Ch¬ng tr×nh VËt lÝ líp 10 n©ng cao
Tn Líp Tªn bµi
TiÕt
PPCT
Mơc tiªu Ph¬ng ph¸p
Dơng cơ vµ thiÕt bÞ TN
cÇn dïng
T¨ng
,
gi¶m
Tù ®¸nh gi¸
Chuyển động cơ
1
- Hiểu được các khái niệm cơ bản : Tính tương
đối của chuyển động, chất điểm, hệ quy
chiếu, xác đònh vò trí của của một chất điểm
bằng tọa độ, xác đònh thời gian bằng đồng hồ,
phân biệt khoảng thời gian và thời điểm.
- Hiểu rõ là muốn nghiên cứu chuyển động
của chất điểm, đầu tiên cần chọn một hệ quy
chiếu để xác đònh vò trí của chất điểm và thời
điểm tương ứng.
- Nắm vững cách xác đònh tọa độ và thời gian
tương ứng của một chất điểm trên hệ trục tọa
độ
- Tranh ¶nh, ®ång hå ®o thêi
gian...
Vận tốc trong chuyển động
thẳng. Chuyển động thẳng
đều (Tiết 1: Hết mục 3
SGK)
2
− Nắm vững đònh nghóa độ dời qua tọa độ của
chất điểm trên một trục, từ đó dẫn đến đònh
nghóa vận tốc trung bình trong một khoảng
thời gian t
2
− t
1
, và vận tốc tức thời tại thời
điểm t
- èng thủ tinh dµi, chøa
bät khÝ, m¸ng nghiªng.
- §ång hå ®o thêi gian.
Vận tốc trong chuyển động
thẳng. Chuyển động thẳng
đều (Tiết 2: Từ mục 4
SGK)
3
− Biết cách xây dựng phương trình chuyển
động thẳng đều từ đònh nghóa và công thức
vận tốc, áp dụng phương trình chuyển động để
giải các bài toán chuyển động thẳng đều của
một chất điểm, bài toán gặp nhau hay đuổi
nhau của hai chất điểm..
− Biết cách vẽ đồ thò biễu diễn phương trình
chuyển động và đồ thò vận tốc theo thời gian,
sử dụng đồ thò để giải các bài toán nói trên.
Bài tập
4
− Nắm vững đònh nghóa độ dời qua tọa độ của
chất điểm trên một trục, từ đó dẫn đến đònh
nghóa vận tốc trung bình trong một khoảng
thời gian t
2
− t
1
, và vận tốc tức thời tại thời
điểm t .− Biết cách xây dựng phương trình
chuyển động thẳng đều từ đònh nghóa và công
thức vận tốc, áp dụng phương trình chuyển
động để giải các bài toán chuyển động thẳng
đều của một chất điểm, bài toán gặp nhau hay
Nhãm VËt lý - Tỉ Tù Nhiªn
1
Tn Líp Tªn bµi
TiÕt
PPCT
Mơc tiªu Ph¬ng ph¸p
Dơng cơ vµ thiÕt bÞ TN
cÇn dïng
T¨ng
,
gi¶m
Tù ®¸nh gi¸
đuổi nhau của hai chất điểm..
− Biết cách vẽ đồ thò biễu diễn phương trình
chuyển động và đồ thò vận tốc theo thời gian,
sử dụng đồ thò để giải các bài toán nói trên.
Khảo sát thực nghiệm
chuyển động thẳng
5
− Nắm vững mục đích của việc khảo sát một
chuyển động thẳng là tìm hiểu đặc tình nhanh
chậm của chuyển động thể hiện ở biểu thức
vận tốc theo thời gian.
− Hiểu được rằng muốn đo vận tốc thì phải
xác đònh tọa độ của chất điểm ở các thời điểm
khác nhau và biết cách sử dụng thì kế ( hoặc
đồng hồ trong trường hợp không có thì kế ) để
xác đònh thời điểm vật ( ở đây là bọt khí ) đi
qua một tọa độ đã biết.
− Biết cách xử lý các kết quả đo đạc bằng
cách lập bảng và sử dụng các công thức thích
hợp để tìm các đại lượng mong muốn như tính
vận tốc tức thời tại một thời điểm.
− Biết cách vẽ đồ thò vận tốc theo thời gian và
có những nhận xét từ đồ thò.
- Bé TN cÇn rung.
- Mét sè b¨ng giÊy, thíc...
Chuyển động thẳng biến
đổi đều
6
− Hiểu được gia tốc là đại lượng đặc trưng cho
sự biến đổi nhanh chậm của vận tốc và các
đònh nghóa gia tốc trung bình, gia tốc tức thời.
− Xây dựng đònh nghóa về chuyển động thẳng
biến đổi đều, từ đó rút ra công thức vận tốc
theo thời gian.
− Hiểu được mối quan hệ giữa dấu của gia tốc
và dấu của vận tốc trong chuyển động nhanh
dần và trong chuyển động chậm dần.
− Vẽ đồ thò biểu diễn vận tốc theo thời gian
bằng một đường thẳng xiên góc với hệ số góc
bằng giá trò của gia tốc.
− Giải các bài toán đơn giản liên quan đến gia
tốc.
Phương trình chuyển động
thẳng biến đổi đều
7
− Hiểu rõ phương trình chuyển động là công
thức biểu diễn tọa độ của một chất điểm theo
thời gian.
Nhãm VËt lý - Tỉ Tù Nhiªn
2
Tn Líp Tªn bµi
TiÕt
PPCT
Mơc tiªu Ph¬ng ph¸p
Dơng cơ vµ thiÕt bÞ TN
cÇn dïng
T¨ng
,
gi¶m
Tù ®¸nh gi¸
− Thiết lập phương trình chuyển động từ công
thức vận tốc bằng phép tính đại số và nhờ đồ
thò vận tốc.
− Nắm vững được các công thức liên hệ giữa
độ dời, vận tốc và gia tốc.
− Hiểu rõ đồ thò phương trình chuyển động
biến đổi đều là một đường parabol.
− Áp dụng các công thức của tọa độ, củavận
tốcđể giải các bài toán chuyển động của một
chất điểm, của hai chất điểm chuyển động
cùng chiều hoặc ngược chiều.
Bài tập
8
− Hiểu được mối quan hệ giữa dấu của gia tốc
và dấu của vận tốc trong chuyển động nhanh
dần và trong chuyển động chậm dần.
− Vẽ đồ thò biểu diễn vận tốc theo thời gian
bằng một đường thẳng xiên góc với hệ số góc
bằng giá trò của gia tốc. Giải các bài toán đơn
giản liên quan đến gia tốc.
Sự rơi tự do
9
− Hiểu được sự rơi tự do là sự rơi của các vật
khi không có sức cản của không khí, có thể có
hay không vận tốc ban đầu theo phương thẳng
đứng. Hiểu được rằng khi rơi tự do thì mọi vật
đều rơi như nhau, với cùng một gia tốc gọi là
gia tốc rơi tự do.
− Biết quan sát và nhận xét về hiện tượng rơi
tự do của các vật khác nhau. Biết áp dụng
kiến thức của bài học trước để khảo sát
chuyển động của một vật rơi tự do.
− Bước đầu có khái niệm về phương pháp thực
nghiệm sử dụng trong nghiên cứu các hiện
tượng vật lý.
- Mét vµi hßn sái, d©y däi,
mét vµi tê giÊy 15cm*15cm,
mét vµi hßn bi xe ®¹p...
- èng Niu-t¬n: èng thủ
tinh, m¸y hót ch©n kh«ng.
Nhãm VËt lý - Tỉ Tù Nhiªn
3
Tn Líp Tªn bµi
TiÕt
PPCT
Mơc tiªu Ph¬ng ph¸p
Dơng cơ vµ thiÕt bÞ TN
cÇn dïng
T¨ng
,
gi¶m
Tù ®¸nh gi¸
Bài tập về chuyển động
thẳng biến đổi đều
10
− Hiểu rõ phương trình chuyển động là công
thức biểu diễn tọa độ của một chất điểm theo
thời gian.
− Thiết lập phương trình chuyển động từ công
thức vận tốc bằng phép tính đại số và nhờ đồ
thò vận tốc.
− Nắm vững được các công thức liên hệ giữa
độ dời, vận tốc và gia tốc.
Chuyển động tròn đều. Tốc
độ dài và tốc độ góc
11
- TN minh ho¹ chun ®éng
trßn ®Ịu.
- H×nh vÏ...
Gia tốc trong chuyển động
tròn đều
12
− Hiểu rõ rằng muốn tham gia chuyển động
cong thì chất điểm nhất thiết phải có một gia
tốc để có sự thay đổi vận tốc về phương, chiều
và độ lớn. Nếu chuyển động là đều thì gia tốc
chỉ gây nên sự thay đổi về phương, chiều của
vận tốc. Trong chuyển động tròn đều thì gia
tốc là gia tốc hướng tâm phụ thuộc vận tốc dài
và bán kính đường tròn.
− Nắm vững công thức gia tốc hướng tâm
trong chuyển động tròn đều và áp dụng trong
một số bài toán đơn giản.
Tính tương đối của chuyển
động. Cơng thức cộng vận
tốc
13
− Hiểu được chuyển động có tính tương đối,
các đại lượng động học như độ dời, vận tốc
cũng có tính tương đối.
− Hiểu rõ các khái niệm độ dời kéo theo, công
thức hợp vận tốc và áp dụng giải các bài toán
đơn giản.
- TN vỊ tÝnh t¬ng ®èi cđa
chun ®éng: Con l¾c, xe,
tói c¸t...
- H×nh vÏ...
Bài tập
14
− Biết quan sát và nhận xét về hiện tượng rơi
tự do của các vật khác nhau. Biết áp dụng
kiến thức của bài học trước để khảo sát
chuyển động của một vật rơi tự do.
Sai số trong thí nghiệm
thực hành
15
Nhãm VËt lý - Tỉ Tù Nhiªn
4
Tn Líp Tªn bµi
TiÕt
PPCT
Mơc tiªu Ph¬ng ph¸p
Dơng cơ vµ thiÕt bÞ TN
cÇn dïng
T¨ng
,
gi¶m
Tù ®¸nh gi¸
Thực hành: Xác định gia
tốc rơi tự do
16-17
- PA1: Bé rung ®o thêi gian,
qu¶ nỈng, d©y treo...
- Bé TN theo SGK c¬ b¶n.
Kiểm tra 1 tiết
18
Lực. Tổng hợp và phân
tích lực
19
- Học sinh cần hiểu được khái niệm hợp lực.
- Biết cách xác đònh hợp lực của các lực đồng
quy.
- Biết cách phân tích môt lực ra hai lực thành
phần có phương xác đònh.
-TN vỊ quy t¾c h×nh b×nh
hµnh.
Định luật I Niu-tơn - Định
luật II Niu-tơn
20
- Học sinh hiểu được nội dung và ý nghóacủa
đòng luật I Niutơn.
- Biết vận dụng đònh luật để giải hích một só
hiện tựơng vật lý.
- Biết đề phòng những tác hại có thể có của
quán tính trong đời sống, nhất là chủ động
phòng tránh tai nạn giao thông.
- Học sinh cần hiểu rõ mối quan hệ giữa các
đại lượng gia tốc, lực, khối lượng thể hiệân
trong đònh luậât II Niutơn.
- Biết vận dụng đònh luật II Niutơn và nuyên
lý độc lập của tác dụng để giải các bài tập
đơn giản
- TN lÞch sư cđa Ga-li-lª.
- §Ưm kh«ng khÝ.
Định luật III Niu-tơn
21
Học sinh hiểu được rằng: tác dụng cơ học bao
giờ cũng diễn ra theo hai chiều; các lực tương
tác giữa hai vật là hai lực trực đối. Biết vận
dụng đònh luật II và III Niutơn để giải thích
một số hiện tượng có liên quan.
- Nam ch©m, s¾t...
- Lùc kÕ, rßng räc....
Bài tập
22
Lực hấp dẫn
23
- Học sinh hiểu được rằng : Hấp dẫn là một
đặc điểm của mọi vật trong tự nhiên.
- Học sinh nắm được biểu thức, dặc điểm của
lực hấp dẫn, trọng lực.
- Vận dụng được các biểu thức dể giải các bài
- Bøc tranh miªu t¶ chun
®éng cđa hƯ mỈt trêi.
Nhãm VËt lý - Tỉ Tù Nhiªn
5