Tải bản đầy đủ (.pdf) (176 trang)

Deep learning with hadoop

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (7.39 MB, 176 trang )


TableofContents
DeepLearningwithHadoop
Credits
AbouttheAuthor
AbouttheReviewers
www.PacktPub.com
Whysubscribe?
CustomerFeedback
Dedication
Preface
Whatthisbookcovers
Whatyouneedforthisbook
Whothisbookisfor
Conventions
Readerfeedback
Customersupport
Downloadingtheexamplecode
Downloadingthecolorimagesofthisbook
Errata
Piracy
Questions
1.IntroductiontoDeepLearning
Gettingstartedwithdeeplearning
Deepfeed-forwardnetworks
Variouslearningalgorithms
Unsupervisedlearning
Supervisedlearning
Semi-supervisedlearning
Deeplearningterminologies
Deeplearning:ArevolutioninArtificialIntelligence


Motivationsfordeeplearning
Thecurseofdimensionality
Thevanishinggradientproblem
Distributedrepresentation
Classificationofdeeplearningnetworks
Deepgenerativeorunsupervisedmodels
Deepdiscriminatemodels
Summary
2.DistributedDeepLearningforLarge-ScaleData
Deeplearningformassiveamountsofdata
Challengesofdeeplearningforbigdata
Challengesofdeeplearningduetomassivevolumesofdata(firstV)
Challengesofdeeplearningfromahighvarietyofdata(secondV)
Challengesofdeeplearningfromahighvelocityofdata(thirdV)


Challengesofdeeplearningtomaintaintheveracityofdata(fourthV)
DistributeddeeplearningandHadoop
Map-Reduce
IterativeMap-Reduce
YetAnotherResourceNegotiator(YARN)
Importantcharacteristicsfordistributeddeeplearningdesign
Deeplearning4j-anopensourcedistributedframeworkfordeeplearning
MajorfeaturesofDeeplearning4j
SummaryoffunctionalitiesofDeeplearning4j
SettingupDeeplearning4jonHadoopYARN
GettingfamiliarwithDeeplearning4j
IntegrationofHadoopYARNandSparkfordistributeddeeplearning
RulestoconfigurememoryallocationforSparkonHadoopYARN
Summary

3.ConvolutionalNeuralNetwork
Understandingconvolution
BackgroundofaCNN
Architectureoverview
BasiclayersofCNN
ImportanceofdepthinaCNN
Convolutionallayer
Sparseconnectivity
Improvedtimecomplexity
Parametersharing
Improvedspacecomplexity
Equivariantrepresentations
ChoosingthehyperparametersforConvolutionallayers
Depth
Stride
Zero-padding
Mathematicalformulationofhyperparameters
Effectofzero-padding
ReLU(RectifiedLinearUnits)layers
AdvantagesofReLUoverthesigmoidfunction
Poolinglayer
Whereisituseful,andwhereisitnot?
Fullyconnectedlayer
DistributeddeepCNN
Mostpopularaggressivedeepneuralnetworksandtheirconfigurations
Trainingtime-majorchallengesassociatedwithdeepneuralnetworks
HadoopfordeepCNNs
ConvolutionallayerusingDeeplearning4j
Loadingdata
Modelconfiguration

Trainingandevaluation
Summary
4.RecurrentNeuralNetwork


Whatmakesrecurrentnetworksdistinctivefromothers?
Recurrentneuralnetworks(RNNs)
Unfoldingrecurrentcomputations
Advantagesofamodelunfoldedintime
MemoryofRNNs
Architecture
Backpropagationthroughtime(BPTT)
Errorcomputation
Longshort-termmemory
Problemwithdeepbackpropagationwithtime
Longshort-termmemory
Bi-directionalRNNs
ShortfallsofRNNs
Solutionstoovercome
DistributeddeepRNNs
RNNswithDeeplearning4j
Summary
5.RestrictedBoltzmannMachines
Energy-basedmodels
Boltzmannmachines
HowBoltzmannmachineslearn
Shortfall
RestrictedBoltzmannmachine
Thebasicarchitecture
HowRBMswork

ConvolutionalRestrictedBoltzmannmachines
StackedConvolutionalRestrictedBoltzmannmachines
DeepBeliefnetworks
Greedylayer-wisetraining
DistributedDeepBeliefnetwork
DistributedtrainingofRestrictedBoltzmannmachines
DistributedtrainingofDeepBeliefnetworks
Distributedbackpropagationalgorithm
PerformanceevaluationofRBMsandDBNs
Drasticimprovementintrainingtime
ImplementationusingDeeplearning4j
RestrictedBoltzmannmachines
DeepBeliefnetworks
Summary
6.Autoencoders
Autoencoder
Regularizedautoencoders
Sparseautoencoders
Sparsecoding
Sparseautoencoders
Thek-Sparseautoencoder
Howtoselectthesparsitylevelk


Effectofsparsitylevel
Deepautoencoders
Trainingofdeepautoencoders
ImplementationofdeepautoencodersusingDeeplearning4j
Denoisingautoencoder
ArchitectureofaDenoisingautoencoder

Stackeddenoisingautoencoders
ImplementationofastackeddenoisingautoencoderusingDeeplearning4j
Applicationsofautoencoders
Summary
7.MiscellaneousDeepLearningOperationsusingHadoop
DistributedvideodecodinginHadoop
Large-scaleimageprocessingusingHadoop
ApplicationofMap-Reducejobs
NaturallanguageprocessingusingHadoop
Webcrawler
Extractionofkeywordandmodulefornaturallanguageprocessing
Estimationofrelevantkeywordsfromapage
Summary
1.References


DeepLearningwithHadoop


DeepLearningwithHadoop
Copyright©2017PacktPublishing
Allrightsreserved.Nopartofthisbookmaybereproduced,storedinaretrievalsystem,or
transmittedinanyformorbyanymeans,withoutthepriorwrittenpermissionofthepublisher,
exceptinthecaseofbriefquotationsembeddedincriticalarticlesorreviews.
Everyefforthasbeenmadeinthepreparationofthisbooktoensuretheaccuracyofthe
informationpresented.However,theinformationcontainedinthisbookissoldwithoutwarranty,
eitherexpressorimplied.Neithertheauthor,norPacktPublishing,anditsdealersand
distributorswillbeheldliableforanydamagescausedorallegedtobecauseddirectlyor
indirectlybythisbook.
PacktPublishinghasendeavoredtoprovidetrademarkinformationaboutallofthecompanies

andproductsmentionedinthisbookbytheappropriateuseofcapitals.However,Packt
Publishingcannotguaranteetheaccuracyofthisinformation.
Firstpublished:February2017
Productionreference:1130217
PublishedbyPacktPublishingLtd.
LiveryPlace
35LiveryStreet
Birmingham
B32PB,UK.
ISBN978-1-78712-476-9
www.packtpub.com


Credits
Authors
DipayanDev
Reviewers
ShashwatShriparv
WissemELKhlifi
CommissioningEditor
AmeyVarangaonkar
AcquisitionEditor
DivyaPoojari
ContentDevelopmentEditor
SumeetSawant
TechnicalEditor
NileshSawakhande

CopyEditor
SafisEditing

ProjectCoordinator
ShwetaHBirwatkar
Proofreader
SafisEditing
Indexer
MariammalChettiyar
Graphics
TaniaDutta
ProductionCoordinator
MelwynDsa


AbouttheAuthor
DipayanDevhascompletedhisM.TechfromNationalInstituteofTechnology,Silcharwitha
firstclassfirstandiscurrentlyworkingasasoftwareprofessionalinBengaluru,India.Hehas
extensiveknowledgeandexperienceinnon-relationaldatabasetechnologies,havingprimarily
workedwithlarge-scaledataoverthelastfewyears.HiscoreexpertiseliesinHadoop
Framework.Duringhispostgraduation,Dipayanhadbuiltaninfinitescalableframeworkfor
Hadoop,calledDr.Hadoop,whichgotpublishedintop-tierSCI-EindexedjournalofSpringer
(Dr.Hadoophasrecentlybeencited
byGooWikipediaintheirApacheHadooparticle.Apartfromthat,heregistersinterestina
widerangeofdistributedsystemtechnologies,suchasRedis,ApacheSpark,Elasticsearch,
Hive,Pig,Riak,andotherNoSQLdatabases.Dipayanhasalsoauthoredvariousresearch
papersandbookchapters,whicharepublishedbyIEEEandtop-tierSpringerJournals.To
knowmoreabouthim,youcanalsovisithisLinkedInprofile
/>

AbouttheReviewers
ShashwatShriparvhasmorethan7yearsofITexperience.Hehasworkedwithvarious
technologiesonhiscareerpath,suchasHadoopandsubprojects,Java,.NET,andsoon.He

hasexperienceintechnologiessuchasHadoop,HBase,Hive,Pig,Flume,Sqoop,Mongo,
Cassandra,Java,C#,Linux,Scripting,PHP,C++,C,Webtechnologies,andvariousreal-life
usecasesinBigDatatechnologiesasadeveloperandadministrator.Helikestoridebikes,has
interestinphotography,andwritesblogswhennotworking.
HehasworkedwithcompaniessuchasCDAC,Genilok,HCL,UIDAI(Aadhaar),Pointcross;he
iscurrentlyworkingwithCenturyLinkCognilytics.
HeistheauthorofLearningHBase,PacktPublishing,thereviewerofPigDesignPatternbook,
PacktPublishing,andthereviewerofHadoopReal-WorldSolutioncookbook,2ndedition.
Iwouldliketotakethisopportunitytothankeveryonewhohavesomehowmademylifebetter
andappreciatedmeatmybestandbaredwithmeandsupportedmeduringmybadtimes.
WissemElKhlifiisthefirstOracleACEinSpainandanOracleCertifiedProfessionalDBA
withover12yearsofITexperience.HeearnedtheComputerScienceEngineerdegreefrom
FSTTunisia,MastersinComputerSciencefromtheUPCBarcelona,andMastersinBigData
SciencefromtheUPCBarcelona.HisareaofinterestincludeCloudArchitecture,BigData
Architecture,andBigDataManagement&Analysis.
Hiscareerhasincludedtherolesof:Javaanalyst/programmer,OracleSeniorDBA,andbig
datascientist.HecurrentlyworksasSeniorBigDataandCloudArchitectforSchneiderElectric
/APC.Hewritesnumerousarticlesonhiswebsiteandhistwitter
handleis@orawiss.


www.PacktPub.com
Forsupportfilesanddownloadsrelatedtoyourbook,pleasevisitwww.PacktPub.com.
DidyouknowthatPacktofferseBookversionsofeverybookpublished,withPDFandePub
filesavailable?YoucanupgradetotheeBookversionatwww.PacktPub.comandasaprint
bookcustomer,youareentitledtoadiscountontheeBookcopy.Getintouchwithus
atformoredetails.
Atwww.PacktPub.com,youcanalsoreadacollectionoffreetechnicalarticles,signupfora
rangeoffreenewslettersandreceiveexclusivediscountsandoffersonPacktbooksand
eBooks.


/>Getthemostin-demandsoftwareskillswithMapt.MaptgivesyoufullaccesstoallPackt
booksandvideocourses,aswellasindustry-leadingtoolstohelpyouplanyourpersonal
developmentandadvanceyourcareer.

Whysubscribe?
FullysearchableacrosseverybookpublishedbyPackt
Copyandpaste,print,andbookmarkcontent
Ondemandandaccessibleviaawebbrowser


CustomerFeedback
ThanksforpurchasingthisPacktbook.AtPackt,qualityisattheheartofoureditorialprocess.
Tohelpusimprove,pleaseleaveusanhonestreviewonthisbook'sAmazonpageat
/>Ifyou'dliketojoinourteamofregularreviewers,youcane-mailusat
WeawardourregularreviewerswithfreeeBooksandvideos
inexchangefortheirvaluablefeedback.Helpusberelentlessinimprovingourproducts!


Dedication
Tomymother,DiptiDebandfather,TarunKumarDeb.
Andalsomyelderbrother,TapojitDeb.


Preface
Thisbookwillteachyouhowtodeploylarge-scaledatasetsindeepneuralnetworkswith
Hadoopforoptimalperformance.
Startingwithunderstandingwhatdeeplearningis,andwhatthevariousmodelsassociatedwith
deepneuralnetworksare,thisbookwillthenshowyouhowtosetuptheHadoopenvironment
fordeeplearning.



Whatthisbookcovers
Chapter1,IntroductiontoDeepLearning,covershowdeeplearninghasgaineditspopularity
overthelastdecadeandisnowgrowingevenfasterthanmachinelearningduetoitsenhanced
functionalities.Thischapterstartswithanintroductionofthereal-lifeapplicationsofArtificial
Intelligence,theassociatedchallenges,andhoweffectivelyDeeplearningisabletoaddressall
ofthese.Thechapterprovidesanin-depthexplanationofdeeplearningbyaddressingsomeof
themajormachinelearningproblemssuchas,Thecurseofdimensionality,Vanishinggradient
problem,andthelikes.Togetstartedwithdeeplearningforthesubsequentchapters,the
classificationofvariousdeeplearningnetworksisdiscussedinthelatterpartofthischapter.
Thischapterisprimarilysuitableforreaders,whoareinterestedtoknowthebasicsofdeep
learningwithoutgettingmuchintothedetailsofindividualdeepneuralnetworks.
Chapter2,DistributedDeepLearningforLarge-ScaleData,explainsthatbigdataanddeep
learningareundoubtedlythetwohottesttechnicaltrendsinrecentdays.Bothofthemare
criticallyinterconnectedandhaveshowntremendousgrowthinthepastfewyears.This
chapterstartswithhowdeeplearningtechnologiescanbefurnishedwithmassiveamountof
unstructureddatatofacilitateextractionofvaluablehiddeninformationoutofthem.Famous
technologicalcompaniessuchasGoogle,Facebook,Apple,andthelikeareusingthislargescaledataintheirdeeplearningprojectstotrainsomeaggressivelydeepneuralnetworksina
smarterway.Deepneuralnetworks,however,showcertainchallengeswhiledealingwithBig
data.Thischapterprovidesadetailedexplanationofallthesechallenges.Thelatterpartofthe
chapterintroducesHadoop,todiscusshowdeeplearningmodelscanbeimplementedusing
Hadoop'sYARNanditsiterativeMap-reduceparadigm.Thechapterfurtherintroduces
Deeplearning4j,apopularopensourcedistributedframeworkfordeeplearningandexplainsits
variouscomponents.
Chapter3,ConvolutionalNeuralNetwork,introducesConvolutionalneuralnetwork(CNN),a
deepneuralnetworkwidelyusedbytoptechnologicalindustriesintheirvariousdeeplearning
projects.CNNcomeswithavastrangeofapplicationsinvariousfieldssuchasimage
recognition,videorecognition,naturallanguageprocessing,andsoon.Convolution,aspecial
typeofmathematicaloperation,isanintegralcomponentofCNN.Togetstarted,thechapter

initiallydiscussestheconceptofconvolutionwithareal-lifeexample.Further,anin-depth
explanationofConvolutionalneuralnetworkisprovidedbydescribingeachcomponentofthe
network.Toimprovetheperformanceofthenetwork,CNNcomeswiththreemostimportant
parameters,namely,sparseconnectivity,parametersharing,andequivariantrepresentation.
ThechapterexplainsallofthesetogetabettergriponCNN.Further,CNNalsopossessesfew
crucialhyperparameters,whichhelpindecidingthedimensionofoutputvolumeofthenetwork.
Adetaileddiscussionalongwiththemathematicalrelationshipamongthesehyperparameters
canbefoundinthischapter.Thelatterpartofthechapterfocusesondistributedconvolutional
neuralnetworksandshowsitsimplementationusingHadoopandDeeplearning4j.
Chapter4,RecurrentNeuralNetwork,explainsthatitisaspecialtypeofneuralnetworkthat
canworkoverlongsequencesofvectorstoproducedifferentsequencesofvectors.Recently,
theyhavebecomeanextremelypopularchoiceformodelingsequencesofvariablelength.RNN
hasbeensuccessfullyimplementedforvariousapplicationssuchasspeechrecognition,online
handwrittenrecognition,languagemodeling,andthelike.Thechapterprovidesadetailed
explanationofthevariousconceptsofRNNbyprovidingessentialmathematicalrelationsand
visualrepresentations.RNNpossessesitsownmemorytostoretheoutputoftheintermediate
hiddenlayer.Memoryisthecorecomponentoftherecurrentneuralnetwork,whichhasbeen


discussedinthischapterwithanappropriateblockdiagram.Moreover,thelimitationsofunidirectionalrecurrentneuralnetworksareprovided,andtoovercomethesame,theconceptof
bidirectionalrecurrentneuralnetwork(BRNN)isintroduced.Later,toaddresstheproblemof
vanishinggradient,introducedinchapter1,aspecialunitofRNN,calledLongshort-term
Memory(LSTM)isdiscussed.Intheend,theimplementationofdistributeddeeprecurrent
neuralnetworkwithHadoopisshownwithDeeplearning4j.
Chapter5,RestrictedBoltzmannMachines,coversboththemodelsdiscussedinchapters3
and4andexplainsthattheyarediscriminativemodels.AgenerativemodelcalledRestricted
Boltzmannmachine(RBM)isdiscussedinchapter5.RBMiscapableofrandomlyproducing
visibledatavalueswhenhiddenparametersaresuppliedtoit.Thechapterstartswith
introducingtheconceptofanEnergy-basedmodel,andexplainshowRestrictedBoltzmann
machinesarerelatedtoit.Furthermore,thediscussionprogressestowardsaspecialtypeof

RBMknownasConvolutionalRestrictedBoltzmannmachine,whichisacombinationofboth
ConvolutionandRestrictedBoltzmannmachines,andfacilitatesintheextractionofthefeatures
ofhighdimensionalimages.
DeepBeliefnetworks(DBN),awidelyusedmultilayernetworkcomposedofseveralRestricted
Boltzmannmachinesgetsintroducedinthelatterpartofthechapter.Thispartalsodiscusses
howDBNcanbeimplementedinadistributedenvironmentusingHadoop.Theimplementation
ofRBMaswellasdistributedDBNusingDeeplearning4jisdiscussedintheendofthechapter.
Chapter6,Autoencoders,introducesonemoregenerativemodelcalledautoencoder,whichis
generallyusedfordimensionalityreduction,featurelearning,orextraction.Thechapterstarts
withexplainingthebasicconceptofautoencoderanditsgenericblockdiagram.Thecore
structureofanautoencoderisbasicallydividedintotwoparts,encoderanddecoder.The
encodermapstheinputtothehiddenlayer,whereasthedecodermapsthehiddenlayertothe
outputlayer.Theprimaryconcernofabasicautoencoderistocopycertainaspectsoftheinput
layertotheoutputlayer.Thenextpartofthechapterdiscussesatypeofautoencodercalled
sparseautoencoder,whichisbasedonthedistributedsparserepresentationofthehidden
layer.Goingfurther,theconceptofdeepautoencoder,comprisingmultipleencodersand
decodersisexplainedin-depthwithanappropriateexampleandblockdiagram.Aswe
proceed,denoisingautoencoderandstackeddenoisingautoencoderareexplainedinthelatter
partofthechapter.Inconclusion,chapter6alsoshowstheimplementationofstacked
denoisingautoencoderanddeepautoencoderinHadoopusingDeeplearning4j.
Chapter7,MiscellaneousDeepLearningOperationsusingHadoop,focuses,mainly,onthe
designofthreemostcommonlyusedmachinelearningapplicationsindistributedenvironment.
Thechapterdiscussestheimplementationoflarge-scalevideoprocessing,large-scaleimage
processing,andnaturallanguageprocessing(NLP)withHadoop.ItexplainshowthelargescalevideoandimagedatasetscanbedeployedinHadoopDistributedFileSystem(HDFS)
andprocessedwithMap-reducealgorithm.ForNLP,anin-depthexplanationofthedesignand
implementationisprovidedattheendofthechapter.


Whatyouneedforthisbook
Weexpectallthereadersofthisbooktohavesomebackgroundoncomputerscience.This

bookmainlytalksondifferentdeepneuralnetworks,theirdesignsandapplicationswith
Deeplearning4j.Toextractthemostoutofthebook,thereadersareexpectedtoknowthe
basicsofmachinelearning,linearalgebra,probabilitytheory,theconceptsofdistributed
systemsandHadoop.FortheimplementationofdeepneuralnetworkswithHadoop,
Deeplearning4jhasbeenextensivelyusedthroughoutthisbook.Followingisthelinkfor
everythingyouneedtorunDeeplearning4j:
/>

Whothisbookisfor
IfyouareadatascientistwhowantstolearnhowtoperformdeeplearningonHadoop,thisis
thebookforyou.Knowledgeofthebasicmachinelearningconceptsandsomeunderstanding
ofHadoopisrequiredtomakethebestuseofthisbook.


Conventions
Inthisbook,youwillfindanumberoftextstylesthatdistinguishbetweendifferentkindsof
information.Herearesomeexamplesofthesestylesandanexplanationoftheirmeaning.
Codewordsintext,databasetablenames,foldernames,filenames,fileextensions,
pathnames,dummyURLs,userinput,andTwitterhandlesareshownasfollows:"The.build()
functionisusedtobuildthelayer."
Ablockofcodeissetasfollows:
publicstaticfinalStringDATA_URL=
" />
Whenwewishtodrawyourattentiontoaparticularpartofacodeblock,therelevantlinesor
itemsaresetinbold:
MultiLayerNetworkmodel=newMultiLayerNetwork(getConfiguration());
Model.init();

Newtermsandimportantwordsareshowninbold.Wordsthatyouseeonthescreen,for
example,inmenusordialogboxes,appearinthetextlikethis:"Insimplewords,anyneural

networkwithtwoormorelayers(hidden)isdefinedasadeepfeed-forwardnetworkorfeedforwardneuralnetwork."

Note
Warningsorimportantnotesappearinaboxlikethis.

Tip
Tipsandtricksappearlikethis.


Readerfeedback
Feedbackfromourreadersisalwayswelcome.Letusknowwhatyouthinkaboutthisbookwhatyoulikedordisliked.Readerfeedbackisimportantforusasithelpsusdeveloptitlesthat
youwillreallygetthemostoutof.Tosendusgeneralfeedback,simplyemail,andmentionthebook'stitleinthesubjectofyourmessage.If
thereisatopicthatyouhaveexpertiseinandyouareinterestedineitherwritingorcontributing
toabook,seeourauthorguideatwww.packtpub.com/authors.


Customersupport
NowthatyouaretheproudownerofaPacktbook,wehaveanumberofthingstohelpyouto
getthemostfromyourpurchase.

Downloadingtheexamplecode
Youcandownloadtheexamplecodefilesforthisbookfromyouraccountat
.Ifyoupurchasedthisbookelsewhere,youcanvisit
andregistertohavethefilese-maileddirectlytoyou.
Youcandownloadthecodefilesbyfollowingthesesteps:
1. Loginorregistertoourwebsiteusingyoure-mailaddressandpassword.
2. HoverthemousepointerontheSUPPORTtabatthetop.
3. ClickonCodeDownloads&Errata.
4. EnterthenameofthebookintheSearchbox.
5. Selectthebookforwhichyou'relookingtodownloadthecodefiles.

6. Choosefromthedrop-downmenuwhereyoupurchasedthisbookfrom.
7. ClickonCodeDownload.
Oncethefileisdownloaded,pleasemakesurethatyouunziporextractthefolderusingthe
latestversionof:
WinRAR/7-ZipforWindows
Zipeg/iZip/UnRarXforMac
7-Zip/PeaZipforLinux
ThecodebundleforthebookisalsohostedonGitHubat
Wealsohaveothercode
bundlesfromourrichcatalogofbooksandvideosavailableat
Checkthemout!

Downloadingthecolorimagesofthisbook

WealsoprovideyouwithaPDFfilethathascolorimagesofthescreenshots/diagramsusedin
thisbook.Thecolorimageswillhelpyoubetterunderstandthechangesintheoutput.Youcan
downloadthisfilefrom
/>
Errata
Althoughwehavetakeneverycaretoensuretheaccuracyofourcontent,mistakesdohappen.
Ifyoufindamistakeinoneofourbooks-maybeamistakeinthetextorthecode-wewouldbe
gratefulifyoucouldreportthistous.Bydoingso,youcansaveotherreadersfromfrustration
andhelpusimprovesubsequentversionsofthisbook.Ifyoufindanyerrata,pleasereport
thembyvisitingselectingyourbook,clickingonthe
ErrataSubmissionFormlink,andenteringthedetailsofyourerrata.Onceyourerrataare
verified,yoursubmissionwillbeacceptedandtheerratawillbeuploadedtoourwebsiteor
addedtoanylistofexistingerrataundertheErratasectionofthattitle.
Toviewthepreviouslysubmittederrata,goto
andenterthenameofthebookinthesearch
field.TherequiredinformationwillappearundertheErratasection.


Piracy
PiracyofcopyrightedmaterialontheInternetisanongoingproblemacrossallmedia.AtPackt,


wetaketheprotectionofourcopyrightandlicensesveryseriously.Ifyoucomeacrossany
illegalcopiesofourworksinanyformontheInternet,pleaseprovideuswiththelocation
addressorwebsitenameimmediatelysothatwecanpursuearemedy.
Pleasecontactusatwithalinktothesuspectedpiratedmaterial.
Weappreciateyourhelpinprotectingourauthorsandourabilitytobringyouvaluablecontent.

Questions
Ifyouhaveaproblemwithanyaspectofthisbook,youcancontactus
at,andwewilldoourbesttoaddresstheproblem.


Chapter1.IntroductiontoDeepLearning
"ByfarthegreatestdangerofArtificialIntelligenceisthatpeopleconcludetooearlythat

theyunderstandit."

--EliezerYudkowsky
Everthought,whyitisoftendifficulttobeatthecomputerinchess,evenforthebestplayersof
thegame?HowFacebookisabletorecognizeyourfaceamidhundredsofmillionsofphotos?
Howcanyourmobilephonerecognizeyourvoice,andredirectthecalltothecorrectperson,
fromhundredsofcontactslisted?
Theprimarygoalofthisbookistodealwithmanyofthosequeries,andtoprovidedetailed
solutionstothereaders.Thisbookcanbeusedforawiderangeofreasonsbyavarietyof
readers,however,wewrotethebookwithtwomaintargetaudiencesinmind.Oneofthe
primarytargetaudiencesisundergraduateorgraduateuniversitystudentslearningaboutdeep

learningandArtificialIntelligence;thesecondgroupofreadersarethesoftwareengineerswho
alreadyhaveaknowledgeofbigdata,deeplearning,andstatisticalmodeling,butwantto
rapidlygainknowledgeofhowdeeplearningcanbeusedforbigdataandviceversa.
Thischapterwillmainlytrytosetafoundationforthereadersbyprovidingthebasicconcepts,
terminologies,characteristics,andthemajorchallengesofdeeplearning.Thechapterwillalso
putforwardtheclassificationofdifferentdeepnetworkalgorithms,whichhavebeenwidely
usedbyresearchersoverthelastdecade.Thefollowingarethemaintopicsthatthischapter
willcover:
Gettingstartedwithdeeplearning
Deeplearningterminologies
Deeplearning:ArevolutioninArtificialIntelligence
Classificationofdeeplearningnetworks
Eversincethedawnofcivilization,peoplehavealwaysdreamtofbuildingartificialmachinesor
robotswhichcanbehaveandworkexactlylikehumanbeings.FromtheGreekmythological
characterstotheancientHinduepics,therearenumeroussuchexamples,whichclearly
suggestpeople'sinterestandinclinationtowardscreatingandhavinganartificiallife.
Duringtheinitialcomputergenerations,peoplehadalwayswonderedifthecomputercouldever
becomeasintelligentasahumanbeing!Goingforward,eveninmedicalscience,theneedof
automatedmachineshasbecomeindispensableandalmostunavoidable.Withthisneedand
constantresearchinthesamefield,ArtificialIntelligence(AI)hasturnedouttobea
flourishingtechnologywithvariousapplicationsinseveraldomains,suchasimageprocessing,
videoprocessing,andmanyotherdiagnosistoolsinmedicalsciencetoo.
AlthoughtherearemanyproblemsthatareresolvedbyAIsystemsonadailybasis,nobody
knowsthespecificrulesforhowanAIsystemisprogrammed!Afewoftheintuitiveproblems
areasfollows:
Googlesearch,whichdoesareallygoodjobofunderstandingwhatyoutypeorspeak
Asmentionedearlier,Facebookisalsosomewhatgoodatrecognizingyourface,and
hence,understandingyourinterests
Moreover,withtheintegrationofvariousotherfields,forexample,probability,linearalgebra,
statistics,machinelearning,deeplearning,andsoon,AIhasalreadygainedahugeamountof

popularityintheresearchfieldoverthecourseoftime.
OneofthekeyreasonsfortheearlysuccessofAIcouldbethatitbasicallydealtwith
fundamentalproblemsforwhichthecomputerdidnotrequireavastamountofknowledge.For



example,in1997,IBM'sDeepBluechess-playingsystemwasabletodefeattheworld
championGarryKasparov[1].Althoughthiskindofachievementatthattimecanbeconsidered
significant,itwasdefinitelynotaburdensometasktotrainthecomputerwithonlythelimited
numberofrulesinvolvedinchess!Trainingasystemwithafixedandlimitednumberofrulesis
termedashard-codedknowledgeofthecomputer.ManyArtificialIntelligenceprojectshave
undergonethishard-codedknowledgeaboutthevariousaspectsoftheworldinmany
traditionallanguages.Astimeprogresses,thishard-codedknowledgedoesnotseemtowork
withsystemsdealingwithhugeamountsofdata.Moreover,thenumberofrulesthatthedata
wasfollowingalsokeptchanginginafrequentmanner.Therefore,mostoftheprojects
followingthatsystemfailedtostanduptotheheightofexpectation.
Thesetbacksfacedbythishard-codedknowledgeimpliedthatthoseartificialintelligence
systemsneededsomewayofgeneralizingpatternsandrulesfromthesuppliedrawdata,
withouttheneedforexternalspoon-feeding.Theproficiencyofasystemtodosoistermedas
machinelearning.Therearevarioussuccessfulmachinelearningimplementationswhichwe
useinourdailylife.Afewofthemostcommonandimportantimplementationsareasfollows:
Spamdetection:Givenane-mailinyourinbox,themodelcandetectwhethertoputthat
e-mailinspamorintheinboxfolder.AcommonnaiveBayesmodelcandistinguish
betweensuche-mails.
Creditcardfrauddetection:Amodelthatcandetectwhetheranumberoftransactions
performedataspecifictimeintervalarecarriedoutbytheoriginalcustomerornot.
Oneofthemostpopularmachinelearningmodels,givenbyMor-Yosefetalin1990,used
logisticregression,whichcouldrecommendwhethercaesareandeliverywasneededfor
thepatientornot!
Therearemanysuchmodelswhichhavebeenimplementedwiththehelpofmachinelearning

techniques.

Figure1.1:Thefigureshowstheexampleofdifferenttypesofrepresentation.Let'ssaywe
wanttotrainthemachinetodetectsomeemptyspacesinbetweenthejellybeans.Inthe
imageontherightside,wehavesparsejellybeans,anditwouldbeeasierfortheAIsystemto
determinetheemptyparts.However,intheimageontheleftside,wehaveextremelycompact
jellybeans,andhence,itwillbeanextremelydifficulttaskforthemachinetofindtheempty
spaces.ImagessourcedfromUSC-SIPIimagedatabase
Alargeportionofperformanceofthemachinelearningsystemsdependsonthedatafedtothe
system.Thisiscalledrepresentationofthedata.Alltheinformationrelatedtothe
representationiscalledthefeatureofthedata.Forexample,iflogisticregressionisusedto
detectabraintumorinapatient,theAIsystemwillnottrytodiagnosethepatientdirectly!
Rather,theconcerneddoctorwillprovidethenecessaryinputtothesystemsaccordingtothe
commonsymptomsofthatpatient.TheAIsystemwillthenmatchthoseinputswiththealready
receivedpastinputswhichwereusedtotrainthesystem.


Basedonthepredictiveanalysisofthesystem,itwillprovideitsdecisionregardingthe
disease.Althoughlogisticregressioncanlearnanddecidebasedonthefeaturesgiven,it
cannotinfluenceormodifythewayfeaturesaredefined.Logisticregressionisatypeof
regressionmodelwherethedependentvariablehasalimitednumberofpossiblevaluesbased
ontheindependentvariable,unlikelinearregression.So,forexample,ifthatmodelwas
providedwithacaesareanpatient'sreportinsteadofthebraintumorpatient'sreport,itwould
surelyfailtopredictthecorrectoutcome,asthegivenfeatureswouldnevermatchwiththe
traineddata.
Thesedependenciesofthemachinelearningsystemsontherepresentationofthedataarenot
reallyunknowntous!Infact,mostofourcomputertheoryperformsbetterbasedonhowthe
dataarerepresented.Forexample,thequalityofadatabaseisconsideredbasedonhowthe
schemaisdesigned.Theexecutionofanydatabasequery,evenonathousandoramillionlines
ofdata,becomesextremelyfastifthetableisindexedproperly.Therefore,thedependencyof

thedatarepresentationoftheAIsystemsshouldnotsurpriseus.
Therearemanysuchexamplesindailylifetoo,wheretherepresentationofthedatadecides
ourefficiency.Tolocateapersonamidst20peopleisobviouslyeasierthantolocatethesame
personinacrowdof500people.Avisualrepresentationoftwodifferenttypesofdata
representationisshownintheprecedingFigure1.1.
Therefore,iftheAIsystemsarefedwiththeappropriatefeatureddata,eventhehardest
problemscouldberesolved.However,collectingandfeedingthedesireddatainthecorrect
waytothesystemhasbeenaseriousimpedimentforthecomputerprogrammer.
Therecanbenumerousreal-timescenarioswhereextractingthefeaturescouldbea
cumbersometask.Therefore,thewaythedataarerepresenteddecidestheprimefactorsin
theintelligenceofthesystem.

Note
Findingcatsamidstagroupofhumansandcatscanbeextremelycomplicatedifthe
featuresarenotappropriate.Weknowthatcatshavetails;therefore,wemightliketo
detectthepresenceoftailsasaprominentfeature.However,giventhedifferenttailshapes
andsizes,itisoftendifficulttodescribeexactlyhowatailwilllooklikeintermsofpixel
values!Moreover,tailscouldsometimesbeconfusedwiththehandsofhumans.Also,
overlappingofsomeobjectscouldomitthepresenceofacat'stail,makingtheimageeven
morecomplicated.
Fromalltheabovediscussions,itcanbeconcludedthatthesuccessofAIsystemsdepends
mainlyonhowthedataarerepresented.Also,variousrepresentationscanensnareandcache
thedifferentexplanatoryfactorsofallthedisparitiesbehindthedata.
Representationlearningisoneofthemostpopularandwidelypracticedlearningapproaches
usedtocopewiththesespecificproblems.Learningtherepresentationsofthenextlayerfrom
theexistingrepresentationofdatacanbedefinedasrepresentationlearning.Ideally,all
representationlearningalgorithmshavethisadvantageoflearningrepresentations,which
capturetheunderlyingfactors,asubsetthatmightbeapplicableforeachparticularsub-task.A
simpleillustrationisgiveninthefollowingFigure1.2:



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×