 0 õ
n
n
(xn )
n=1
n
+ (yn )
n=1
c0
(xn )
n=1 , (yn )n=1 c0 ụ ổ õ ự
(xn )
n=1 c0 K, (xn )n=1 c0
ự trỹ t c0 õ tr l ởt út tt
tỷ ừ c0 ổ ữợ ự tọ c0 l
õ ú t ự r ởt (zn )
n=1 ừ zn c0 ở
tử tr l ởt ợ w l t w c0
✾
❚❛ ✈✐➳t r❛ ♠é✐ zn ∈ c0 ♥❤÷ ❧➔ ♠ët ❞➣② ✈æ ❤÷î♥❣ ❜➡♥❣ ❝→❝❤ sû ❞ö♥❣
♠ët ❝➦♣ ❝❤➾ sè ❞÷î✐✿
zn = (zn,1 , zn,2 , zn,3 , ...) = (zn,j )∞
j=1
✭tr♦♥❣ ✤â zn,j ∈ K ❧➔ ❝→❝ ✈æ ❤÷î♥❣✮✳ ❈❤ó♥❣ t❛ ❝â t❤➸ ✈✐➳t w = (wj )∞
j=1
✈➔ ❜➙② ❣✐í ❝❤ó♥❣ t❛ ✤❛♥❣ ❣✐↔ sû r➡♥❣ zn → w tr♦♥❣ (l∞ , .
lim zn − w
n→∞
∞
= lim
n→∞
sup |zn,j − wj |
∞ )✳
◆❣❤➽❛ ❧➔
= 0.
j≥1
✣➸ ❝❤ù♥❣ tä w ∈ c0 ✱ ❜➢t ✤➛✉ ✈î✐ ε > 0 ❝❤♦ tr÷î❝✳ ❑❤✐ ✤â t❛ ❝â t❤➸ t➻♠
N ≥ 0 s❛♦ ❝❤♦ zn − w
∞
< ε/2 ✈î✐ ♠å✐ n ≥ N ✳ ✣➦❝ ❜✐➺t zN − w
∞
<
ε/2✳ ❱➻ zN ∈ c0 ♥➯♥ limj→∞ zN j = 0✳ ◆❤÷ ✈➟② tç♥ t↕✐ j0 > 0 s❛♦ ❝❤♦
|zN,j | < ε/2 ❝è ✤à♥❤ ✈î✐ ♠å✐ j ≥ j0 ✳ ❈❤♦ j ≥ j0 ❦❤✐ ✤â t❛ ❝â✿
|wj | ≤ |wj − zN,j | + |zN,j | < ε/2 + ε/2 = ε.
✣✐➲✉ ♥➔② ❝❤ù♥❣ ♠✐♥❤ limj→∞ wj = 0 ✈➔ w ∈ c0 ✳
✣✐➲✉ ♥➔② ❝❤ù♥❣ ♠✐♥❤ c0 ✤â♥❣ tr♦♥❣ l∞ ✈➔ ❤♦➔♥ t❤➔♥❤ ✈✐➺❝ ❝❤ù♥❣ ♠✐♥❤
c0 ❧➔ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤✳
✶✳✸ ❑❤æ♥❣ ❣✐❛♥ ❞➣② lp
✣à♥❤ ♥❣❤➽❛ ✶✳✺✳ ❈❤♦ ✶ ≤ p < ∞ ✱ lp ❧➔ ❦❤æ♥❣ ❣✐❛♥ ❝õ❛ t➜t ❝↔ ❞➣② ♣❤➛♥
tû {an }∞
n=1 s❛♦ ❝❤♦✿
∞
|an |p < ∞.
n=1
▼➺♥❤ ✤➲ ✶✳✺✳ lp ❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥ ✈❡❝tì ✤è✐ ✈î✐ ♣❤➨♣ ❝ë♥❣ ❝→❝ ❞➣②
✶✵
✈➔ ♥❤➙♥ ♠ët ❞➣② ✈î✐ ♠ët ✈æ ❤÷î♥❣ t❤æ♥❣ t❤÷í♥❣✳ ◆â ❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥
❇❛♥❛❝❤ ✈î✐ ❝❤✉➞♥
∞
(an )n
p
1/p
p
|an |
=
.
n=1
✣➸ ❝❤ù♥❣ ♠✐♥❤ ♠➺♥❤ ✤➲ ♥➔②✱ t❛ ❝➛♥ ♠ët sè ❦➳t q✉↔ s❛✉✳
❇ê ✤➲ ✶✳✶✳ ●✐↔ sû 1 < p < ∞ ✈➔ q ✤÷ñ❝ ①→❝ ✤à♥❤ ❜ð✐ p1 + 1q = 1✳ ❑❤✐ ✤â✿
ap bq
+ , ✈î✐ ❛✱❜ ≥ 0.
ab ≤
p
q
❇ê ✤➲ ✶✳✷ ✭❇➜t ✤➥♥❣ t❤ù❝ ❍☎♦❧❞❡r✮✳ ●✐↔ sû 1 ≤ p < ∞ ✈➔ p1 + 1q = 1
✭♥➳✉ p = 1 t❤➻ ❤✐➸✉ ❧➔ q = ∞✮ ✈➔ ❣✐→ trà ❝õ❛ p ✈➔ q t❤ä❛ ♠➣♥ ♠è✐ q✉❛♥
❤➺ ♥➔② ✤÷ñ❝ ❣å✐ ❧➔ ❝➦♣ sè ♠ô ❧✐➯♥ ❤ñ♣✳ ❈❤♦ (an )n ∈ lp ✈➔ (bn )n ∈ lq ✱
∞
|an bn | ≤ (an )n
p
(bn )n q .
n=1
❈❤ù♥❣ ♠✐♥❤✳ ❇➜t ✤➥♥❣ t❤ù❝ ❤♦➔♥ t♦➔♥ ✤ó♥❣ ♥➳✉ p = 1 ✈➔ q = ∞✳
●✐↔ sû p > 1✳ ❈❤♦✿
∞
A = (an )n
p
1/p
p
|an |
=
n=1
∞
B = (bn )n
q
1/q
q
|bn |
=
n=1
◆➳✉ ♠ët tr♦♥❣ A = 0 ❤♦➦❝ B = 0✱ ❜➜t ✤➥♥❣ t❤ù❝ ❧➔ t➛♠ t❤÷í♥❣✳ ◆➳✉
❦❤æ♥❣ ♣❤↔✐ ♥❤÷ ✈➟②✱ ❞ò♥❣ ❇ê ✤➲ 1.1 ✈î✐ a = |an |/A ✈➔ b = |bn |/B ❝â ✤÷ñ❝✿
|an bn |
1 |an |p 1 |bn |q
≤
+
AB
p Ap
q Bq
✶✶
∞
n=1
1
|an bn |
≤
AB
p
|an |p 1
+
Ap
q
|bn |q
1 1
=
+ =1
Bq
p q
❉♦ ✤â✿
|an bn | ≤ AB
◆❤➟♥ ①➨t ✶✳✸✳✶✳ ❈❤♦ p = 2 ✈➔ q = 2✱ ❜➜t ✤➥♥❣ t❤ù❝ ❍☎♦❧❞❡r ✤÷❛ ✈➲ ❜➜t
✤➥♥❣ t❤ù❝ ❈❛✉❝❤②✲❙❝❤✇❛r③
∞
1/2
|an bn | ≤
2
|an |
|yn |
n
n=1
1/2
2
.
n
❇ê ✤➲ ✶✳✸ ✭❇➜t ✤➥♥❣ t❤ù❝ ▼✐♥❦♦✇s❦✐✮✳ ◆➳✉ x = (xn)n ✈➔ y = (yn)n
tr♦♥❣ lp (1 ≤ p ≤ ∞) (xn + yn )n ❝ô♥❣ t❤✉ë❝ lp ✈➔
(xn + yn )n
p
≤ (xn )n
p
+ (yn )n p .
❈❤ù♥❣ ♠✐♥❤✳ ✣✐➲✉ ♥➔② ❦❤→ t➛♠ t❤÷í♥❣ ❦❤✐ t❛ ❝❤ù♥❣ ♠✐♥❤ ❝❤♦ p = 1 ✈➔
p = ∞✳ ❇ð✐ ✈➟②✱ ❣✐↔ sû 1 < p < ∞✳
✣➛✉ t✐➯♥ t❛ ❝❤ó þ r➡♥❣✿
|xn + yn | ≤ |xn | + |yn | ≤ 2max(|xn |, |yn |)
|xn + yn |p ≤ 2p max(|xn |p , |yn |p ) ≤ 2p |xn |p + |yn |p
|xn + yn |p ≤ 2p
n
|xn |p +
n
✣✐➲✉ tr➯♥ ❝❤ù♥❣ tä r➡♥❣ (xn + yn )n ∈ lp ✳
|yn |p
n
✶✷
❚✐➳♣ t❤❡♦✱ ❝❤ó♥❣ t❛ ✤✐ ❝❤ù♥❣ ♠✐♥❤ ❜➜t ✤➥♥❣ t❤ù❝✱
|xn + yn ||xn + yn |p−1
|xn + yn |p =
n
n
n
n
❱✐➳t
n |xn ||xn
|yn ||xn + yn |p−1
|xn ||xn + yn |p−1 +
=
+ yn |p−1 =
n an b n
tr♦♥❣ ✤â an = |xn | ✈➔ bn = |xn +
yn |p−1 .
❑❤✐ ✤â t❛ ❝â (an )n ∈ lp ✈➔ (bn )n ∈ lq ✈➻
bqn =
|xn + yn |(p−1)q
n
n
|xn + yn |p < ∞
=
n
1 1
+ = 1 ✤➸ ❝❤ù♥❣ ♠✐♥❤ (p − 1)q = p✮✳
p q
❚ø ❇ê ✤➲ ✶✳✷ t❛ ❦➳t ❧✉➟♥✿
✭sû ❞ö♥❣ ♠è✐ q✉❛♥ ❤➺
|xn ||xn + yn |p−1 ≤
|xn |p
n
1
p
|xn + yn |(p−1)q
n
n
= (xn )n
1
q
p
(xn + yn )n
p
q
p
❚÷ì♥❣ tü✿
|xn ||xn + yn |p−1 ≤ (yn )n
p
(xn + yn )n
p
q
p
n
❈ë♥❣ ❤❛✐ ✈➳ ❝õ❛ ❤❛✐ ❜➜t ✤➥♥❣ t❤ù❝ t❛ ❝â✿
(xn + yn )n
p
p
≤ (xn )n
p
(xn + yn )n
p
q
p
+ (yn )n
p
(xn + yn )n
p
q
p.
✶✸
❇➙② ❣✐í✱ ♥➳✉ (xn + yn )n
p
= 0 ❦❤✐ ✤â ❜➜t ✤➥♥❣ t❤ù❝ ✤÷ñ❝ ❝❤ù♥❣ ♠✐♥❤
❧➔ t❤ä❛ ♠➣♥✳ ◆➳✉ (xn + yn )n
= 0 t❛ ❝â t❤➸ ❝❤✐❛ ❝❤♦ (xn + yn )n
p
p
q
p
♥❤➟♥ ✤÷ñ❝✿
p− pq
p
(xn + yn )n
❚ø p −
p
q
≤ (xn )n
p
+ (yn )n p .
= 1✱ ❜➜t ✤➥♥❣ t❤ù❝ ✤÷ñ❝ ❝❤ù♥❣ ♠✐♥❤✳
❇➙② ❣✐í t❛ ❝❤ù♥❣ ♠✐♥❤ ▼➺♥❤ ✤➲ ✶✳✺
❈❤ù♥❣ ♠✐♥❤✳ ❚ø ❜➜t ✤➥♥❣ t❤ù❝ ❇ê ✤➲ ✶✳✸ t❛ ❞➵ ❞➔♥❣ t❤➜② ✤÷ñ❝ lp ❧➔
♠ët ❦❤æ♥❣ ❣✐❛♥ ✈❡❝tì ✈➔ .
p
❧➔ ♠ët ❝❤✉➞♥ tr➯♥ ♥â✳
✣➸ ❝❤ù♥❣ ♠✐♥❤ r➡♥❣ lp ❧➔ ✤➛② ✤õ✱ t❛ ❝❤ù♥❣ ♠✐♥❤ r➡♥❣ ♠å✐ ❝❤✉é✐ Σk xk
❤ë✐ tö t✉②➺t ✤è✐ tr♦♥❣ lp ❧➔ ❤ë✐ tö✳
❱✐➳t xk = (xk,n )n = (xk,1 , xk,2 , ...) ✈î✐ ♠é✐ ❦✳ ❈❤ó þ r➡♥❣
1/p
|xk,n | ≤ xk
p
p
|xk,n |
=
n
❱➻ ✈➟②
k
|xk,n | ≤
k
xk
p
< ∞ ✈î✐ ♠é✐ ❦ ✈➔ ♥❤÷ ✈➟②
yn =
xk,n
k
❧➔ ❝â ♥❣❤➽❛ ✭✈➔ yn ∈ K✮✳
✶✹
❇➙② ❣✐í✱ ✈î✐ ❜➜t ❦➻ N ≥ 1✱
N
|yn |
K→∞
p
1/p
xk,n
= lim
K→∞
n=1
= lim
K
N
1/p
p
n=1
n=1
(x1,1 , x1,2 , ..., x1,N , 0, 0, ...) + (x2,1 , x2,2 , ..., x2,N , 0, 0, ...) + ...
+ (xK,1 , xK,2 , ..., xK,N , 0, 0, ...)
p
K
≤ lim
K→∞
(xk,1 , xk,2 , ..., xk,N , 0, 0, ...)
k=1
K
≤ lim
K→∞
p
xk
p
k=1
∞
=
xk
p
<∞
k=1
❈❤♦ N → ∞, t❛ ❝â y = (yn )n ∈ lp ✳ ⑩♣ ❞ö♥❣ ❧➟♣ ❧✉➟♥ t÷ì♥❣ tü ❝❤♦
y−
K0
k=1 xk
✭K0 ≥ 0 ❜➜t ❦➻ ❝❤♦ tr÷î❝✮✱ t❛ ❝â
∞
K0
y−
≤
xk
k=1
p
xk
p
→ 0 ❦❤✐ K0 → ∞
K0 +1
◆â✐ ❝→❝❤ ❦❤→❝ ❝❤✉é✐ Σk xk ❤ë✐ tö ✤➳♥ y tr♦♥❣ lp ✳
✶✳✹ ❑❤æ♥❣ ❣✐❛♥ Lp
❈❤♦ (X, M, µ) ❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥ ✤♦✱ ♥❣❤➽❛ ❧➔ X ❧➔ ♠ët t➟♣ ❤ñ♣ ❦❤→❝
ré♥❣✱ M ❧➔ ♠ët σ−✤↕✐ sè ❝→❝ t➟♣ ❝♦♥ ❝õ❛ X ✈➔ µ ❧➔ ♠ët ✤ë ✤♦ tr➯♥ M✳
✣à♥❤ ♥❣❤➽❛ ✶✳✻✳ ❱î✐ F = R ❤♦➦❝ F = C ✈➔ 1 ≤ p < ∞✳ ❳➨t t➟♣
Lp (X, µ) =
f : X → F : f ❧➔ ✤♦ ✤÷ñ❝,
|f |p dµ < ∞
X
✶✺
▼ët t➼♥❤ ❝❤➜t ❧➔ ✤ó♥❣ ❤➛✉ ❦❤➢♣ ✭❤➛✉ ❦❤➢♣ ♥ì✐✮ ♥➳✉ t➟♣ ❤ñ♣ ♥❤ú♥❣ ♣❤➛♥
tû ð ✤â t➼♥❤ ❝❤➜t ❦❤æ♥❣ ✤ó♥❣ ❝❤ù❛ tr♦♥❣ ♠ët t➟♣ ❝â ✤ë ✤♦ ❦❤æ♥❣✳
✣➦t
L∞ (X, µ) =
f : X → F ✤♦ ✤÷ñ❝ |∃C > 0, f (x) ≤ ❈ ❤➛✉ ❦❤➢♣ tr➯♥ X
✈➔ ①→❝ ✤à♥❤ ❝❤✉➞♥ tr➯♥ L∞ (X, µ) ❜ð✐
f = ❡sss✉♣{|f (x)|, x ∈ X} = inf{C > 0, |f | ≤ C ❤➛✉ ❦❤➢♣ tr➯♥X}
◆➳✉ f ∈ Lp (X, µ), p ∈ [1, ∞)✱ ✈➔ f ❧➔ ❤➔♠ sè ✤♦ ✤÷ñ❝ tr➯♥ ❳✱ ①→❝ ✤à♥❤
❝❤✉➞♥ ❜ð✐
1/p
f
p
p
|f | dµ
=
.
X
❑❤✐ ✤â✱ Lp (X, µ) ❜❛♦ ❣ç♠ t➜t ❝↔ ❝→❝ f ♠➔
f
❈❤ó♥❣ t❛ ❣å✐ f
p
p
<∞
❧➔ Lp ✳ Lp trð t❤➔♥❤ ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ ✈î✐ ❝❤✉➞♥✳
❱➼ ❞ö ✶✳✹✳✶✳ ◆➳✉ X = [0; 1] ✈➔ µ ❧➔ ♠ët ✤ë ✤♦ ▲❡❜❡s❣✉❡✱ ✈➔ f ❧✐➯♥ tö❝✱
t❤➻ f
∞
= sup{|f (x)||x ∈ [0; 1]}
❇ê ✤➲ ✶✳✹✳ ✭❇➜t ✤➥♥❣ t❤ù❝ ❍☎♦❧❞❡r✮ ◆➳✉ p ✈➔ q ❧➔ ❝→❝ sè ♠ô ❧✐➯♥ ❤ñ♣✱
1 < p < ∞ ✈➔ ♥➳✉ f ∈ Lp (X, µ) ✈➔ g ∈ Lq (X, µ) ❦❤✐ ✤â f g ∈ L1 (X, µ)✱
✈➔
fg
1
≤ f
p
g q.
❇ê ✤➲ ✶✳✺✳ ❱î✐ ❤❛✐ ❤➔♠ sè ❜➜t ❦➻ u = u(t), v = v(t) ❦❤æ♥❣ ➙♠ ✈➔ µ−
✶✻
✤♦ ✤÷ñ❝ tr➯♥ X t❛ ❝â ❜➜t ✤➠♥❣ t❤ù❝
up v q
+
≥ u.v
p
q
❞➜✉ ✤➥♥❣ t❤ù❝ ①↔② r❛ ❦❤✐ ✈➔ ❝❤➾ ❦❤✐ up = v q
❈❤ù♥❣ ♠✐♥❤✳ ❳➨t ❤➔♠ sè ϕ(t) =
tp t−q
+
, t > 0. ❚❛ ❝â
p
q
ϕ (t) = tp−1 − t−q−1 = t−q−1 (tp+q − 1),
ϕ (t) = 0 ⇔ t = 1(t > 0)
❚❛ ❝â min ϕ(t) = ϕ(1) = 1
0
1 −1
❉♦ ✤â ϕ(t) ≥ ϕ(1) = 1, ∀t ∈ (0, +∞). ❈❤å♥ t = u q v p t❛ ✤÷ñ❝
p
u q .v −1
p
+
q
u−1 .v p
q
≥1
up−1 .v −1 v q−1 .u−1
+
≥1
⇔
p
q
⇔
up v q
+
≥ uv
p
q
❉➜✉ ✤➥♥❣ t❤ù❝ ①↔② r❛ ❦❤✐ ✈➔ ❝❤➾ ❦❤✐
1 −1
1
1
u q .v p = 1 ⇔ u q = v p ⇔ up = v q
⑩♣ ❞ö♥❣ ❜ê ✤➲ ✶✳✺ q✉❛② ❧↕✐ ❝❤ù♥❣ ♠✐♥❤ ❜ê ✤➲ ✶✳✹
❈❤ù♥❣ ♠✐♥❤ ❇ê ✤➲ ✶✳✹✿
✶✼
❈❤ù♥❣ ♠✐♥❤✳ ◆➳✉ f = 0 ❤✳❦✳♥ tr➯♥ t➟♣ X ❤♦➦❝ g = 0 ❤✳❦✳♥ tr➯♥ t➟♣ X
t❤➻ ❜➜t ✤➥♥❣ t❤ù❝
fg
1
≤ f
p
g q.
❤✐➸♥ ♥❤✐➯♥ ✤ó♥❣✳
◆➳✉ f = 0 ✈➔ g = 0 tr➯♥ t➟♣ E ⊂ E, µ(E ) > 0 t❤➻
|f |p dµ > 0,
X
✣➦t u =
|g|q dµ > 0
X
|g|
|f |
,v =
✈➔ →♣ ❞ö♥❣ ❜ê ✤➲ ✶✳✺ t❛ ✤÷ñ❝
f p
g q
|f |.|g|
f p. g
≤
q
|f |p
|g|q
+
p( X |f |p ) q( X |g|q )
▲➜② t➼❝❤ ♣❤➙♥ ❤❛✐ ✈➳ t❤❡♦ ✤ë ✤♦ µ tr➯♥ ❳ t❛ ♥❤➟♥ ✤÷ñ❝ ❜➜t ✤➥♥❣ t❤ù❝
❝➛♥ ❝❤ù♥❣ ♠✐♥❤✿
fg
1
≤ f
p
g q.
❇ê ✤➲ ✶✳✻✳ ✭❇➜t ✤➥♥❣ t❤ù❝ ▼✐♥❦♦✇s❦✐✮ ❈❤♦ f, g ∈ Lp(X, µ)✱✈î✐ 1 ≤ p ≤
∞. f + g ∈ Lp (X, µ) ✈➔
f +g
p
≤ f
p
+ g
p
❈❤ù♥❣ ♠✐♥❤✳ ❱î✐ p = 1 ❜➜t ✤➥♥❣ t❤ù❝ tr➯♥ ❤✐➸♥ ♥❤✐➯♥ ✤ó♥❣✳
1 1
❱î✐ p > 1 t❛ ❧➜② sè t❤ü❝ q s❛♦ ❝❤♦ + = 1, t❤➻ q > 1 ✈➔
p q
p + q = pq → p = q(p − 1), q = p(q − 1)
✶✽
❚❛ ❝â
|f + q|p = |f + g|p−1 |f + g| ≤ |f ||f + g|p−1 + |g||f + g|p−1
⑩♣ ❞ö♥❣ ❜➜t ✤➥♥❣ t❤ù❝ ❍♦❧❞❡r✬s ❧➜② t➼❝❤ ♣❤➙♥ ❤❛✐ ✈➳ t❛ ✤÷ñ❝
|f + g|p ≤
(|f | + |g|)|f + g|p−1 =
X
X
|f |p
≤
|f ||f + g|p−1 +
|g||f + g|p−1
X
1
p
1
q
|f + g|q(p−1)
.
X
|g|p
+
X
X
1
p
|f + g|q(p−1)
.
X
1
q
X
❤❛②
|f + g|p ≤
1
p
|f |p
X
X
❚ø ✤â
p
X
1− 1q
|f + g|
≤
1
q
|f + g|p
1
q
X
p
|f |
X
✭❱➻ 1 −
|q|p
+
1
p
1
p
p
|g|
+
X
1
p
X
= p1 ✮✳ ❚❛ ✤÷ñ❝
f +g
p
≤ f
p
+ g p.
✣à♥❤ ❧þ ✶✳✶ ✭❋✐s❝❤❡r✲❘✐❡s③✮✳ ❑❤æ♥❣ ❣✐❛♥ Lp ❧➔ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ✈î✐
♠é✐ ♣✱ 1 ≤ p ≤ ∞
❈❤ù♥❣ ♠✐♥❤✳ ❚❛ ❝❤✐❛ ❤❛✐ tr÷í♥❣ ❤ñ♣ p = ∞ ✈➔ 1 ≤ p < ∞
❚r÷í♥❣ ❤ñ♣ ✶✿ p = ∞
●✐↔ sû fn ❧➔ ♠ët ❞➣② ❈❛✉❝❤✉② tr♦♥❣ L∞ ✳ ❱î✐ ♠é✐ sè ♥❣✉②➯♥ k ≥ 1 ❝â
♠ët sè ♥❣✉②➯♥ Nk ✤➸ fm − fn
∞
≤ k1 ∀m, n ≥ Nk ✳ ❉♦ ✤â ❝â ♠ët t➟♣ ❝â
✶✾
✤ë ✤♦ ❦❤æ♥❣ Ek s❛♦ ❝❤♦
|fm (x) − fn (x)| ≤
1
k
∀x ∈ X \ Ek ✱ ∀m, n ≥ Nk
✣➦t E = ∪k Ek t❤➻ ❊ ❧➔ t➟♣ ❝â ✤ë ✤♦ ❦❤æ♥❣ ✈➔ t❛ t❤➜② ∀x ∈ X \ E ✱ ❞➣②
fn (x) ❧➔ ❈❛✉❝❤② ✭tr♦♥❣ R✮✳❱➻ ✈➟②✱ fn (x) → f (x)∀x ∈ X \ E ✳ ❈❤✉②➸♥ q✉❛
❣✐î✐ ❤↕♥ ❦❤✐ m → ∞ t❛ ✤÷ñ❝
1
|f (x) − fn (x)| ≤ ∀x ∈ X \ E, ∀n ≥ Nk .
k
❚❛ ❦➳t ❧✉➟♥ r➡♥❣ f ∈ L∞ ✈➔ f − fn
∞
≤ k1 ∀n ≥ Nk , ❞♦ ✤â fn → f tr♦♥❣
L∞ ✳
❚r÷í♥❣ ❤ñ♣ ✷✿ 1 ≤ p < ∞
●✐↔ sû (fn ) ❧➔ ❞➣② ❈❛✉❝❤② tr♦♥❣ Lp ✳ ❚❛ ❝❤➾ ❝➛♥ ❝❤ù♥❣ ♠✐♥❤ ❞➣② ♥➔② ❝â
♠ët ❞➣② ❝♦♥ ❤ë✐ tö tr♦♥❣ Lp ✳
❈❤ó♥❣ t❛ ❧➜② r❛ ♠ët ❞➣② ❝♦♥ (fnk ) s❛♦ ❝❤♦
fnk+1 − fnk
p
≤
1
∀k ≥ 1.
2k
❈ö t❤➸ ❧➔♠ ♥❤÷ s❛✉✿ ❈❤å♥ n1 s❛♦ ❝❤♦ fm − fn p ≤ 12 ∀m, n ≥ n1 ✱ s❛✉ ✤â
1
❝❤å♥ n2 ≥ n1 s❛♦ ❝❤♦ fm − fn p ≤ 2 ∀m, n ≥ n2 ✱✳✳✳❚❛ ❦❤➥♥❣ ✤à♥❤ r➡♥❣
2
fnk ❤ë✐ tö tr♦♥❣ Lp ✳ ✣➸ ✤ì♥ ❣✐↔♥ t❛ ❦➼ ❤✐➺✉ fk t❤❛② ❝❤♦ fnk ✳ ◆❤÷ ✈➟②
fk+1 − fk
p
≤
1
∀k ≥ 1
2k
✷✵
✣➦t
n
|fk+1 (x) − fk (x)|,
gn (x) =
k=1
t❤➻
gn
p
≤ 1.
❚❤❡♦ ✤à♥❤ ❧➼ ✈➲ sü ❤ë✐ tö ✤ì♥ ✤✐➺✉✱ gn (x) t✐➳♥ tî✐ ❣✐î✐ ❤↕♥ ❤ú✉ ❤↕♥ ❤❛②
❝á♥ ❣å✐ ❧➔ g(x) ❤✳❦✳♥ tr➯♥ ❳ ✈î✐ g ∈ Lp ✳ ▼➦t ❦❤→❝ ✈î✐ m ≥ n ≥ 2 t❛ ❝â
|fm (x)−fn (x)| ≤ |fm (x)−fm−1 (x)|+...+|fn+1 (x)−fn (x)| ≤ g(x)−gn−1 (x).
❉♦ ✈➟② ✈î✐ ❤➛✉ ❤➳t x ∈ X ✱ fn (x) ❧➔ ❈❛✉❝❤② ✈➔ ❤ë✐ tö ❣✐î✐ ❤↕♥ ❤ú✉ ❤↕♥✱
❣å✐ ❧➔ f (x)✳
❱î✐ ❤➛✉ ❤➳t x ∈ X ❚❛ ❝â
|f (x) − fn (x)| ≤ g(x)∀n ≥ 2
❱➔ ✤➦❝ ❜✐➺t f ∈ Lp ✳ ❈✉è✐ ❝ò♥❣✱ t❤❡♦ ✤à♥❤ ❧þ ❤ë✐ tö trë✐✱ fn − f
❞♦ ✤â fn (x) − f (x)|p → 0 ❤✳❦✳♥ ✈➔ |fn − f |p ≤ g p ∈ L1
p
→ 0,
❈❤÷ì♥❣ ✷
✣à♥❤ ❧þ ❍❛❤♥✲❇❛♥❛❝❤
✷✳✶ ✣è✐ ♥❣➝✉ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥✱ ❦❤æ♥❣
❣✐❛♥ ❇❛♥❛❝❤
✣à♥❤ ♥❣❤➽❛ ✷✳✶✳ ◆➳✉ ❊ ❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ tr➯♥ tr÷í♥❣ K✱
❦❤æ♥❣ ❣✐❛♥ ✤è✐ ♥❣➝✉ ❝õ❛ ❊ ❧➔✿
E ∗ = B(E, K) ❂ ④ T : E → K : T ❧✐➯♥ tö❝ ✈➔ t✉②➳♥ t➼♥❤⑥
❝→❝ ♣❤➛♥ tû ❝õ❛ E ∗ ✤÷ñ❝ ❣å✐ ❧➔ ♣❤✐➳♥ ❤➔♠ t✉②➳♥ t➼♥❤ ✭❧✐➯♥ tö❝✮ tr➯♥ E ✳
▼➺♥❤ ✤➲ ✷✳✶✳ ◆➳✉ E ❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ t❤➻ E ∗ ❧➔ ♠ët ❦❤æ♥❣
❣✐❛♥ ❇❛♥❛❝❤✳
▼➺♥❤ ✤➲ tr➯♥ ❧➔ ❤➺ q✉↔ ❝õ❛ ✣à♥❤ ❧þ ❞÷î✐ ✤➙②
✣à♥❤ ❧þ ✷✳✶✳ ❈❤♦ ❊ ❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ ✈➔ ❋ ❧➔ ♠ët ❦❤æ♥❣
❣✐❛♥ ❇❛♥❛❝❤✳ ❈❤♦ B(E, F ) ❧➔ ❦➼ ❤✐➺✉ ❝õ❛ ❦❤æ♥❣ ❣✐❛♥ t➜t ❝↔ t♦→♥ tû t✉②➳♥
t➼♥❤ ❜à ❝❤➦♥ T : E → F ✳❈❤ó♥❣ t❛ ❝â t❤➸ ❧➟♣ B(E, F ) ❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥
✈❡❝tì ①→❝ ✤à♥❤ ❜ð✐ ❚ ✰ ❙ ✈➔ λT (T, S ∈ B(E, F ), λ ∈ K) ♥❤÷ s❛✉✿
(T + S)(x) = T (x) + S(x), (λT )(x) = λ(T (x))(x ∈ E)