❍❆◆❖■ P❊❉❆●❖●■❈❆▲ ❯◆■❱❊❘❙■❚❨ ✷
❉❊P❆❘❚▼❊◆❚ ❖❋ ▼❆❚❍❊▼❆❚■❈❙
▲❯❖◆● ❚❍■ ❚❯❨❊◆
❈❖❱❊❘■◆● ❚❍❊❖❘❊▼❙
❆◆❉ ❆PP▲■❈❆❚■❖◆❙
●❘❆❉❯❆❚■❖◆ ❚❍❊❙■❙
❍❛♥♦✐✱ ✷✵✶✾
❍❆◆❖■ P❊❉❆●❖●■❈❆▲ ❯◆■❱❊❘❙■❚❨ ✷
❉❊P❆❘❚▼❊◆❚ ❖❋ ▼❆❚❍❊▼❆❚■❈❙
▲❯❖◆● ❚❍■ ❚❯❨❊◆
❈❖❱❊❘■◆● ❚❍❊❖❘❊▼❙
❆◆❉ ❆PP▲■❈❆❚■❖◆❙
❙♣❡❝✐❛❧✐t②✿ ❆♥❛❧②s✐s
●❘❆❉❯❆❚■❖◆ ❚❍❊❙■❙
❙✉♣❡r✈✐s♦r✿ ❉r✳ ❉♦ ❍♦❛♥❣ ❙♦♥
❍❛♥♦✐✱ ✷✵✶✾
❈♦♥❢✐r♠❛t✐♦♥
■ ❛ss✉r❡ t❤❛t t❤❡ r❡s✉❧ts ✐♥ t❤✐s t❤❡s✐s ❛r❡ tr✉❡ ❛♥❞ t❤❡ t♦♣✐❝ ♦❢ t❤✐s t❤❡s✐s ✐s ♥♦t
✐❞❡♥t✐❝❛❧ t♦ ♦t❤❡r t♦♣✐❝✳ ■ ❛❧s♦ ❛ss✉r❡ t❤❛t ❛❧❧ t❤❡ ❤❡❧♣ ❢♦r t❤✐s t❤❡s✐s ❤❛s ❜❡❡♥ ❛❝❦♥♦✇❧✲
❡❞❣❡ ❛♥❞ t❤❛t t❤❡ ✉s❡❞ ❧✐t❡r❛t✉r❡ ❛♥❞ ♦t❤❡r ❛✉①✐❧✐❛r② r❡s♦✉r❝❡s ❤❛✈❡ ❜❡❡♥ ❝♦♠♣❧❡t❡❧②
r❡❢❡r❡♥❝❡❞✳
❚❤❡ ❛✉t❤♦r
▲✉♦♥❣ ❚❤✐ ❚✉②❡♥
❆❝❦♥♦✇❧❡❞❣♠❡♥t
■ ✇♦✉❧❞ ❧✐❦❡ t♦ ❡①♣r❡ss ♠② ❞❡❡♣ ❣r❛t✐t✉❞❡ t♦ ♠② s✉♣❡r✈✐s♦r✱ ❉r✳ ❉♦ ❍♦❛♥❣ ❙♦♥✱
❢♦r ❤✐s ❝❛r❡❢✉❧ ❛♥❞ ❡❢❢❡❝t✐✈❡ ❣✉✐❞❛♥❝❡✳
■ ✇♦✉❧❞ ❧✐❦❡ t♦ t❤❛♥❦ t❤❡ ❜♦❛r❞ ♦❢ ❞✐r❡❝t♦rs ♦❢ ❍❛♥♦✐ P❡❞❛❣♦❣✐❝❛❧ ❯♥✐✈❡rs✐t② ✷✱
❢♦r ♣r♦✈✐❞✐♥❣ ♠❡ ✇✐t❤ ♣❧❡❛s❛♥t ✇♦r❦✐♥❣ ❝♦♥❞✐t✐♦♥s✳
■ ❛♠ ❣r❛t❡❢✉❧ t♦ t❤❡ ❧❡❛❞❡rs ♦❢ ❉❡♣❛rt♠❡♥t ♦❢ ▼❛t❤❡♠❛t✐❝s✱ ❛♥❞ ♠② ❝♦❧❧❡❛❣✉❡s✱
❢♦r ❣r❛♥t✐♥❣ ♠❡ ✈❛r✐♦✉s ❢✐♥❛♥❝✐❛❧ s✉♣♣♦rts ❛♥❞✴♦r ❝♦♥st❛♥t ❤❡❧♣ ♠② st✉❞②✳
❈♦♥t❡♥ts
■♥tr♦❞✉❝t✐♦♥
✶
✶
❱✐t❛❧✐✬s ❝♦✈❡r✐♥❣ t❤❡♦r❡♠ ❢♦r ▲❡❜❡s❣✉❡ ♠❡❛s✉r❡
✷
✶✳✶✳
❆ ✺r✲❝♦✈❡r✐♥❣ t❤❡♦r❡♠
✷
✶✳✷✳
❱✐t❛❧✐✬s ❝♦✈❡r✐♥❣ t❤❡♦r❡♠ ❢♦r ▲❡❜❡s❣✉❡ ♠❡❛s✉r❡
✷
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❱✐t❛❧✐✬s ❝♦✈❡r✐♥❣ t❤❡♦r❡♠ ❢♦r ❘❛❞♦♥ ♠❡❛s✉r❡s
✷✳✶✳
✷✳✷✳
✸
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❇❡s✐❝♦✈✐t❝❤✬s ❝♦✈❡r✐♥❣ t❤❡♦r❡♠
✹
✼
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✼
Pr♦♦❢ ♦❢ ❚❤❡♦r❡♠ ✷✳✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✸
❙♦♠❡ ❛♣♣❧✐❝❛t✐♦♥s
✶✺
✐
❚❛❜❡❧ ♦❢ ♥♦t❛t✐♦♥
❲❡ ✐♥tr♦❞✉❝❡ ❤❡r❡ t❤❡ ♥♦t❛t✐♦♥ ❢♦r s♦♠❡ ❜❛s✐❝ ❝♦♥❝❡♣ts ✇❤✐❝❤ ❛r❡ ♥♦t ❞❡❢✐♥❡❞
✐♥ t❤❡ t❤❡s✐s✳
Z✱ t❤❡ s❡t ♦❢ ✐♥t❡❣❡rs✳
R✱ t❤❡ s❡t ♦❢ r❡❛❧ ♥✉♠❜❡rs✳
Rn , t❤❡ n✲ ❞✐♠❡♥s✐♦♥❛❧ ❡✉❝❧✐❞❡❛♥ s♣❛❝❡ ❡q✉✐♣♣❡❞ ✇✐t❤ t❤❡ ✐♥♥❡r
❛♥❞ t❤❡ ♥♦r♠ |x|✳
n−1
S
= {x ∈ Rn : |x| = 1} , t❤❡ ✉♥✐t s♣❤❡r❡✳
[a, b], (a, b), [a, b) ❛♥❞ (a, b] ❛r❡ t❤❡ ❝❧♦s❡❞✱ ♦♣❡♥ ❛♥❞ ❤❛❧❢✲♦♣❡♥
✐♥t❡r✈❛❧s ✐♥ R✳
n
L ✱ t❤❡ ▲❡❜❡s❣✉❡ ♠❡❛s✉r❡ ♦♥ Rn ✳
α(n) = Ln {x ∈ Rn : |x| ≤ 1} , t❤❡ ✈♦❧✉♠❡ ♦❢ t❤❡ ✉♥✐t ❜❛❧❧✳
A = ClA✱ t❤❡ ❝❧♦s✉r❡ ♦❢ t❤❡ s❡t A✳
χA , t❤❡ ❝❤❛r❛❝t❡r✐st✐❝ ❢✉♥❝t✐♦♥ ♦❢ A✳
✐✐
♣r♦❞✉❝t
x·y
■♥tr♦❞✉❝t✐♦♥
❈♦✈❡r✐♥❣ t❤❡♦r❡♠ ❤❛s ♠❛♥② ❛♣♣❧✐❝❛t✐♦♥s ✐♥ t❤❡ st✉❞② ♦❢ ✐♥t❡❣r❛❧s ❛♥❞ ❧✐♠✐ts ♦❢
✐♥t❡❣r❛❧s✳❚❤❡ t❤❡♦r❡♠ ✇❛s ❢✐rst ❞✐s❝♦✈❡r❡❞ ❛♥❞ ♣r♦✈❡❞ ❜② ●✐✉s❡♣♣❡ ❱✐t❛❧✐ ✐♥ ✶✾✵✽✳ ■t
st❛t❡s t❤❛t ✐❢ ❛ s✉❜s❡t ❊ ♦❢ ✐s ❝♦✈❡r❡❞ ❜② ❛ ❱✐t❛❧✐✬s ❝♦✈❡r✐♥❣✱ t❤❡♥ t❤❡r❡ ❡①✐sts ❛ ❢❛♠✐❧②
♦❢ s♣❤❡r❡s ✐s ❞r❛✇♥ ❢r♦♠ t❤❛t ❝♦✈❡r✐♥❣ s✉❝❤ t❤❛t t❤❡ ✉♥✐♦♥ ♦❢ t❤♦s❡ ✐s ❝♦✈❡r❡❞ ✇✐t❤ ❊
◆✱ ✇❤❡r❡ ◆ ✐s ❛ s❡t ♦❢ ▲❡❜❡s❣✉❡ ✵ ♠❡❛s✉r❡✳ ❱✐t❛❧✐✬s ❝♦✈❡r✐♥❣ t❤❡♦r❡♠ ✐s t❤❡♥ ♣r♦✈❡❞ ❢♦r
t❤❡ ❝❛s❡ ❍❛✉s❞♦r❢❢ ♠❡❛s✉r❡✳ ■t ❛❧s♦ st❛t❡s t❤❛t ❱✐t❛❧✐✬s ❝♦✈❡r✐♥❣ t❤❡♦r❡♠ ✐s ❣❡♥❡r❛❧❧②
✐♥❝♦rr❡❝t ❢♦r t❤❡ ✐♥❢✐♥✐t❡ ❞✐♠❡♥s✐♦♥❛❧ ❝❛s❡✳
❚❤❡ ♣✉r♣♦s❡ ♦❢ t❤✐s t❤❡s✐s ✐s t♦ ❧❡❛r♥ ❛❜♦✉t ❱✐t❛❧✐✬s ❝♦✈❡r✐♥❣ t❤❡♦r❡♠ ❛♥❞ s♦♠❡ ♦❢
✐ts ❛♣♣❧✐❝❛t✐♦♥s✳❱✐t❛❧✐✬s ❝♦✈❡r✐♥❣ t❤❡♦r❡♠ ✐s ❛♥ ✐♥t❡r❡st✐♥❣ r❡s✉❧t ✐♥ t❤❡ ❛♥❛❧②t✐❝❛❧ ❛♥❞
t❤❡♦r❡t✐❝❛❧ t♦♣♦❧♦❣②✳
❚❤✐s t❤❡s✐s ❝♦♥s✐sts ♦❢ t❤r❡❡ ❝❤❛♣t❡rs✿
❈❤❛♣t❡r ✶✿ ❲❡ ♣r♦✈❡ ❱✐t❛❧✐✬s ❝♦✈❡r✐♥❣ t❤❡♦r❡♠ ❢♦r ▲❡❜❡s❣✉❡ ♠❡❛s✉r❡✳
❈❤❛♣t❡r ✷✿ ❲❡ ♣r♦✈❡ ❝♦✈❡r✐♥❣ t❤❡♦r❡♠ ♦❢ ❘❛❞♦♥ ♠❡❛s✉r❡s✳
❈❤❛♣t❡r ✸✿ ❲❡ ❛♣♣❧② t❤❡s❡ ❝♦✈❡r✐♥❣ t❤❡♦r❡♠s t♦ ♣r♦✈❡ s♦♠❡ r❡s✉❧ts ❛❜♦✉t ❞✐❢✲
❢❡r❡♥t✐❛t✐♦♥ ♦❢ ♠❡❛s✉r❡s✳
✶
❈❤❛♣t❡r ✶
❱✐t❛❧✐✬s ❝♦✈❡r✐♥❣ t❤❡♦r❡♠ ❢♦r
▲❡❜❡s❣✉❡ ♠❡❛s✉r❡
■♥ t❤✐s ❝❤❛♣t❡r✱ ✇❡ ✐♥tr♦❞✉❝❡ ❛ ✺r✲❝♦✈❡r✐♥❣ t❤❡♦r❡♠ ❛♥❞ ✉s❡ ✐t t♦ ♣r♦✈❡ ❱✐t❛❧✐✬s
❝♦✈❡r✐♥❣ t❤❡♦r❡♠ ❢♦r ▲❡❜❡s❣✉❡ ♠❡❛s✉r❡✳
✶✳✶✳
❆ ✺r✲❝♦✈❡r✐♥❣ t❤❡♦r❡♠
❚❤❡♦r❡♠ ✶✳✶✳
❝♦♠♣❛❝t✳
B
▲❡t
(X, d)
❜❡ ❛ ♠❡tr✐❝ s♣❛❝❡ s✉❝❤ t❤❛t ❛❧❧ ❜♦✉♥❞❡❞ ❝❧♦s❡❞ s✉❜s❡ts ❛r❡
✐s ❛ ❢❛♠✐❧② ♦❢ ❝❧♦s❡❞ ❜❛❧❧s ✐♥
X
s✉❝❤ t❤❛t
sup {d(B) : B ∈ B} < ∞.
❚❤❡♥ t❤❡r❡ ❡①✐sts ❛ ❢✐♥✐t❡ ♦r ❝♦✉♥t❛❜❧❡ s❡q✉❡♥❝❡
B⊂
❋✐rst❧②✱ ✇❡ ✇✐❧❧ ❛ss✉♠❡ t❤❛t
A
♦❢ ❞✐s❥♦✐♥t ❜❛❧❧s s✉❝❤ t❤❛t
5Bi .
i
B∈B
Pr♦♦❢✳
Bi ∈ B
✐s ❜♦✉♥❞❡❞ s❡t ❛♥❞
B
❤❛s t❤❡ ❢♦r♠
B = {B(x, r(x)) : x ∈ A} .
●✐✈❡♥
M = sup {r(x) : x ∈ A}
A1 =
❈❤♦♦s❡ ❛♥ ❛r❜✐tr❛r②
x1 ∈ A 1
❛♥❞
3
x ∈ A : M < r(x) ≤ M
4
.
❛♥❞ t❤❡♥
k
xk+1 ∈ A1 \
B(xi , 3r(xi ))
i=1
✷
(1)
k
❛s ❧♦♥❣ ❛s
A1 \
B(xi , 3r(xi )) = 0. ❈♦♥s✐❞❡r B(xk , r(xk )) ❛♥❞ B(xl , r(xl ))
✇✐t❤
k > l.
i=1
k−1
xk ∈ A1 \
B(xi , 3r(xi )) ⊂ A \ B(xl , 3r(xl ))
i=1
3
9
d(xk , xl ) ≥ 3r(xl ) > 3. M = M
4
4
9
r(xk ) + r(xl ) ≤ M + M = 2M < .
4
❙♦✱ B(xk , r(xk )) ❛♥❞ B(xl , r(xl )) ❛r❡ ❞✐s❥♦✐♥t✳
❥♦✐♥t ✐♥ ✈✐❡✇ ♦❢ t❤❡ ❞❡❢✐♥✐t✐♦♥ ♦❢ A1 ✳
❙♦✱
❲❡ ❝❤♦♦s❡ t❤❡ ❜❛❧❧s
B(xi , r(xi ))
❛r❡ ❞✐s✲
B(xi , r(xi ))✳
■♥❞❡❡❞✱ ❛ss✉♠❡ t❤❛t A ✐s ❢✐♥✐t❡✳ ❙♦✱ t❤❡r❡ ❡①✐sts A ✐s ❢✐♥✐t❡✿ x1 , ..., xk+1 , ...
■t ✐♠♣❧✐❡s t❤❛t t❤❡r❡ ❡①✐sts ❛ s✉❜s❡q✉❡♥❝❡ xk ∈ A ✐s ❝♦♥✈❡r❣❡✳
9
▼♦r❡♦✈❡r✱ d(xk , xl ) ≤
M ∀k = l. ❚❤❡r❡ ❞♦❡s♥✬t ❡①✐sts ❛ ❝♦♥✈❡r❣❡♥t s✉❜s❡q✉❡♥❝❡
4
❝♦♥tr❛❞✐❝t✐♦♥✮✳ ❙♦✱ ✇❡ ♦♥❧② ❤❛✈❡ ❢✐♥✐t❡❧② ♠❛♥② ♦r t❤❡♠✱ s❛② k1 ✳
❲❡ ♥❡❡❞ t♦ ♣r♦✈❡ t❤❡r❡ ✐s ♦♥❧② ❢✐♥✐t❡❧② ♠❛♥② ♦❢
❚❤✉s✱ ✇❡ ❤❛✈❡
k1
A1 ⊂
B(xi , 3r(xi )).
i=1
❙✐♥❝❡
r(x) ≤ 2r(xi )✱t❤✐s
❣✐✈❡s
k1
B(x, r(x)) ⊂
❢♦r
B(xi , 5r(xi ))
i=1
x∈A1
x ∈ A1 , i = 1, ..., ki .
●✐✈❡♥
3
4
2
3
M < r(x) < M
4
A2 =
x∈A:
A2 =
x ∈ A2 : B(x, r(x)) ∩
,
k1
B(xi , r(xi )) = ∅ .
i=1
■❢
x ∈ A2 \ A2
✳ ❆s
r(x) ≤ 2r(xi )
t❤❡♥
d(x, xi ) ≤ r(x) + r(xi ) ≤ 3r(xi ).
k1
❚❤❡r❡❢♦r❡✱
A2 \ A2
⊂
B(xi , 3r(xi )).
i=1
❈❤♦♦s❡ ❛♥ ❛r❜✐tr❛r②
xki +1 ∈ A2
❛♥❞ t❤❡♥
k1
xk1 +1 ∈ A2 \
B(xi , 3r(xi )).
i=1
✸
✭❛
❙✐♠✐❧❛r②✱ ✇❡ ♦♥❧② ❤❛✈❡ ❢✐♥✐t❡❧② ♠❛♥② ♦❢
B(xi , r(xi ))
❛r❡ ❞✐s❥♦✐♥t✱ s❛②
k2
s✉❝❤ t❤❛t
A2 ⊂
k2
B(xi , 3r(xi )).
i=k1 +1
❚❤✉s✱
k2
B(x, r(x)) ⊂
i=1
x∈A2
❢♦r
B(xi , 5r(xi ))
xi ∈ A2 , i = 1, ..., k2 .
Pr♦❝❡❡❞✐♥❣ ✐♥ t❤✐s ♠❛♥♥❡r ✇❡ ❢✐♥❞ t❤❡ r❡q✉✐r❡❞ ❜❛❧❧s✳
■♥ t❤❡ ❛❜♦✈❡ ♣r♦♦❢✱ ✇❡ ❤❛✈❡ t✇♦ r❡str✐❝t✐♦♥s✳
x ∈ A✱ t❤❡r❡ ✐s ♦♥❧② ♦♥❡ ❜❛❧❧ B(x, r(x))✳ ❚♦ ❢✐① ✐t✱ ✇❡
14
sup {r : B(x, r) ∈ B}
❝❛♥ s❡❧❡❝t ❢♦r ❡❛❝❤ ❝❡♥tr❡ x ❛ ❜❛❧❧ B(x, r(x)) ∈ B s✉❝❤ t❤❛t r(x) >
15
8
✳
❛♥❞ ✐♥st❡❛❞ ♦❢ ❝❤♦♦s✐♥❣ ♥✉♠❜❡r ✸ ✐♥ ✭✶✮✱ ✇❡ ✉s❡
3
✶✳ ❋✐rst❧②✱ ✇❡ ❛ss✉♠❡❞ t❤❛t ❢♦r ❡❛❝❤
✷✳ ❙❡❝♦♥❞❧②✱ ✇❡ ❛ss✉♠❡❞ t❤❛t t❤❡ ❝❡♥tr❡s ❧✐❡ ✐♥ ❛ ❜♦✉♥❞❡❞ s❡t✳ ❚♦ ❛✈♦✐❞ t❤✐s t❤❡ ♣r♦♦❢
❝❛♥ ❜❡ ♠♦❞✐❢✐❡❞ ❜② ❝❤♦♦s✐♥❣ t❤❡ ♥❡✇ ♣♦✐♥ts
❢♦r ❡①❛♠♣❧❡ ✐❢
x
❛♥❞
y
xi
♥♦t t♦♦ ❢❛r ❢r♦♠ ❛ ❢✐①❡❞ ♣♦✐♥t
✇❡r❡ ♣♦ss✐❜❧❡ s❡❧❡❝t✐♦♥s ❛♥❞
r✉❧❡ t❤❛t ✇❡ ❝❛♥♥♦t ♣✐❝❦
d(y, a) > 2d(x, a)
a ∈ A❀
✇❡ ✇♦✉❧❞ ♠❛❦❡ ❛
y✳
❲❡ ❝❛♥ ♥♦✇ ❡❛s✐❧② ❞❡r✐✈❡ ❛ ❱✐t❛❧✐✲t②♣❡ ❝♦✈❡r✐♥❣ t❤❡♦r❡♠ ❢♦r t❤❡ ▲❡❜❡s❣✉❡ ♠❡❛✲
s✉r❡
n
L
✶✳✷✳
✳
❱✐t❛❧✐✬s ❝♦✈❡r✐♥❣ t❤❡♦r❡♠ ❢♦r ▲❡❜❡s❣✉❡ ♠❡❛✲
s✉r❡
❚❤❡♦r❡♠ ✶✳✷✳
▲❡t
A ⊆ Rn .
▲❡t
B
❜❡ t❤❡ ❢❛♠✐❧② ♦❢ ❝❧♦s❡❞ ❜❛❧❧s ✐♥
∀x ∈ A : inf {d(B) : x ∈ B ∈ B} = 0.
❚❤❡♥ t❤❡r❡ ❡①✐sts
i)Bi1 ∩ Bi2 = ∅
{Bi }∞
i=1 ∈ B
∀i1 = i2
s✉❝❤ t❤❛t
∞
ii)Ln A \
Bi
= 0.
i=1
✹
Rn
s❛t✐s❢②✐♥❣✿
▼♦r❡♦✈❡r✱ ❢♦r ❡✈❡r②
ε > 0✱
✇❡ ❝❛♥ ❝❤♦♦s❡
Bi
s✉❝❤ t❤❛t
∞
Ln (Bi ) ≤ Ln (A) + ε.
i=1
Pr♦♦❢✳
❆ss✉♠❡ t❤❛t
A
✐s ❜♦✉♥❞❡❞✳ ▲❡t
V
❜❡ ❛♥ ♦♣❡♥ s❡t s✉❝❤ t❤❛t
A⊂V
Ln (V ) ≤ (1 + 7−n ).Ln A.
∃Bi ∈ B, i = 1, .., k,
∀i1 = i2 ; Bi ⊂ V
❆♣♣❧②✐♥❣ ❛ ✺r✲❝♦✈❡r✐♥❣ t❤❡♦r❡♠✱
Bi1 ∩ Bi2 = ∅
A⊂
B(xi , 5ri ). ❚❤❡♥
s✉❝❤ t❤❛t
❛♥❞
i
5−n Ln (A) ≤ 5−n
Ln (B(xi , 5ri )) =5−n .Cn .(5ri )n
i
=Cn .rin
Ln (Bi )
=
i
k
Ln (Bi ) ≥ 5−n Ln (A)
⇔ lim
k→+∞
i=1
n
L (A) = a > 0
■❢
k
Ln (Bi ) ≥ 5−n a > 0
lim
k→∞
i=1
k1
❚❤❡♥
Ln (Bi ) ≥ 5−n a − ε.
∀ε > 0, ∃k1 :
i=1
❈❤♦♦s❡
ε = (5−n − 6−n )a > 0
❙♦✱
k1
Ln (Bi ) ≥ 6−n a = 6−n Ln (A).
i=1
k1
▲❡tt✐♥❣
A1 = A \
k1
Bi ⊆ V \
i=1
Bi
i=1
k1
n
n
k1
n
i=1
i=1
−n
✇❤❡r❡
Ln (Bi )
Bi ) =L (V ) −
L (A1 ) ≤ L (V \
=(1 + 7 )Ln (A) − 6−n Ln (A)
1
1
=(1 + n − n )Ln (A)
7
6
n
=u.L (A)
1
1
u = 1 + n − n.
7
6
✺
❛♥❞
◆♦✇
A1
✐s ❜♦✉♥❞❡❞ s❡t ❛♥❞ ❝❤♦♦s❡
V1
s✉❝❤ t❤❛t
k1
A1 ⊆ V1 ⊆ V \
Bi
i=1
❛♥❞
❆♥❞ s✐♠✐❧❛r②✱
L (V1 ) ≤ (1 + 7−n )Ln (A1 ).
n
∃Bi ∈ B, i = k1 + 1, .., k2
s✉❝❤ t❤❛t
Bi1 ∩ Bi2 = ∅
∀i1 = i2
❛♥❞
Ln (A2 ) ≤ u.Ln (A1 ) ≤ u2 .Ln (A)
k2
✇❤❡r❡
k2
A2 = A1 \
Bi = A \
❛❧❧ t❤❡ ❜❛❧❧s
Bi ,
i=1
i=k1 +1
i = 1, .., k2
Bi ,
❛r❡ ❞✐s❥♦✐♥t✳
Pr♦❝❡❡❞✐♥❣ ✐♥ t❤✐s ♠❛♥♥❡r✱ ✇❡ ❣❡t t❤❛t
km
Bi ) ≤ um .Ln (A)
n
L (A \
i=1
✇❤❡r❡
1
1
− n < 1.
n
7
6
u=1+
km
❚❤❡r❡❢♦r❡✱
n
L (A \
Bi ) = 0
❛s
m→∞
i=1
♦r
Ln (A \
Bi ) = 0.
i=1
❘❡♠❛r❦ ✶✳✶✳
■♥ t❤❡ t❤❡♦r❡♠ ✶✳✷✱ ✐❢ ✇❡ r❡♣❧❛❝❡ t❤❡ ▲❡❜❡s❣✉❡ ♠❡❛s✉r❡
Ln
❜② t❤❡ ❣❡♥❡r❛❧
❘❛❞♦♥ ♠❡❛s✉r❡ t❤❡♥ t❤❡ r❡s✉❧t ❞♦❡s ♥♦t ❤♦❧❞✳
❊①❛♠♣❧❡ ✶✳✶✳
❆ss✉♠❡ t❤❛t
µ
✐s ❛ ❘❛❞♦♥ ♠❡❛s✉r❡ ♦♥
R2
❞❡❢✐♥❡❞ ❜②
µ(A) = L1 ({x ∈ R : (x, 0) ∈ A}) .
t❤❛t ✐s✱
µ
✐s t❤❡ ❧❡♥❣t❤ ♠❡❛s✉r❡ ♦♥ t❤❡
x✲❛①✐s✳
❚❤❡ ❢❛♠✐❧②
B = {B((x, y), y) : x ∈ R, 0 < y < ∞} .
❝♦✈❡rs
A = {(x, 0) : x ∈ R}
❧❡❝t✐♦♥ B1 , B2 , ... ✇❡ ❤❛✈❡
✐♥ t❤❡ s❡♥s❡ ♦❢ t❤❡♦r❡♠ ✶✳✷ ❜✉t ❢♦r ❛♥② ❝♦✉♥t❛❜❧❡ s✉❜❝♦❧✲
∞
µ A∩
Bi
= 0.
i=1
❚❤❡r❡ ✐s ❛ ✈❡rs✐♦♥ ♦❢ ❱✐t❛❧✐✬s ❝♦✈❡r✐♥❣ t❤❡♦r❡♠ ❢♦r ❘❛❞♦♥ ♠❡❛s✉r❡ ❜✉t ✐t r❡q✉✐r❡s
♠♦r❡ ❝♦♥❞✐t✐♦♥s✳ ❚❤❛t t❤❡♦r❡♠ ✇✐❧❧ ❜❡ ✐♥tr♦❞✉❝❡❞ ✐♥ t❤❡ ♥❡①t ❝❤❛♣t❡r✳
✻
❈❤❛♣t❡r ✷
❱✐t❛❧✐✬s ❝♦✈❡r✐♥❣ t❤❡♦r❡♠ ❢♦r ❘❛❞♦♥
♠❡❛s✉r❡s
❚❤❡ ❱✐t❛❧✐✬s ❝♦✈❡r✐♥❣ t❤❡♦r❡♠ ❢♦r ❘❛❞♦♥ ♠❡❛s✉r❡s ✐s st❛t❡❞ ❛s ❢♦❧❧♦✇✐♥❣✿
❚❤❡♦r❡♠ ✷✳✶✳
❆ss✉♠❡ t❤❛t
♦❢ ❝❧♦s❡❞ ❜❛❧❧s ✐♥
R
n
µ ✐s ❛ ❘❛❞♦♥ ♠❡❛s✉r❡ ♦♥ Rn ✱ A ⊆ Rn . ▲❡t B
❜❡ t❤❡ ❢❛♠✐❧②
s❛t✐s❢②✐♥❣✿
∀x ∈ A : inf {r : B(x, r) ∈ B} = 0.
{Bi }∞
i=1 s✉❝❤
i)Bi1 ∩ Bi2 = ∅
∀i1 = i2
ii)µ(A \
Bi ) = 0.
❚❤❡♥ t❤❡r❡ ❡①✐sts
t❤❛t✿
i
■♥ t❤✐s ❝❤❛♣t❡r✱ ✇❡ ✇✐❧❧ ♣r♦✈❡ ❚❤❡♦r❡♠ ✷✳✶ ❜② ✉s✐♥❣ ❇❡s✐❝♦✈✐t❝❤✬s ❝♦✈❡r✐♥❣ t❤❡✲
♦r❡♠✳
✷✳✶✳
❇❡s✐❝♦✈✐t❝❤✬s ❝♦✈❡r✐♥❣ t❤❡♦r❡♠
❲❡ s❤❛❧❧ ❜❡❣✐♥ ✇✐t❤ ❛ s✐♠♣❧❡ ❧❡♠♠❛ ❢r♦♠ ♣❧❛♥❡ ❣❡♦♠❡tr②✳ ■♥st❡❛❞ ♦❢ t❤❡ ❢♦❧❧♦✇✲
✐♥❣ ❡❧❡♠❡♥t❛r② ❣❡♦♠❡tr✐❝ ❝♦♥s✐❞❡r❛t✐♦♥s ♦♥❡ ❝❛♥ ❛❧s♦ ❡❛s✐❧② ❞❡❞✉❝❡ ✐t ❢r♦♠ t❤❡ ❝♦s✐♥❡
❢♦r♠✉❧❛ ❢♦r t❤❡ ❛♥❣❧❡ ♦❢ ❛ tr✐❛♥❣❧❡ ✐♥ t❡r♠s ♦❢ t❤❡ s✐❞❡✲❧❡♥❣t❤s✳
▲❡♠♠❛ ✷✳✶✳
❆ss✉♠❡ t❤❛t
a, b ∈ R2
s❛t✐s❢② t✇♦ ❢♦❧❧♦✇✐♥❣ ❝♦♥❞✐t✐♦♥s✿
i, 0 < |a| < |a − b|
ii, 0 < |b| < |a − b|
❚❤❡♥
b
a
−
≥ 1.
|a| |b|
✼
Pr♦♦❢✳
▲❡t
a(x1 , y1 )
❛♥❞
b(x2 , y2 )
❋r♦♠ t❤❡ ❤②♣♦t❤❡s✐s✱ ✇❡ ❤❛✈❡
(x1 − x2 )2 + (y1 + y2 )2 > x21 + y12
(x1 − x2 )2 + (y1 + y2 )2 > x22 + y22 .
■t ❢♦❧❧♦✇s t❤❛t
x22 + y22 > 2(x1 x2 + y1 y2 )
x21 + y12 > 2(x1 x2 + y1 y2 ).
P✉t
(x1 , y1 ) = (r1 cosθ1 , r1 sinθ1 )
(x2 , y2 ) = (r2 cosθ2 , r2 sinθ2 ).
❙♦✱ ✇❡ ❣❡t
r2 > 2r1 cos(θ1 − θ2 )
r1 > 2r2 cos(θ1 − θ2 )
❚❤❡r❡❢♦r❡✱
cos(θ1 − θ2 ) < min
r2 r1
,
2r1 2r2
1
≤ .
2
❲❡ ❤❛✈❡✿
b
a
−
=
|a| |b|
(cosθ1 − cosθ2 )2 + (sin θ1 − sinθ2 )2
=
2 − 2(cosθ1 cosθ2 + sinθ1 sinθ2 )
=
2 − 2cos(θ1 − θ2 )
≥ 1.
▲❡♠♠❛ ✷✳✷✳
❆ss✉♠❡ t❤❛t t❤❡r❡ ❛r❡
k
♣♦✐♥ts
a1 , ..., ak
✐♥
Rn
❛♥❞
k
♣♦s✐t✐✈❡ ♥✉♠❜❡rs
r1 , ..., rk s✉❝❤ t❤❛t
i)ai ∈
/ B(aj , rj ) ❢♦r j = i
k
ii)
B(ai , ri ) = 0.
i=1
❚❤❡♥
k ≤ N (n)✱
✇❤❡r❡
N (n)
✐s ❛ ♣♦s✐t✐✈❡ ✐♥t❡❣❡r ❞❡♣❡♥❞✐♥❣ ♦♥❧② ♦♥
✽
n✳
Pr♦♦❢✳
❋♦r ❡❛❝❤
i = 1, ..., k ✱
ai = 0
✇❡ s✉♣♣♦s❡ t❤❛t
❛♥❞
k
0∈
B(ai , ri ).
i=1
❲❡ ❤❛✈❡
0 ∈ B(ai , ri ) ⇒ |ai | < ri
✭✶✮
ai ∈
/ B(aj , rj ) ⇒ |ai − aj | > rj
✭✷✮
❛♥❞
❋r♦♠ ✭✶✮ ❛♥❞ ✭✷✮✱ ✇❡ ❤❛✈❡
|ai | < ri < |ai − aj |
❆♣♣❧②✐♥❣ ❧❡♠♠❛ ✷✳✶ ✇✐t❤
✇❡ ❤❛✈❡
a = ai
❛♥❞
aj
ai
≥1
−
|ai | |aj |
S n−1
y1 , ..., yk ∈ S n−1
b = bj
❢♦r
❢♦r
i = j.
i=j
❢♦r
✐♥ t❤❡ t✇♦✲ ❞✐♠❡♥s✐♦♥❛❧ ♣❧❛♥❡✱
i = j.
(∗)
N (n) ✇✐t❤
i = j ✱ t❤❡♥ k ≤ N (n)✳
❙✐♥❝❡ t❤❡ ✉♥✐t s♣❤❡r❡
✐s ❝♦♠♣❛❝t t❤❡r❡ ✐s ❛♥ ✐♥t❡❣❡r
♣r♦♣❡rt②✿ ✐❢
✇✐t❤
|yi − yj | ≥ 1
❢♦r
t❤❡ ❢♦❧❧♦✇✐♥❣
❇② ✭✯✮✱
N (n)
✐s ✇❤❛t ✇❡ ✇❛♥t✳
❚❤❡♦r❡♠ ✷✳✷ ✭❇❡s✐❝♦✈✐t❝❤✬s ❝♦✈❡r✐♥❣ t❤❡♦r❡♠✮✳
Rn ✳ B
B✳
❆ss✉♠❡ t❤❛t
✐s ❛ ❢❛♠✐❧② ♦❢ ❝❧♦s❡❞ ❜❛❧❧s s✉❝❤ t❤❛t ❡❛❝❤ ♣♦✐♥t ♦❢
A
A
✐s ❛ ❜♦✉♥❞❡❞ s✉❜s❡t ♦❢
✐s t❤❡ ❝❡♥tr❡ ♦❢ s♦♠❡ ❜❛❧❧ ♦❢
✭✶✮ ❚❤❡r❡ ❡①✐sts ❛ ❢✐♥✐t❡ ♦r ❝♦✉♥t❛❜❧❡ ❝♦❧❧❡❝t✐♦♥ ♦❢ ❜❛❧❧s
Bi ∈ B
s✉❝❤ t❤❛t
χ(A) ≤
χ(Bi ) ≤ P (n)
i
✇❤❡r❡
P (n)
✐s ❛♥ ✐♥t❡❣❡r ❞❡♣❡♥❞✐♥❣ ♦♥❧② ♦♥ ♥✳
✭✷✮ ❚❤❡r❡ ❡①✐sts ❢❛♠✐❧②
B1 , ..., BQ(n) ⊂ B
❝♦✈❡r✐♥❣
A
s✉❝❤ t❤❛t
Q(n)
i, A ⊂
Bi
i=1
ii, B ∩ B = ∅ ❢♦r B, B ∈ Bi ✇✐t❤ B = B
✇❤❡r❡ Q(n) ✐s ❛♥ ✐♥t❡❣❡r ❞❡♣❡♥❞✐♥❣ ♦♥❧② ♦♥
Pr♦♦❢✳
✭✶✮ ❋♦r ❡❛❝❤
x ∈ A✱
♣✐❝❦ ♦♥❡ ❜❛❧❧
♥✳
B(x, r(x)) ∈ B✳
❛ss✉♠❡ t❤❛t
M1 = sup r(x) < ∞
x∈A
✾
❆s
A
✐s ❜♦✉♥❞❡❞✱ ✇❡ ♠❛②
❈❤♦♦s❡
x1 ∈ A
✇✐t❤
r(x1 ) ≥
M1
2
❛♥❞ t❤❡♥ ✐♥❞✉❝t✐✈❡❧②
j
xj+1 ∈ A \
B(xi , r(xi ))
✇✐t❤
M1
2
r(xj+1 ) ≥
i=1
❛s ❧♦♥❣ ❛s ♣♦ss✐❜❧❡✳ ❙✐♥❝❡
s❡q✉❡♥❝❡
A
✐s ❜♦✉♥❞❡❞✱ t❤❡ ♣r♦❝❡ss t❡r♠✐♥❛t❡s✱ ❛♥❞ ✇❡ ❣❡t ❛ ❢✐♥✐t❡
x1 , ...xk1 .
◆❡①t ❧❡t
k1
M2 = sup r(x) : x ∈ A \
B(xi , r(xi ))
i=1
❈❤♦♦s❡
k1
xk1 +1 ∈ A \
B(xi , r(xi ))
✇✐t❤
r(xk1 +1 ) ≥
B(xi , r(xi ))
✇✐t❤
r(xj+1 ) ≥
i=1
M2
,
2
❛♥❞ ❛❣❛✐♥ ✐♥❞✉❝t✐✈❡❧②
j
xj+1 ∈ A \
i=1
M2
.
2
❈♦♥t✐♥✉✐♥❣ t❤✐s ♣r♦❝❡ss ✇❡ ♦❜t❛✐♥ ❛♥ ✐♥❝r❡❛s✐♥❣ s❡q✉❡♥❝❡ ♦❢ ✐♥t❡❣❡rs
0 = k0 < k1 <
k2 < ..., ❛ ❞❡❝r❡❛s✐♥❣ s❡q✉❡♥❝❡ ♦❢ ♣♦s✐t✐✈❡ ♥✉♠❜❡rs Mi ✇✐t❤ 2Mi+1 ≤ Mi ✱ ❛♥❞ ❛ s❡q✉❡♥❝❡
♦❢ ❜❛❧❧s Bi = B(xi , r(xi ))inB ✇✐t❤ t❤❡ ❢♦❧❧♦✇✐♥❣ ♣r♦♣❡rt✐❡s✳ ▲❡t
Ij = kj−1 + 1, ..., kj
❢♦r
j = 1, 2, ...
Mj
≤ r(xi ) ≤ Mj
2
❢♦r
i ∈ Ij
✭✸✮
Bi
❢♦r
j = 1, 2, ...
✭✹✮
Bj
❢♦r
i ∈ Ik .
✭✺✮
❚❤❡♥
j
xj+1 ∈ A \
i=1
xi ∈ A \
m=k j∈Im
❚❤❡ ❢✐rst t✇♦ ♣r♦♣❡rt✐❡s ❢♦❧❧♦✇ ✐♠♠❡❞✐❛t❡❧② ❢r♦♠ t❤❡ ❝♦♥str✉❝t✐♦♥✱ ❚♦ ✈❡r✐❢② t❤❡ t❤✐r❞
m = k, j ∈ im ❛♥❞ i ∈ Ik .
■❢ m < k, xi ∈
/ Bj ❜② ✭✹✮✳
■❢ k < m, t❤❡♥ r(xj ) < r(xi ), xj ∈
/ Bi ❜② ✭✹✮✳
❙♦✱ xi ∈
/ Bj ✳
❙✐♥❝❡ Mi → 0, ✭✸✮ ✐♠♣❧✐❡s r(xi ) → 0✱ ❛♥❞ ✐t ❢♦❧❧♦✇s
♣r♦♣❡rt②✱ ❧❡t
∞
A⊂
Bi .
i=1
✶✵
❢r♦♠ t❤❡ ❝♦♥str✉❝t✐♦♥ t❤❛t
❚♦ ❡st❛❜❧✐s❤ ❛❧s♦ t❤❡ s❡❝♦♥❞ st❛t❡♠❡♥t ♦❢ ✭✶✮✱ s✉♣♣♦s❡ t❤❛t ❛ ♣♦✐♥t
Bi ✱
x ❜❡❧♦♥❣s t♦ p ❜❛❧❧s
s❛②
p
x∈
Bm
i=1
✳ ❲❡ s❤❛❧❧ s❤♦✇ t❤❛t
p ≤ P (n) = 16n N (n)
✇✐t❤
N (n)
❛s ✐♥ ▲❡♠♠❛ ✷✳✷✳
❯s✐♥❣ ✭✺✮ ❛♥❞ ▲❡♠♠❛ ✷✳✷ ✇❡ s❡❡ t❤❛t t❤❡ ✐♥❞✐❝❡s
❞✐❢❢❡r❡♥t ❜❧♦❝❦s
Ij ✱
mi
❝❛♥ ❜❡❧♦♥❣ t♦ ❛t ♠♦st
N (n)
t❤❛t ✐s✱
card {j : Ij ∩ {mi : i = 1, 2, ..., p} = ∅} ≤ N (n).
❈♦♥s❡q✉❡♥t❧② ✐t s✉❢❢✐❝❡s t♦ s❤♦✇ t❤❛t
card (j : Ij ∩ {mi : i = 1, 2, ..., p}) ≤ 16n
❋✐①
j
❢♦r
j = 1, 2, ...
✭✻✮
❛♥❞ ✇r✐t❡
Ij ∩ {mi : i = 1, 2, ..., p} = {l1 , ..., lq } .
❇② ✭✸✮ ❛♥❞ ✭✹✮ t❤❡ ❜❛❧❧s
1
B(xli , r(xli )), i = 1, ..., q,
4
❛r❡ ❞✐s❥♦✐♥t ❛♥❞ t❤❡② ❛r❡ ❝♦♥t❛✐♥❡❞
B(x, 2Mj )✳
n
❍❡♥❝❡✱ ✇✐t❤ α(n) = L (B(0, 1)),
✐♥
qα(n)
Mj
8
q
n
≤
i=1
1
Ln B(xli , r(xli ))
4
≤ Ln (B(x, 2Mj ))
= α(n)(2Mj )n .
q ≤ 16n ❛s ❞✐s✐r❡❞✳ ❚❤✐s ♣r♦✈❡s ✭✻✮✱ ❛♥❞ t❤✉s ❛❧s♦ ✭✶✮✳
✭✷✮ ▲❡t B1 , B2 , ... ❜❡ t❤❡ ❜❛❧❧s ❢♦✉♥❞ ✐♥ ✭✶✮✳ ▲❡tt✐♥❣ Bi = B(xi , ri ), t❤❡r❡ ❛r❡ ❢♦r ❡❛❝❤
> 0 ♦♥❧② ❢✐♥✐t❡❧② ♠❛♥② ❜❛❧❧s Bi ✇✐t❤ ri ≥ ❜❡❝❛✉s❡ ♦❢ ✭✶✮ ❛♥❞ t❤❡ ❜♦✉♥❞❡❞❧❡ss ♦❢ A✳
❚❤✉s ✇❡ ♠❛② ❛ss✉♠❡ r1 ≥ r2 ≥ ....
▲❡t B1,1 = B1 ❛♥❞ t❤❡♥ ✐♥❞✉❝t✐✈❡❧② ✐❢ B1,1 , ...B1,j ❤❛✈❡ ❜❡❡♥ ❝❤♦s❡♥✱ B1,j+1 = Bk ✇❤❡r❡
k ✐s t❤❡ s♠❛❧❧❡st ✐♥t❡❣❡r ✇✐t❤
❛♥❞ s♦
j
Bk ∩
B1,i = ∅.
i=1
❲❡ ❝♦♥t✐♥✉❡ t❤✐s ❛s ❧♦♥❣ ❛s ♣♦ss✐❜❧❡ ❣❡tt✐♥❣ ❛ ❢✐♥✐t❡ ♦r ❝♦✉♥t❛❜❧❡ ❞✐s❥♦✐♥t s✉❜❢❛♠✐❧②
B1 = {B1,1 , B1,2 , ...}
✶✶
B1 , B2 , ....
■❢ A ✐s ♥♦t ❝♦✈❡r❡❞ ❜②
B1 ✱ ✇❡ ❞✐❢✐♥❡❞ ❢✐rst B2,1 = Bk ✇❤❡r❡ k ✐s t❤❡ s♠❛❧❧❡st ✐♥t❡❣❡r
❢♦r ✇❤✐❝❤ Bk ∈
/ B1 ✳ ❆❣❛✐♥ ✇❡ ❞❡❢✐♥❡❞ ✐♥❞✉❝t✐✈❡❧② B2,j+1 = Bk ✇✐t❤ s♠❛❧❧❡st k s✉❝❤ t❤❛t
♦❢
j
Bk ∩
B2,i = ∅
i=1
B1 , B2 , ...
✳ ❲✐t❤ t❤✐s ♣r♦❝❡ss ✇❡ ❢✐♥❞ s✉❜❢❛♠✐❧✐❡s
❲❡ ❝❧❛✐♠ t❤❛t
♦❢
B1 , B2 , ...✱
❡❛❝❤
Bi
❜❡✐♥❣ ❞✐s❥♦✐♥t✳
m
A⊂
Bk
m ≤ 4n P (n) + 1.
❢♦r s♦♠❡
k=1
m
❙✉♣♣♦s❡
m
x∈A\
✐s s✉❝❤ t❤❛t t❤❡r❡ ✐s
Bk
❢♦r s♦♠❡
k=1
m ≤ 4n P (n) + 1.
m ≤ 4n P (n)✳
❜❛❧❧s Bi ❝♦✈❡r A✱
❲❡ t❤❡♥ ❤❛✈❡ t♦ s❤♦✇ t❤❛t
x ∈ Bi ✳ ❚❤❡♥ ❢♦r ❡❛❝❤
k = 1, ..., m, Bi ∈
/ Bk , ✇❤✐❝❤ ♠❡❛♥s ❜② t❤❡ ❝♦♥str✉❝t✐♦♥ ♦❢ Bk t❤❛t Bi ∩ Bk,ik = ∅ ❢♦r
s♦♠❡ ik ❢♦r ✇❤✐❝❤ ri ≤ rk,ik , ri ❛♥❞ rk,ik ❜❡✐♥❣ t❤❡ r❛❞✐✐ ♦❢ Bi ❛♥❞ Bk,ik , r❡s♣❡❝t✐✈❡❧②✳
ri
❝♦♥t❛✐♥❡❞ ✐♥ (2Bi ) ∩ Bk,ik ❢♦r ❛❧❧ k = 1, ..., m.
❍❡♥❝❡✱ t❤❡r❡ ❛r❡ ❜❛❧❧s Bk ♦❢ r❛❞✐✉s
2
n
❙✐♥❝❡ ❡❛❝❤ ♣♦✐♥t ♦❢ R ✐s ❝♦♥t❛✐♥❡❞ ✐♥ ❛t ♠♦st P (n) ❜❛❧❧s Bk,ik , k = 1, ..., m, t❤✐s ✐s ❛❧s♦
tr✉❡ ❢♦r t❤❡ s♠❛❧❧❡r ❜❛❧❧s Bk ✱ t❤❛t ✐s
❉✉❡ t♦ t❤❡ ❢❛❝t t❤❛t t❤❡
✇❡ ❝❛♥ ❢✐♥❞
i
✇✐t❤
m
χBk ≤ P (n)χ∪m
.
k=1 Bk
k=1
❯s✐♥❣ t❤❡ ❢❛❝t
Bk ⊂ 2Bi ✱
t❤❡♥ ✇❡ ❤❛✈❡
2n α(n)rin = Ln (2Bi )
m
n
≥L
Bk
k=1
=
χ∪m
dLn
k=1 Bk
m
−1
χBk dLn
≥ P (n)
k=1
m
= P (n)−1
Ln (Bk )
k=1
−1 −n
= mP (n) 2
❍❡♥❝❡✱
m ≤ 4n P (n)
❛s r❡q✉✐r❡❞✳
✶✷
α(n)rin .
✷✳✷✳
Pr♦♦❢ ♦❢ ❚❤❡♦r❡♠ ✷✳✶
µ(A) > 0✳ ❋✐rst❧②✱
n
♠❡❛s✉r❡ ♦♥ R , t❤❡♥
❙✉♣♣♦s❡ t❤❛t
µ
✐s ❛ ❘❛❞♦♥
✇❡ ✇✐❧❧ ❛ss✉♠❡ ❆ ✐s ❜♦✉♥❞❡❞✳
µ(A) = inf {µ(U ) : A ⊂ U, U
■t ✐♠♣❧✐❡s t❤❛t t❤❡r❡ ✐s ❛♥ ♦♣❡♥ s❡t
U
s✉❝❤ t❤❛t
µ(U ) ≤
✇❤❡r❡
Q(n)
✐s ♦♣❡♥
A⊂U
1
4Q(n)
1+
}
❢♦r
A ⊂ Rn
❛♥❞
µ(A)
✐s ❛s ✐♥ ❇❡s✐❝♦✈✐t❝❤✬s ❝♦✈❡r✐♥❣ t❤❡♦r❡♠✳
B1 , ..., BQ (n) ∈ B
❆s ❛ r❡s✉❧t ♦❢ t❤❛t t❤❡♦r❡♠✱ ✇❡ ❝❛♥ ❢✐♥❞
B; Bi1 ∩ Bi2 = ∅
∀i1 = i2
s✉❝❤ t❤❛t
❛♥❞
Q(n)
A⊂
Bi ⊂ U
i=1
❙♦✱
µ(A) ≤ µ
Bi
Q(n)
i=1
Q(n)
=
Bi .
µ
i=1
❙♦✱ t❤❡r❡ ❡①✐sts ❛♥
i
s✉❝❤ t❤❛t
µ(A) ≤ Q(n).µ
❋✉rt❤❡r✱ ❢♦r s♦♠❡ ❢✐♥✐t❡ s✉❜❢❛♠✐❧②
µ(A) ≤ 2Q(n).µ
P✉t
A1 = A \
Bi
♦❢
Bi ✱
Bi .
✇❡ ❤❛✈❡
Bi ⇒ µ
Bi ≥
1
.µ(A)
2Q(n)
Bi
❲❡ ♦❜t❛✐♥
µ(A1 ) = µ A \
Bi
≤µ U\
Bi
= µ(U ) − µ
≤
=
Bi
1
1
−
4Q(n) 2Q(n)
1
1−
µ(A)
4Q(n)
1+
= u.µ(A)
✶✸
µ(A)
{Bi }Q(n)
i=1 ⊂
✇❤❡r❡
◆♦✇
u=
A1
1−
1
4Q(n)
< 1, Q(n) > 0.
U1
✐s ❜♦✉♥❞❡❞ s❡t ❛♥❞ ❝❤♦♦s❡
s✉❝❤ t❤❛t
Q(n)
A1 ⊂ U1 ⊆ U \
Bi
❛♥❞
i=1
µ(U1 ) ≤
1+
1
4Qnr(n)
µ(A1 )
❆s ❛❜♦✈❡✱ ✇❡ ❤❛✈❡
µ(A2 ) ≤
1−
1
4Q(n)
≤
1−
1
4Q(n)
µ(A1 )
2
µ(A)
= u2 µ(A)
✇❤❡r❡
A2 = A1 \
Bi , Bi
✐s ❢✐♥✐t❡ s✉❜❢❛♠✐❧② ♦❢
Bi ✳
Pr♦❝❡❡❞✐♥❣ ✐♥ t❤✐s ♠❛♥♥❡r✱ ✇❡ ❣❡t
µ A\
Bi
≤ um µ(A)
i
✇❤❡r❡
❚❤✉s✱
µ A\
Bi
=0
❛s
m → ∞.
i
✶✹
u=1−
1
< 1.
4Q(n)
❈❤❛♣t❡r ✸
❙♦♠❡ ❛♣♣❧✐❝❛t✐♦♥s
■♥ t❤✐s ❝❤❛♣t❡r✱ ✇❡ ✉s❡ ❝♦✈❡r✐♥❣ t❤❡♦r❡♠s t♦ st✉❞② t❤❡ ❞✐❢❢❡r❡♥t✐❛❧ t❤❡♦r② ♦❢
♠❡❛s✉r❡s✳
❉❡❢✐♥✐t✐♦♥ ✸✳✶✳
❆ss✉♠❡ t❤❛t
µ
❛♥❞
λ
❛r❡ ❧♦❝❛❧❧② ❢✐♥✐t❡ ❇♦r❡❧ ♠❡❛s✉r❡s ♦♥
❚❤❡♥
D(µ, λ, x) = lim sup
r↓0
D(µ, λ, x) = lim inf
r↓0
Rn ✳
µ(B(x, r))
λ(B(x, r))
µ(B(x, r))
λ(B(x, r))
❛r❡ ❝❛❧❧❡❞ r❡s♣❡❝t✐✈❡❧② t❤❡ ✉♣♣❡r ❛♥❞ ❧♦✇❡r ❞❡r✐✈❛t✐✈❡s ♦❢
µ
✇✐t❤ r❡s♣❡❝t t♦
λ
❛t ❛ ♣♦✐♥t
n
x∈R .
❚❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢
µ
❡①✐sts ❛t t❤❡ ♣♦✐♥t
x
✐❢ ❛♥❞ ♦♥❧② ✐❢
D(µ, λ, x) = D(µ, λ, x) = D(µ, λ, x).
❉❡❢✐♥✐t✐♦♥ ✸✳✷✳
■❢
µ
❛♥❞
t✐♥✉♦✉s ✇✐t❤ r❡s♣❡❝t t♦
λ
λ
❛r❡ t✇♦ ♠❡❛s✉r❡s ♦♥
Rn ✳
❚❤❡♥
µ
✐s ❝❛❧❧❡❞ ❛❜s♦❧✉t❡❧② ❝♦♥✲
✐❢
µ(A) = 0
❚❤❡ ❛❜s♦❧✉t❡ ❝♦♥t✐♥✉✐t② ♦❢
µ
❢♦r ❛♥②
A ⊂ Rn
✇✐t❤ r❡s♣❡❝t t♦
■♥ t❤❡ ♦t❤❡r✇♦r❞✱ t❤❡ ♣r♦♣❡rt②
µ
λ
λ
s✉❝❤ t❤❛t
λ(A) = 0.
✐s ❞❡♥♦t❡❞ ❜②
µ
λ✳
✐s ❡q✉❛✈❛❧❡♥t t♦ ❢♦❧❧♦✇✐♥❣ st❛t❡♠❡♥t✿ ❢♦r
ε > 0, t❤❡r❡ ✐s ❛ δ > 0 s✉❝❤ t❤❛t
µ(A) < ε ❢♦r ❡✈❡r② A ⊂ Rn ✇✐t❤ λ(A) < δ.
❛♥②
❚❤❡ ❢♦❧❧♦✇✐♥❣ ❧❡♠♠❛ ♣❧❛②s t❤❡ ❦❡② r♦❧❡ ❢♦r t❤❡ ♣r♦♦❢ ♦❢ ♦✉r ♠❛✐♥ r❡s✉❧t ✭❚❤❡♦r❡♠ ✸✳✶✮✳
✶✺
▲❡t
▲❡♠♠❛ ✸✳✶✳
A
❜❡ ❛ s✉❜s❡t ♦❢
Rn
❛♥❞
µ, λ
❜❡ ❘❛❞♦♥ ♠❡❛s✉r❡s ♦♥
❡❛❝❤
0
i)■❢ D(µ, λ, x) ≤ t ❢♦r ❛❧❧ x ∈ A, t❤❡♥ µ(A) ≤ tλ(A),
ii) ■❢ D(µ, λ, x) ≥ t ❢♦r ❛❧❧ x ∈ A, t❤❡♥ µ(A) ≥ tλ(A).
Pr♦♦❢✳
(i)λ
✐s ❘❛❞♦♥ ♠❡❛s✉r❡✳ ❙♦✱ ✇❡ ❝❛♥ ❢✐♥❞ ❛♥ ♦♣❡♥ s❡t ❯ s✉❝❤ t❤❛t
λ(A) = inf {λ(U ) : A ⊂ U }
∃δ > 0 : λ(U ) ≤ λ(A) + δ ✳
❚❤❡♦r❡♠ ✷✳✶✱ ∃Bi ⊂ U, Bi1 ∩ Bi2 = ∅
■t ✐♠♣❧✐❡s t❤❛t
❆♣♣❧✐♥❣
µ(A \
❢♦r
i1 = i2
❛♥❞ s❛t✐s❢②
Bi ) = 0
i
❋r♦♠ t❤❡ ❤②♣♦t❤❡s✐s✱
D(µ, λ, x) ≤ t✱
t❤❡♥
D(µ, λ, x) = lim sup
r↓0
❙❡t
µ(B(x, r))
≤t
λ(B(x, r))
µ(Bi ) ≤ (t + δ)λ(Bi ).
❲❡ ❤❛✈❡
µ(A) ≤
µ(Bi )
i
≤
(t + δ)λ(Bi )
i
≤ (t + δ)λ(V )
≤ (t + δ)(λ(A) + δ)
▲❡tt✐♥❣
(ii)
δ ↓ 0✱
✇❡ ✇✐❧❧ ♦❜t❛✐♥
µ(A) ≤ tλ(A).
❲❡ ❤❛✈❡
µ(B(x, r))
≥t
r↓0
λB(x, r)
λ(B(x, r))
1
⇔ lim sup
≤
µB(x, r)
t
r↓0
1
⇔ D(λ, µ, x) ≤ .
t
D(µ, λ, x) ≥ t ⇔ lim inf
❚❤❡♥✱ ❜② t❤❡ ♣❛rt
(i)✱
✇❡ ❤❛✈❡
1
λ(A) ≤ µ(A).
t
❍❡♥❝❡
µ(A) ≥ tλ(A).
✶✻
Rn ✳
❚❤❡♥✱ ❢♦r
❚❤❡♦r❡♠ ✸✳✶✳
❆ss✉♠❡ t❤❛t
µ
❛♥❞
λ
❛r❡ ❘❛❞♦♥ ♠❡❛s✉r❡s ♦♥
Rn .
❚❤❡♥✱ t❤❡ ❢♦❧❧♦✇✐♥❣
st❛t❡♠❡♥ts ❛r❡ ❢✉❧❢✐❧❧❡❞✿
i)❚❤❡ ❞❡r✐✈❛t✐✈❡ D(µ, λ, x) ❛❧✇❛②s ❡①✐sts ❢♦r λ
x ∈ Rn . ▼♦r❡♦✈❡r✱ D(µ, λ, x) < +∞✳
ii) ❋♦r ❡❛❝❤ ❇♦r❡❧ s❡t B ⊂ Rn ✱ t❤❡ ✐♥❡q✉❛❧✐t②
❛❧♠♦st ❛❧❧
D(µ, λ, x)dλx ≤ µ(B)
B
❤♦❧❞s ♣r♦✈✐❞❡❞ t❤❛t
iii)µ
Pr♦♦❢✳
λ
µ
✐❢ ❛♥❞ ♦♥❧② ✐❢
❋♦r ❡❛❝❤
λ.
D(µ, λ, x) < ∞
❢♦r
µ
0 < r < ∞, 0 < s < t < ∞✱
❛❧♠♦st ❛❧❧
x ∈ Rn .
❧❡t
As,t,r = x ∈ B(r) : D(µ, λ, x) ≤ s ≤ t ≤ D(µ, λ, x)
❛♥❞
At,r = x ∈ B(r) : D(µ, λ, x) ≥ t
❆s ❛ r❡s✉❧t ♦❢ ❧❡♠♠❛ ✸✳✶✱ ✇❡ ❤❛✈❡
tλ(As,r,t ) ≤ µ(As,t,r ) ≤ sλ(As,t,r ) < ∞
❛♥❞
uλ(Au,r ) ≤ µ(Au,r ) ≤ µ(B(r)) < ∞
❚❤❡s❡ ✐♥❡q✉❛❧✐t✐❡s ②❡✐❧❞
λ(As,t,r ) = 0
λ(
s✐♥❝❡
s < t✱
❛♥❞
Au,r ) = lim λ(Au,r ) = 0.
u→∞
u>0
{x : ∃D(µ, λ, x) < ∞} ✐s t❤❡ ✉♥✐♦♥ ♦❢ t❤❡ s❡ts As,t,r ❛♥❞
✇❤❡r❡ s ❛♥❞ t r✉♥ t❤r♦✉❣❤ t❤❡ ♣♦s✐t✐✈❡ r❛t✐♦♥❛❧s ✇✐t❤ s < t ❛♥❞ r r✉♥s t❤r♦✉❣❤
❇✉t t❤❡ ❝♦♠♣❧❡♠❡♥t ♦❢ t❤❡ s❡t
Au,r
u>0
t❤❡ ♣♦s✐t✐✈❡ ✐♥t❡❣❡rs✳ ❍❡♥❝❡ ✐t ✐s ♦❢
❚♦ ♣r♦✈❡
(ii)
❝❤♦♦s❡
1
λ
♠❡❛s✉r❡s ③❡r♦✱ ✇❤✐❝❤ s❡tt❧❡s
(i)✳
❛♥❞ ❧❡t
Bp = x ∈ B : tp ≤ D(µ, λ, x) < tp+1 , p = 0, ±1, ±2, ...
❚❤❡♥ ❜② ♣❛rt
(i) ♦❢ t❤✐s t❤❡♦r❡♠ ❛❧r❡❛❞② ♣r♦✈❡❞ ❛♥❞ ❜② ♣❛rt (ii) ♦❢ ❧❡♠♠❛ ✸✳✶✱✇❡ ❤❛✈❡
∞
D(µ, λ, x)dλx =
D(µ, λ, x)dλx
p=−∞B
p
B
∞
tp+1 λ(Bp )
≤
p=−∞
∞
≤t
µ(Bp )
p=−∞
≤ tµ(B).
✶✼
λ ✐s ❛ ❘❛❞♦♥ ♠❡❛s✉r❡ ♦♥ Rn .
i, ■❢ A ✐s ❛ λ✲♠❡❛s✉r❡ s❡t ♦♥Rn t❤❡♥ t❤❡ ❢♦❧❧♦✇✐♥❣ ❧✐♠✐t ❤♦❧❞s
λ(A ∩ B(x, r)) 1 ❢♦r λ ❛❧♠♦st ❛❧❧ x ∈ A
lim
=
r↓0
0 ❢♦r λ ❛❧♠♦st ❛❧❧ x ∈ Rn \ A.
λ(B(x, r))
ii, ■❢ f : Rn → R ✐s ❧♦❝❛❧❧② λ ✐♥t❡❣r❛❜❧❡✱ t❤❡♥
❆ss✉♠❡ t❤❛t
❈♦r♦❧❧❛r② ✸✳✶✳
1
λ(B(x, r))
lim
r↓0
f dλ = f (x)
B(x,r)
❢♦r
λ
❛❧♠♦st ❛❧❧②
Pr♦♦❢✳
x ∈ Rn .
❲❡ ✇✐❧❧ ♣r♦✈❡
❆ss✉♠❡ t❤❛t
f ≥ 0✳
(ii)
❢✐rst✳
❉❡❢✐♥❡ t❤❡ ❘❛❞♦♥ ♠❡❛s✉r❡
µ
❜②
µ(A) =
f dλ.
❚❤❡♥
µ
λ
❛♥❞
A
❜② t❤❡♦r❡♠ ✸✳✶✱ ✇❡ ❤❛✈❡
D(µ, λ, x)dλx = µ(B) =
B
B
❢♦r ❛❧❧ ❇♦r❡❧ s❡ts ❇✳ ■t ✐♠♣❧✐❡s t❤❛t
(ii)✳
♣r♦✈❡ (i)✱
f dλ
f (X) = D(µ, λ, x)
❢♦r
λ
❛❧♠♦st ❛❧❧
x ∈ Rn ,
✇❤✐❝❤
♣r♦✈❡s
❚♦
✇❡ s✉❜st✐t✉❡
❉❡❢✐♥✐t✐♦♥ ✸✳✸✳
A⊂R
n
f = χ(A).
❆ss✉♠❡ t❤❛t
µ
❛♥❞
λ
❛r❡ ❘❛❞♦♥ ♠❡❛s✉r❡s ♦♥
Rn ✳
■❢ t❤❡r❡ ❡①✐st ❛ s❡t
s✉❝❤ t❤❛t
λ(A) = 0 = µ(Rn \ A)
t❤❡♥
µ
❛♥❞
λ
❛r❡ ❝❛❧❧❡❞ ♠✉t✉❛❧❧② s✐♥❣✉❧❛r✳
❚❤❡♦r❡♠ ✸✳✷✳
❢✉♥❝t✐♦♥
▲❡t
µ
❛♥❞
λ
❜❡ ❢✐♥✐t❡ ❘❛❞♦♥ ♠❡❛s✉r❡s ♦♥
❛♥❞ ❛ ❘❛❞♦♥ ♠❡❛s✉r❡
f
µ(B) =
ν
s✉❝❤ t❤❛t
f dλ + ν(B)
λ
❛♥❞
ν
Rn ✳
❛r❡ ♠✉t✉❛❧❧② s✐♥❣✉❧❛r ❛♥❞
❢♦r ❇♦r❡❧ s❡ts
B ⊂ Rn .
B
▼♦r❡♦✈❡r✱
Pr♦♦❢✳
µ
λ
✐❢ ❛♥❞ ♦♥❧② ✐❢
ν = 0.
P✉t
A = {x ∈ Rn : D(µ, λ, x) < ∞} ,
❛♥❞
µ1 A
❛♥❞
ν = µ (Rn \ A).
❚❤❡♥ ✐t ✐s ❡❛s② t♦ s❡❡ t❤❛t
µ = µ1 + ν,
✶✽
❚❤❡♥ t❤❡r❡ ❡①✐sts ❛ ❇♦r❡❧
❛♥❞
λ
ν
❛♥❞
❛r❡ ♠✉t✉❛❧❧② s✐♥❣✉❧❛r ❜② t❤❡♦r❡♠ ✸✳✶✳
▼♦r❡♦✈❡r✱ ▲❡♠♠❛ ✸✳✶ ❣✐✈❡s
µ1
λ
❤❛s ❞❡s✐r❡❞ r❡♣r❡s❡♥t❛t✐♦♥ ❜② t❤❡♦r❡♠ ✸✳✶ ✇✐t❤
f = D(µ1 , λ, ).
❙♦
µ(B) =
f dλ + ν(B)
❢♦r ❇♦r❡❧ s❡ts
B ⊂ Rn .
B
❚❤❡ ❧❛st st❛t❡♠❡♥t ✐s ♦❜✈✐♦✉s✳
❈♦r♦❧❧❛r② ✸✳✷✳
✭ ❚❤❡ ❘❛❞♦♥✲ ◆✐❦♦❞②♠ t❤❡♦r❡♠ ❢♦r ❢✐♥✐t❡ ❘❛❞♦♥ ♠❡❛s✉r❡s✮ ❆ss✉♠❡
µ ❛♥❞ λ ❛r❡ ❢✐♥✐t❡ ❘❛❞♦♥ ♠❡❛s✉r❡s ♦♥ Rn ✳ ■❢ µ
λ ✭✐✳❡✱ µ ✐s ❛❜s♦❧✉t❡❧② ❝♦♥t✐♥✉♦✉s
✇✐t❤ r❡s♣❡❝t t♦ λ✮✱ t❤❡♥ t❤❡r❡ ❡①✐sts ❛ ❇♦r❡❧ ❢✉♥❝t✐♦♥ f : Rn → [0, ∞) s✉❝❤ t❤❛t ❢♦r ❛♥②
❇♦r❡❧ s❡t A ⊆ Rn ✱ ✇❡ ❤❛✈❡
t❤❛t
µ(A) =
f dλ.
A
❋✉t❤❡r ❢ ✐s ✉♥✐q✉❡ ❛❧♠♦st ❡✈❡r②✇❤❡r❡ r❡❧❛t❡❞ t♦
µ(A) =
hdλ,
t❤❡♥
λ✱
✐✳❡✱ ✐❢
λ−
f =h
❛❧♠♦st ❡✈❡r②✇❤❡r❡✳
A
❚❤❡ ❢✉♥❝t✐♦♥
f
❈♦r♦❧❧❛r② ✸✳✸✳
❆ss✉♠❡ t❤❛t
µ
✐s ❝❛❧❧❡❞ t❤❡ ❘❛❞♦♥✲◆✐❦♦❞②♠ ❞❡r✐✈❛t✐✈❡ ❛♥❞ ✐s ❞❡♥♦t❡❞ ❜②
✭▲❡❜❡❣✉❡ ❞❡❝♦♠♣♦s✐t✐♦♥ t❤❡♦r❡♠ ❢♦r ❢✐♥✐t❡ ❘❛❞♦♥ ♠❡❛s✉r❡s✮
❛♥❞
σ ✲❢✐♥✐t❡ ♠❡❛s✉r❡s µs
i, µa
λ, µs λ
ii, µ = µa + µs .
❊①❛♠♣❧❡ ✸✳✶✳
▲❡t
λ = L
. ❚❤❡♥
0
❢ ❂
e−a
λ
❛r❡ t✇♦ ❢✐♥✐t❡ ❘❛❞♦♥ ♠❡❛s✉r❡s ♦♥
❛♥❞
µa
0
1 − e−a
✐❢
✐❢
R
❞❡❢✐♥❡❞ ❜②✿
a<0
a≥0
t❤❡ ❘❛❞♦♥✲ ◆✐❦♦❞②♠ ❞❡r✐✈❛t✐✈❡ ✐s✿
✐❢
a<0
✐❢
a ≥ 0.
Rn ✳
s✉❝❤ t❤❛t
▲❡tµ ❜❡ ❛ ❘❛❞♦♥ ♠❡❛s✉r❡ ♦♥
µ[−∞, a] =
1
dµ
✳
dλ
✶✾
❚❤❡♥ t❤❡r❡ ❡①✐sts t✇♦