Đại cương về con lắc lò xo
Người đăng: Snowhite Snowflakes - Ngày: 15/08/2017
Bài viết này tổng hợp toàn bộ lí thuyết về Dao động điều hòa của con lắc lò xo. Hi vọng bài viết này sẽ
giúp các em học tập tốt hơn
Nội dung bài viết gồm hai phần:
Lý thuyết
Hướng dẫn giải một số bài tập
A. Lý thuyết
1. Định nghĩa
Con lắc lò xo là hệ thống bao gồm 1 lò xo có độ cứng K, nó có khối lượng không đáng kể, có 1 đầu cố
định và đầu còn lại gắn với 1 vật nặng có khối lượng m đặt theo phương ngang hoặc theo phương thẳng
đứng.
2. Phương trình dao động
Con lắc lò xo có phương trình dao động:
x=A.cos(ωt+φ)
Tần số góc: ω=Km−−√
Chu kì dao động của con lắc lò xo:
T=2πmK−−√=2πΔlg−−√
3. Lực hồi phục (Lực kéo về)
Lực gây ra trong dao động điều hòa của con lắc lò xo luôn luôn hướng về vị trí cân bằng được gọi là lực
kéo về hay còn gọi là lực hồi phục. Lực kéo về này có độ lớn tỉ lệ với li độ dao động và chính là lực này
gây ra gia tốc cho sự dao động điều hòa của con lắc lò xo.
Biểu thức: F=−K.x=−m.ω2.x
Chú ý:
1. Lực hồi phục tỉ lệ thuận với độ cứng của lò xo, không phụ thuộc vào khối lượng vật.
2. Đối với con lắc lò xo nằm ngang, lực hồi phục chính là lực đàn hồi.
3. Đối với con lắc lò xo thẳng đứng hoặc nằm trên mặt phẳng nghiêng, lực hồi phục là lực tổng hợp
tác dụng vào vật, luôn có xu hướng kéo vật về vị trí cân bằng.
3. Lực đàn hồi
Lực đàn hồi đối với con lắc lò xo nằm trên mặt phẳng nghiêng và con lắc lò xo thẳng đứng:
Chiều dương hướng xuống: Fđh = k. |Δl+x|
Chiều dương hướng lên: |Δl−x|
Các giá trị cực đại, cực tiểu của lực đàn hồi:
Lực đàn hồi cực đại: Fđhmax = k. (Δl+A) (lực kéo): Lúc vật ở vị trí thấp nhất.
Lực đàn hồi cực tiểu:
o
A < Δl Fđh min = k(Δl−A)
o
A ≥ Δl Fđh min = 0 (Lúc vật qua vị trí lò xo không biến dạng)
4. Các loại năng lượng của con lắc lò xo:
Động năng của con lắc lò xo:
Wđ=12.m.v2=12.m.ω2.A2.sin2(ωt+φ)=12.m.ω2.A2.1−cos(2ω+2φ)2
Thế năng của con lắc lò xo:
Wt=12.k.x2=12.m.ω2.A2.cos2(ωt+φ)=12.m.ω2.A2.1+cos(2ω+2φ)2
Cơ năng của con lắc lò xo:
W=Wt+Wđ=12.m.ω2.A2=12.k.A2=const
Chú ý:
1. Động năng, thế năng của con lắc lò xo hoặc dao động điều hòa biến thiên điều hòa cùng tần số
góc: ω′=2ω, tần số f ' = 2f và chu kì T′=T2.
2. Cơ năng của con lắc lò xo luôn tỉ lệ thuận với bình phương biên độ của dao động.
3. Cơ năng của con lắc lò xo luôn được bảo toàn nếu ta bỏ qua mọi ma sát.
4. Cơ năng của con lắc không phụ thuộc vào khối lượng vật.
5. Độ biến dạng và chiều dài của lò xo khi ở VTCB
Độ biến dạng của lò xo khi vật tại vị trí cân bằng:
Con lắc lò xo treo thẳng đứng: Δl=m.gK
Con lắc lò xo nằm trên mặt phẳng nghiêng góc
lcb = l0 + Δl ( trong đó l0 là chiều dài tự nhiên của lò xo) Chiều dài của lò xo tại vị trí cân bằng:
Chiều dài lớn nhất của lò xo tương ứng với vật tại vị trí thấp nhất: l max = l0 + Δl + A = lcb + A
Chiều dài nhỏ nhất của lò xo tương ứng với vật tại vị trí cao nhất): l min = l0 + Δl - A = lcb - A
Chiều dài của lò xo khi vật ở vị trí cân bằng: lcb=lmax+lmin2
Nếu A > Δl (với Ox hướng xuống) ta xét trong một chu kì dao động thì:
α so với phương ngang: Δl=m.gsinαK
Thời gian lò xo nén sẽ tương ứng với vật đi từ điểm M 1 đến M2.
Thời gian lò xo dãn sẽ tương ứng với vật đi từ điểm M 2 đến M1.
6. Cắt – ghép lò xo
a) Cắt lò xo
Một lò xo có độ cứng K, chiều dài l, được cắt thành các lò xo có độ cứng K 1, K2, ... và chiều dài tương
ứng l1, l2, ...
Ta có: K.l = K1.l1 = K2.l2 = ...
b) Ghép lò xo
Giả sử cần ghép nối tiếp các lò xo có độ cứng K1, K2, .... Độ cứng của lò xo tương đương khi:
Ghép nối tiếp: 1K=1K1+1K2+...
Ghép song song: K = K1 + K2 + ...
Chú ý: Khi treo vật có khối lượng m vào lò xo 1 thì vật dao động với chu kì T 1, treo vật vào lò xo 2 vật có
chu kì dao động là T2. Khi treo vật vào hệ lò xo thì chu kì dao động của vật là:
Ghép nối tiếp: T2= T12 + T22
Ghép song song: 1T2=1T21+1T22
7. Các dạng bài tập nâng cao về con lắc lò xo
a) Khi lò xo treo vật m1 có chu kì T1, vật m2 có chu kì T2, vật có khối lượng (m1 + m2) có chu kì T3, vật có
khối lượng |m1−m2| có chu kì T4.
Mối liên hệ giữa T1, T2, T3, T4 là:
T32 = T12 + T22
T42 = T12 - T22
b) Dạng bài tập về điều kiệ biên độ dao động
Vật m1 được đặt trên vật m2 dao động điều hòa theo phương thẳng đứng. Để m1 luôn nằm yên
trên m2 trong quá trình dao động thì biên độ dao động của hệ thỏa mãn:
A ≤gω2=(m1+m2)gK
Vật m1 và m2 được gắn vào hai đầu của lò xo đặt thẳng đứng, m 1 DĐĐH. Để m2 luôn nằm yên
trên mặt sàn trong quá trình dao động thì biên độ dao động phải thỏa mãn:
A ≤gω2=(m1+m2)gK
Vật m1 đặt trên m2 DĐĐH theo phương ngang. Hệ số ma sát giữa hai vật là μ, bỏ qua ma sát
giữa vật với mặt sàn. Để m1 không trượt trên m2 trong quá trình dao động thì biên độ dao động
thỏa mãn:
A ≤μgω2=μ(m1+m2)gK
B. BÀI TẬP VÀ HƯỚNG DẪN GIẢI
Câu 1:
Một lò xo có chiều dài tự nhiên l0 = 20 cm. Khi treo vật có khối lượng m = 100 g thì chiều dài của lò xo khi
vật cân bằng là lcb = 24 cm. Tính chu kì dao động của vật?
=> Xem hướng dẫn giải
Câu 2:
Vật m1 = 4 kg được gắn vào một đầu của lò xo, hệ dao động điều hòa với chu kì T 1 = 1 s. Tìm khối lượng
của vật m2 để khi gắn vật m2 vào lò xo hệ dao động với chu kì T2 = 0,5 s.
=> Xem hướng dẫn giải
Câu 3:
Con lắc lò xo gồm vật m và lò xo k dao động điều hòa, khi mắc thêm vào vật m một vật khác có khối
lượng 3m thì chu kì dao động của hệ sẽ như thế nào so với chu kì ban đầu?
=> Xem hướng dẫn giải
Câu 4:
Một con lắc dao động điều hòa với phương trình
năng và thế năng của con lắc là bao nhiêu?
=> Xem hướng dẫn giải
x=10cos(ωt) cm. Tại x = 5 cm, tỉ số giữa động