GIỚI HẠN HÀM SỐ LƯỢNG GIÁC
sinx
Dạng 4: lim
=1
x→ 0
x
Câu 1: Tìm các giới hạn sau:
tan2x
sin5x
1). lim
2). lim
x
→
0
x→ 0
3x
x
1− cosx
sin5x.sin 3x.sin x
4). lim
5). lim
2
x→ 0
x
→
0
x
45x3
sin7x − sin5x
lim
x→ 0
sinx
1− cos5x
1− cos2 2x
7). lim
8). lim
x→ 0 1− cos3x
x→ 0
x.sinx
x.sinax
L = lim
x→ 0 1− cosax
LỜI GIẢI
sin5x
1 sin5x 1
= lim ×
=
1). lim
x→ 0
x→ 0 5
x
5x
5
tan2x
2 tan2x 2
= lim ×
=
2). lim
x→ 0
x→ 0 3
3x
2x
3
x
2sin2
1− cosx
2 = limtan x = 0
= lim
3). lim
x→ 0
x
→
0
x
x x→ 0
sinx
2
2sin cos
2
2
3). lim
x→ 0
1− cosx
sinx
6).
9).
2
x
x
sin ÷
1− cosx
1
2
2÷ = 1
4). lim
= lim
= lim
2
2
x→ 0
x
→
0
x
→
0
x
2 x ÷ 2
x
÷
2
sin 5x.sin3x.sin x
1 sin 5x sin 3x sinx 1
= lim ×
×
×
=
5). lim
3
x→ 0
x
→
0
3 5x
3x
x
3
45x
sin7x − sin5x
2cos6xsin x
= lim
= lim2cos6x = 2
6). lim
x→ 0
x→ 0
x→ 0
sinx
sinx
2sin2
2
5x
5x
sin ÷
1− cos5x
25
2
2 ÷
7). lim
= lim
= lim ×
x→ 0 1− cos3x
x→ 0
x→ 0 9
3x
5x
÷
2sin2
÷
2
2
5x
3x
sin
2 = 1, lim 2 = 1)
( Vì lim
x→ 0
x→ 0
5x
3x
sin
2
2
2
( 1− cos2x) ( 1+ cos2x)
1− cos 2x
8). lim
= lim
x→ 0
x
→
0
x.sinx
x.sinx
2sin2
2
3x
÷ 25
× 2 ÷ =
9
sin 3x ÷
÷
2
= lim
2sin2 x ( 1+ cos2x)
x.sin x
x→ 0
= lim2( 1+ cos2x)
x→ 0
sinx
=4
x
ax
ax
ax
ax
cos
cos
2
2 = lim x ×cos ax = lim 2 ×
2
x→ 0
x→ 0
ax
ax
ax
a
2
2sin2
sin
sin
2
2
2
2
ax
ax
cos
2 = 1 và lim
2 = 2 ). Vậy L = 2 .
(Vì lim
x→ 0
x→ 0
ax
a
a
a
sin
2
2
Câu 2: Tìm các giới hạn sau:
1− cosax
sin x.sin 2x....sin nx
1− cosax
1). lim
2). lim
3). lim
(a ≠ 0)
n
x→ 0 1− cosbx
x→ 0
x→ 0
n!x
x2
sinx − tan x
tanx − sin x
sin x − sina
4). lim
5). lim
6). lim
3
3
x→ 0
x→ 0
x→ a
x− a
x
sin x
cosx − cosb
1− 2x + 1
7). lim
8). lim
9).
x→ b
x→ 0
x− b
sin2x
cos(a + x) − cos(a − x)
lim
x→ 0
x
LỜI GIẢI
ax
ax bx
2sin2
sin
1− cosax
a
2 = lim ×
2× 2 ÷
=
÷
1). L = lim
x→ 0 1− cosbx
x
→
0
bx
b ax sin bx ÷
2sin2
÷
2
2
2
ax
bx
sin
a
2
= 1, lim 2 = 1. Vậy L =
Vì lim
x→ 0
x→ 0
ax
bx
b
sin
2
2
sin x.sin 2x....sin nx
2). L = lim
x→0
n!xn
sin x.sin 2x....sin nx
sinx sin 2x sin nx
= lim
= lim
×
×××
n
x→ 0
x
→
0
x
2x
nx
1.2.3....nx
sin x
sin 2x
sinnx
Vì lim
= 1, lim
= 1,×××, lim
=1
x→ 0
x→ 0
x→ 0
x
2x
nx
Vậy L = 1.
x.sinax
= lim
9). L = lim
x→ 0 1− cosax
x→ 0
x.2sin
2
3). L = lim
x→ 0
Vậy L =
1− cosax
= lim
x→ 0
x2
a2
.
4
ax
ax
ax
sin
2 sin
÷
a
2 = 1).
2 = lim
2 ÷ (vì lim
x→ 0
x→ 0 4
ax
ax
x2
÷
÷
2
2
2sin2
4).
sinx − tanx
L = lim
= lim
x→ 0
x→ 0
x3
sin x
cosx = sinx ( cosx − 1)
x3
x3 cosx
sinx −
2
x
x
−2sin2 sinx
sin 2 ÷ sin x −1
2
= lim
= lim
×
÷ ×
x→ 0
x→ 0
x 2cosx
x3 cosx
x ÷
÷
2
x
sin
2 = 1, lim sinx = 1, lim −1 = − 1 .
Vì lim
x→ 0
x→ 0
x→ 0 2cosx
x
x
2
2
1
Vậy L = −
2
sin x
x
tanx − sin x
− sin x
2sin2
1
−
cosx
5). lim
2
x→ 0
= lim cosx 3
= lim
= lim
sin3 x
x→ 0
x→ 0 cosxsin2 x
x→ 0 cosxsin2 x
sin x
2
x
sin ÷
1
2÷
.
2 x ÷
÷
2 =1
= lim
2
x→ 0
2
sinx
cosx.
÷
x
x+ a
x− a
x− a
sin
sin
x
+
a
2
2 = limsin
2 = sina
×
x→ a
x− a
x−a
2
2
x+ b
x− b
x− b
−2sin
sin
sin
cosx − cosb
x+ b
2
2
2 = − sin b
= lim
= lim − sin
7). lim
÷.
x→ b
x→ b
x→ b
x− b
x− b
2 x− b
2
−1
1
1− 2x + 1 = lim 2x ×
=−
8). lim
x→ 0 sin 2x
x→ 0
2
1+ 2x + 1
sin2x
sin x − sina
= lim
6). lim
x→a
x→ a
x− a
2sin
cos(a + x) − cos(a − x)
−2sinasinx
sin x
= lim
= lim
.(−2sina)
x
→
0
x
→
0
x
x
x
sinx
(Vì lim
= 1 ). Vậy L = −2sina
x→ 0
x
Câu 2: Tìm các giới hạn sau:
tanx − tanc
1− cos3 x
sin2 x − sin2 a
1). lim
2). lim
3). lim
x→ c
x→ 0 xsin x
x→a
x− c
x2 − a2
cosαx − cosβx
sin5x − sin 3x
πx
4). lim
5). lim
6). lim ( 1− x) tan
2
x→ 0
x
→
0
x
→
1
sin x
x
2
9). L = lim
x→ 0
7). xlim
→−2
9). lim
x3 + 8
tan(x + 2)
8). lim
x→ 0
1− cosx.cos2x.cos3x
1− cosx
sin ( a + 2x) − 2sin ( a + x) + sina
2
x
x→ 0
10) lim
tan ( a + 2x) − 2tan ( a + x) + tana
x→ 0
x2
LỜI GIẢI
1). lim
x→ c
tanx − tanc
sin(x − c)
1
1
sin(x − c)
= lim
×
=
= 1 ).
(vì lim
2
x
→
c
x
→
c
x− c
x− c
cosxcosc cos c
x− c
(
)
1− cos3 x
( 1− cosx) 1+ cosx + cos2 x
= lim
x→ 0 xsin x
x→ 0
xsinx
2). lim
x
2
2 . 1+ cosx + cos x = 3 .
= lim
1+ cosx + cos x = lim
x→ 0
x→ 0
x
x
x
x
2
x.2sin cos
2cos
2
2
2
2
2sin2
3). lim
x→a
= lim
x→a
=
x
2
(
2
)
sin
( sin x − sina) ( sin x + sina)
sin2 x − sin2 a
= lim
2
2
x
→
a
x −a
( x − a) ( x + a)
2cos
x+ a
x− a
x−a
x+ a
sin
sin
cos
( sinx + sina)
2
2 ×sinx + sina = lim
2 ×
2
x→a
x− a
x−a
x+ a
x+ a
2.
2
2
2cosa.sina sin2a
=
.
2a
2a
x(α + β)
x(α − β)
−2sin
×sin
cosαx − cosβx
2
2
lim
= lim
x→ 0
x→ 0
x2
x2
x(α + β)
x(α − β)
sin
sin
2
2
2
2 .lim (α + β) (α − β) (−2) = β − α .
= lim
×lim
x→ 0
x(α + β) x→0 x(α − β) x→0 2
2
2
2
2
sin5x − sin 3x
2cos4xsinx
= lim
= lim(2cos4x) = 2
5). lim
x→ 0
x→ 0
x→ 0
sin x
sinx
πx
6). L = lim ( 1− x) tan
. Đặt t = x − 1, vì x → 1⇒ t → 0
x→1
2
π
π π
π
L = lim(−t)tan ( t + 1) = lim(−t)tan + t ÷ = limtcot t
t→ 0
t→ 0
t→ 0
2
2
2
2
4).
π
π
π
cos t
t cos t
2
2
2 =2
= limt.
= lim
×
t→ 0
t
→
0
π
π
π
π
sin t
sin t
2
2
2
7). xlim
→−2
(
)
x3 + 8
( x + 2) x2 − 2x + 4
x+ 2
= lim
= lim
x2 − 2x + 4 = 12
x
→−
2
tan(x + 2) x→−2
tan(x + 2)
tan(x + 2)
( Vì xlim
→−2
(
x+ 2
= 1 ).
tan(x + 2)
1− cosx.cos2x.cos3x
1− cosx
1
−
cosx.
cos2x.cos3x
+ ( 1− cos2x) cos3x + ( 1− cos3x)
(
)
8). lim
x→ 0
lim
1− cosx
1
−
cosx.
cos2x.cos3x
(
)
( 1− cos2x) cos3x + lim 1− cos3x
= lim
+ lim
x→ 0
x→ 0
x→0 1− cosx
1− cosx
1− cosx
3x
2sin2
2sin2 xcos3x
2
= limcos2x.cos3x + lim
+ lim
x→ 0
x→0
x→ 0
x
x
2sin2
2sin2
2
2
x→ 0
2
3x
sin 2
÷
÷
3x
x
x
÷
4sin2 cos2 cos3x
2 = 1+ 4 + 9 = 14
2
2
= 1+ lim
+ lim9.
2
x→ 0
x→ 0
x
x
sin2
sin
÷
2
2
x ÷
÷
2
sin ( a + 2x) − 2sin ( a + x) + sina
9). lim
x→ 0
x2
sin ( a + 2x) − sin ( a + x) + sina − sin ( a + x)
= lim
x→ 0
x2
3x
x
x
x
2cos a + ÷sin − 2cos a + ÷sin
2
2
2
2
= lim
2
x→ 0
x
x
3x
x
x
x
2sin cos a +
÷− cos a + 2 ÷
−4sin sin ( a + x) sin
2
2
2
2
= lim
= lim
x→ 0
x→0
x2
x2
2
x
sin 2 ÷
= lim ( −1)
÷ sin ( a + x) = − sina
x→ 0
x ÷
÷
2
10). lim
x→ 0
tan ( a + 2x) − 2tan ( a + x) + tana
x2
)
= lim
(
)
tan ( a + 2x) − tan ( a + x) − tan ( a + x) − tana
2
x
sinx
sinx
−
cos(a + 2x)cos(a + x) cos(a + x)cosa
= lim
x→ 0
x2
sin x
cosa − cos(a + 2x)
sinx
2sinxsin(a + x)
= lim 2
÷ = lim
÷
2
x→ 0 x
x
→
0
x cos(a + 2x)cos(a + x)cosa
cos(a + 2x)cos(a + x)cosa
x→ 0
2
2sina
sinx
2sin(a + x)
.
= lim
÷=
÷
3
x→ 0
x cos(a + 2x)cos(a + x)cosa cos a
Câu 3: Tìm các giới hạn sau:
sinax + tan bx
cos3x − cos5x.cos7x
(a + b ≠ 0)
1). lim
2). lim
x→ 0
x→ 0
(a + b)x
x2
cosax − cosbx.coscx
x→ 0
x2
4). lim
x→ 0
3). lim
5). lim
x→ 0
sin ( a + x) − sin ( a − x)
tan ( a + x) − tan ( a − x)
sin2 2x − sin x.sin 4x
x→ 0
x4
2x + 1 − 3 x2 + 1
sinx
6). lim
1
1
−
8). lim
÷
x→ 0 sin x
tanx
1− cos5x.cos7x
x→ 0
sin2 11x
sinx − sin 2x
lim
x
→
0
x
9).
x 1− 2sin2 ÷
2
7). lim
10). lim
x→ 0
1+ x2 − cosx
x2
LỜI GIẢI
1). lim sinax + tan bx = lim
x→ 0
x→ 0
(a + b)x
= lim
x→ 0
sin bx
sin bx
cosbx = lim sinax + lim
x→ 0 (a + b)x
x→ 0 (a + b)x.cosbx
(a + b)x
sinax +
a sinax
b
sin bx
a
b
×
+ lim
×
=
+
=1
x
→
0
a + b ax
(a + b)cosbx bx
a+ b a+ b
2). lim
x→ 0
cos3x − 1+ ( 1− cos5x) cos7x + 1− cos7x
cos3x − cos5x.cos7x
= lim
2
x→ 0
x
x2
( 1− cos5x) cos7x + lim 1− cos7x
cos3x − 1
lim
2
x
→
0
x→ 0
x
x2
x2
3x
5x
7x
−2sin2
2sin2 cos7x
2sin2
2 + lim
2
2
= lim
+ lim
x→ 0
x→ 0
x→ 0
x2
x2
x2
= lim
x→ 0
2
2
2
3x
5x
7x
sin ÷
sin ÷
sin ÷
−9
25cos7x
49
2 ÷ + lim
2 ÷ + lim
2 ÷ = − 9 + 25 + 49 = 65
= lim .
x→ 0 2
x→ 0
x
→
0
3x
5x
7x
2
2
2 2 2
2
÷
÷
÷
÷
÷
÷
2
2
2
cosax − 1− ( cosbx − 1) coscx + 1− coscx
cosax − cosbx.coscx
= lim
2
x→ 0
x→ 0
x
x2
ax
bx
cx
−2sin2
2sin2
coscx
2sin2
2
2
2
= lim
+ lim
+ lim
x→ 0
x→ 0
x→ 0
x2
x2
x2
3). lim
2
2
2
ax
bx
cx
sin ÷
sin
sin ÷
2
2
2
÷
−a
b2 coscx
c2
2
2
2 ÷ = −a + b + c
= lim
×
÷ + lim
÷ + lim ×
x→ 0 2
x→ 0
x→ 0 2
2
2
ax ÷
bx ÷
cx ÷
÷
÷
÷
2
2
2
2
4).
lim
x→ 0
sin ( a + x) − sin ( a − x)
tan ( a + x) − tan ( a − x)
= lim
x→ 0
2cosasinx
sin 2x
cos(a + x)cos(a − x)
= lim
x→ 0
5). lim
x→ 0
cosacos(a + x)cos(a − x)
= cos3 a
cosx
2x + 1 − 3 x2 + 1
sinx
2x + 1 − 1+ 1− 3 x2 + 1
2x + 1 − 1
1− 3 x2 + 1
= lim
+ lim
x→ 0
x→ 0
x→0
sinx
sin x
sin x
2
2x
−x
= lim
+ lim
2
x→ 0
sin x 2x + 1 + 1 x→0 sinx 1+ 3 x2 + 1 + 3 x2 + 1
x
2
x
−x
2
= lim
×
+ lim
×
=
+ 0= 1
2
x→ 0 sin x
x→ 0 sin x
1+ 1
2x + 1 + 1
1+ 3 x2 + 1 + 3 x2 + 1
lim
(
)
(
)
(
)
sin 2x − sin x.sin 4x
sin 2x − 2sin xsin2xcos2x
= lim
4
x
→
0
x
x4
sin 2x ( 2sinxcosx − 2sinxcos2x)
2
2
6). lim
x→ 0
= lim
x4
x→ 0
= lim
x→ 0
2sin 2x.sin x ( cosx − cos2x)
x4
= lim
x→ 0
4sin 2x.sinx.sin
3x
x
.sin
2
2
x4
3x
x
sin ÷ sin ÷
sin2x sin x
2
2 ÷= 6
= lim6×
÷×
÷×
÷×
x→ 0
2x x 3x ÷ x ÷
÷
÷
2 2
1− cos5x.cos7x
7). lim
x→ 0
sin2 11x
5x
7x
2sin2 cos7x
2sin2
1− cos5x) cos7x + 1− cos7x
(
2
2
= lim
= lim
+ lim
x→ 0
x→ 0
x→ 0 sin2 11x
sin2 11x
sin2 11x
2
2
5x
7x
sin 2 ÷
sin 2 ÷
÷ cos7x
÷
5x ÷
7x ÷
÷
÷
25
2 × 49 = 25 + 49 = 37
= lim 2
×
+
lim
2
x→ 0
484 x→0 sin11x 2 484 484 484 242
sin11x
11x ÷
11x ÷
x
2sin2
1
1
1
cosx
1− cosx
2
−
−
= lim
8). lim
÷ = lim
÷ = lim
x→ 0 sinx
x→ 0
x
x
tanx x→ 0 sin x sinx x→0 sinx
2sin cos
2
2
x
= limtan = 0 .
x→ 0
2
3x
−x
x
3x
2cos sin
sin − cos
sinx − sin 2x
2
2 = lim
2×
2 = −1
= lim
9). lim
x→ 0
x→ 0
x→ 0
x
xcosx
cosx
2 x
x 1− 2sin ÷
2
2
10). lim
x→ 0
= lim
x→ 0
1+ x2 − cosx
1+ x2 − 1+ 1− cosx
1+ x2 − 1
1− cosx
= lim
= lim
+ lim
2
2
x→ 0
x→ 0
x→ 0
x
x
x2
x2
2
x2
(
x
)
1+ x2 + 1
+ lim
x→ 0
2sin2
x2
x
2 = lim
x→ 0
2
x
sin ÷
1
1
2 ÷ = 1 + 1 = 1.
+ lim ×
x
→
0
2 x ÷ 2 2
1+ x2 + 1
÷
2
Câu 3: Tìm các giới hạn sau:
π
1+ tan x − 1+ sin x
1). limtan2x.tan
2). lim
− x÷
π
4
x
→
0
x→
x3
4
cosx
π
x+
2
sin(x − 1)
lim 2
x→1 x − 4x + 3
2sinx − 1
7). limπ
2
x→ 4cos x − 3
4).
lim
π
x→−
2
6
5). lim
x→π
8). limπ
x→
4
1+ cosx
( x − π)
2
2sinx − 1
2cos2 x − 1
π
sin − x ÷
6
lim
π 1− 2sin x
x→
6
LỜI GIẢI
π
2x.tan − x ÷ . Đặt t = x − π , vì x → π ⇒ t → 0
1). L = limtan
π
4
x→
4
4
4
3). lim
x→1
x+ 3− 2
tan(x − 1)
6).
9).
π
L = lim tan 2t + ÷(−1)tant = lim ( cot2t.tan t )
t→ 0
2
t→ 0
cos2t sint
cos2t sin t
cos2t 1
= lim
= lim
= lim
=
t→ 0 sin2t cost
t→ 0 2sintcost cost
t→ 0 2cos2 t
2
sinx ( x − cosx)
tanx − sin x
= lim
1+ tan x − 1+ sin x = lim
x→ 0
x→0 x3.A.cosx
2). lim
3
3
x→ 0
x 114+ 4
tan
sin
x
44x2+ 4 14+ 4
43x ÷
÷
A
2
x
x
sin ÷
sin x
1
1
2sin xsin2
2
= .
2 = lim
÷. x ÷ .
= lim 3
x→ 0
x
2A.cosx
4
÷
x→ 0 x .A.cosx
÷
2
x+ 3− 2
= lim
3). lim
x→1 tan(x − 1)
x→1
(
x + 3− 4
)
x + 3 + 2 tan(x − 1)
= lim
x→ 1
x−1
1
tan(x − 1) x + 3 + 2
x− 1
1
1
= 1, lim
= )
x→1
tan(x − 1)
x+ 3+ 2 4
1
Vậy L = .
4
cosx
L = lim
π
π
π
4).
π . Đặt t = x + , vì x → − ⇒ t → 0
x→−
2 x+
2
2
2
π
cos t − ÷
2 = lim sin t = 1 .
L = lim
t→ 0
t→ 0
t
t
1+ cosx
5). L = lim
2 . Đặt t = x − π , vì x → π ⇒ t → 0
x→π
( x − π)
(Vì lim
x→1
2
L = lim
t→ 0
6). L = lim
x→1
L = lim
t→ 0
1+ cos(t + π)
1− cost
= lim
= lim
2
t
→
0
t→ 0
t
t2
2sin2
t2
t
t
sin ÷
1
2 = lim
2÷ = 1 .
t→ 0 2
2
t ÷
÷
2
sin(x − 1)
sin(x − 1)
= lim
2
x
→
1
x
x − 4x + 3
( − 1) ( x − 3) . Đặt t = x − 1, vì x → 1⇒ t → 0
sin t
sint 1
1
= lim
×
=− .
t.(t − 2) t→0 t t − 2
2
2sin x − 1
2sin x − 1
2sinx − 1
= lim
= lim
2
2
π
π 1− 4sin2 x
x→ 4 1− sin x − 3
x→
x→ 4cos x − 3
6
6
6
7). L = limπ
(
)
= lim
π
x→
6
2sinx − 1
−1
1
= lim
=−
π
( 1− 2sinx) ( 1+ 2sin x) x→ 1+ 2sin x 2
6
8). L = limπ
x→
= lim
π
x→
4
( 1−
4
2sin x − 1
2sin x − 1
2sin x − 1
= lim
= lim
2cos2 x − 1 x→ π 2 1− sin2 x − 1 x→ π 1− 2sin2 x
4
4
(
2sin x − 1
)(
2sinx 1+ 2sinx
)
)
= lim
π
x→
4
−1
1
=− .
2
1+ 2sinx
π
π
π
sin − x ÷
sin − x ÷
sin x − ÷
6
6
= lim
6
= lim
9). = limπ
π
π
1− 2sin x x→
1 x→
π
x→
6
6 −2 sinx −
6 2 sinx − sin
÷
2
6÷
x π
x π
x π
2sin − ÷cos − ÷
cos − ÷
2 12
2 12 = lim 1
2 12 = 3
= lim
π
π 2
3
x
π
x
π
x π
x→
x→
6 4cos
6
cos + ÷
2 + 12 ÷sin 2 − 12 ÷
2 12
Câu 4: Tìm các giới hạn sau:
1− 2sinx
1). x→ π π
−x
6
6
lim
π
sin − x ÷
4
2). lim
π
x→ 1− 2sin x
4
4). lim
x2 + 1 − cos2x
x2
5). lim
7). limπ
sin x − 3cosx
sin3x
8). lim
x→ 0
x→
3
x→ 0
1+ 2x − cosx − x
x2
1− cosx cos2x
x→ 0
x2
3).
lim
π
x→
4
6). lim
3
x→ 0
2 − 2cosx
π
sin x − ÷
4
2x + 1 − 1− x
sin2x
1− 3 cosx
x→ 0
tan2 x
9). lim
LỜI GIẢI
1
π
2 sin x − ÷
2 sin x − sin ÷
1− 2sinx
lim
2
6
2sin x − 1
= lim
1). x→ π π
= lim
= lim
π
π
π
−x
6
π
π
π
x→
x→
x→
x−
x−
x−
6
6
6
6
6
6
6
x π
x π
x π
4cos + ÷sin − ÷
sin − ÷
2
12
2
12
= lim
2 12 2cos x + π = 3
= lim
÷
π
π
x π
x π
x→
x→
2 12
6
6
2 − ÷
− ÷
2 12
2 12
π
π
sin − x ÷
sin x − ÷
4
4
= lim
= lim
2). limπ
π
x→ 1− 2sin x
x→
2sinx − 1 x→ π4
4
4
π
π
sin x − ÷
sin x − ÷
4
4
= lim
π
2 x→ 4 2 sinx − sin π
2 sin x −
÷
4÷
2 ÷
x π
x π
x π
2sin − ÷cos − ÷
2cos − ÷
2 8
2 8 = lim
2 8 = 2
= lim
π
π
x
π
x
π
x
π
x→
x→
4
4
2cos + ÷sin − ÷
cos + ÷
2 8
2 8
2 8
2
π
−2 cosx −
÷
−2 cosx − cos ÷
÷
2
4
= lim
3). lim 2 − 2cosx = lim
π
π
π
π
π
π
x→
x→
x→
4 sin x −
4
4
sin x − ÷
sin x − ÷
4÷
4
4
x π
x π
x π
4sin + ÷sin − ÷
2sin + ÷
2
8
2
8
= lim
2 8 = 2
= lim
π
π
x π
x π x→
x π
x→
4 2sin
4 cos
2 − 8 ÷cos 2 − 8 ÷
2 − 8÷
x2 + 1 − cos2x
. Đặt f ( x) =
x2
4). lim
x→ 0
x2 + 1 − cos2x
x2
x2 + 1 − 1+ 1− cos2x
x2 + 1 − 1
1− cos2x
=
lim
+ lim
2
2
x
→
0
x
→
0
x
x
x2
lim
x→ 0
• Tính lim
x→ 0
x2 + 1 − 1
x2 + 1− 1
1
1
= lim
= lim
=
2
x→0 2
x→0
2
2
2
x
x + 1+ 1
x
x + 1+ 1
)
(
2
2
• Tính lim 1− cos2x = lim 2sin x = 2lim sin x ÷ = 2
x→ 0
x→ 0
x→0
x2
x2
x
1
5
+ 2=
2
2
1+ 2x − cosx − x
1+ 2x − cosx − x
5). L = lim
. Đặt f ( x) =
2
x→ 0
x
x2
Vậy limf ( x) =
x→ 0
1+ 2x − (1+ x) + 1− cosx
1+ 2x − (1+ x)
1− cosx
= lim
+ lim
2
2
x
→
0
x
→
0
x
x
x2
L = lim
x→ 0
1+ 2x − ( 1+ x)
1+ 2x − (1+ x)
= lim
2
x→ 0 2
x
x
1+ 2x − (1+ x)
2
• Tính lim
x→ 0
= lim
x→ 0
2
x
(
(
− x2
)
1+ 2x − (1+ x)
= lim
x→ 0
(
−1
)
1+ 2x + (1+ x)
=−
2
• Tính lim
x→ 0
1− cosx
= lim
x→ 0
x2
1
2
x
x
sin ÷
2 = lim 1
2÷ = 1
x→ 0 2
x
2
x2
÷
÷
2
2sin2
1 1
Vậy limf ( x) = − + = 0 .
x→ 0
2 2
)
3
6). L = lim
x→ 0
L = lim
3
x→ 0
2x + 1 − 1− x
. Đặt f ( x) =
sin 2x
= lim
x→ 0
2x + 1 − 1− x
sin 2x
3
2x + 1 − 1+ 1− 1− x
2x + 1 − 1
1− 1− x
= lim
+ lim
x
→
0
x
→
0
sin2x
sin2x
sin2x
3
• Tính
3
lim
x→ 0
2x + 1 − 1
= lim
x→ 0
sin2x
2sinxcosx
(
sin 2x
(
2x + 1− 1
)
2
2x + 1 + 3 2x + 1 + 1
2x
x
= lim
×
2
x→ 0 sin x
3
2x + 1 + 3 2x + 1 + 1
cosx
3
)
1
(
3
)
2x + 1 + 3 2x + 1 + 1
2
1− 1− x
x
x
1
1
= lim
= lim
×
=
• Tính lim
x→ 0
x
→
0
x
→
0
sin2x
sin x 2cosx 1+ 1− x
4
2sinxcosx 1+ 1− x
(
Vậy limf ( x) =
x→ 0
)
(
)
1 1 7
+ =
3 4 12
sin2 x − 3cos2 x
sin x − 3cosx = lim sinx − 3cosx =
3
π
x→ 3sinx − 4sin x
sin3x
sinx 3− 4sin2 x sin x + 3cosx
x→
3
3
7). limπ
=
4sin x − 3
(
)(
sinx 3− 4sin x sinx + 3cosx
2
8). L = lim
x→ 0
)
=
−1
(
sin x sinx + 3cosx
1− cosx cos2x
1− cos2 xcos2x
=
lim
x→ 0
x→ 0 2
x2
x 1+ cosx cos2x
(
cos2 x + sin2 x − cos2 xcos2x
(
x→ 0
= lim
x→ 0
x2 1+ cosx cos2x
2sin xcos x + sin x
2
2
2
(
x 1+ cosx cos2x
2
)
=
)
−2
3
1− cosx cos2x
x2
L = lim
= lim
)(
(
2
)
)
cos x ( 1− cos2x) + sin2 x
= lim
x→ 0
= lim
x→ 0
)
2
(
x2 1+ cosx cos2x
)
sin x
2cos x + 1
3
×
=
2
x
1+ cosx cos2x 2
2
2
1− 3 cosx
x→ 0
tan2 x
9). L = lim
x
2sin2 cos2 x
2
L = lim
= lim
2
x→ 0
x→ 0
x
x
tan2 x 1+ 3 cosx + 3 cosx
4sin2 cos2 1+ 3 cosx +
2
2
1− cosx
= lim
(
)
(
)
cos2 x
3
cosx
Câu 5: Tìm các giới hạn sau:
x→ 0
x
2cos2 1+ 3 cosx +
2
2
=
1
6.
(
3
)
2
cosx
=
1
3
tanx − 1
2sin2 x − 1
3
1). limπ
x→
4
2). lim
x→ 0
1− cosxcos2x
x2
3).
2
lim
− cotx ÷
x→ 0 sin 2x
4). lim
1− 2x + 1 + sinx
3x + 4 − 2 − x
1− sin2x − cos2x
L = lim
x→ 0 1+ sin2x − cos2x
7).
x2 + 1 − cosx
5). lim
x→ 0
x2
x→0
π
cos cosx ÷
cos3x + 2cos2x + 2
lim
2
8). lim
π
sin3x
x→
x→0
x
3
sin2
2
6).
9).
lim
x→0
1− cosx
( 1−
1− x
)
2
LỜI GIẢI
1). L = limπ
x→
4
tanx − 1
2sin2 x − 1
3
tanx − 1
2
sin2 x − cos2 x 3 tan x + 3 tan x + 1
sin x − cosx
= lim
2
π
3
x→
tan
x
+ 3 tanx + 1
4 cosx ( sin x − cosx) ( sinx + cosx)
1
1
= lim
=
2
π
3
3
x→
3
tanx
+
tanx
+
1
4 cosx ( sin x + cosx)
1− cosxcos2x
2). lim
x→ 0
x2
cosx( cosx − cos2x)
sin2 x + cos2 x − cosxcos2x
sin2 x
= lim
= lim 2 + lim
2
x→ 0
x→ 0
x→ 0
x
x
x2
3x
x
3x
x
2cosxsin sin
sin ÷ sin ÷
2
2 = 1+ lim
2 ÷×
2 ÷×9 ×cosx = 1+ 9 = 17
= 1+ lim
2
x→ 0
x
→
0
3x
x
8
8 8
x
÷
÷
÷
÷
2 2
L = lim
π
x→
4
(
)(
)
(
(
)
)
2
− cotx ÷
3). L = lim
x→ 0 sin2x
1
cosx
1− cos2 x
sin2 x
L = lim
−
=
lim
=
lim
= limtanx = 0
÷
x→ 0 sinxcosx
sinx x→0 sin xcosx x→ 0 sin xcosx x→ 0
4). L = lim
x→ 0
1− 2x + 1 + sin x
3x + 4 − 2 − x
L = lim
1− 2x + 1 + sinx
x→ 0
= lim
x→ 0
= lim
x→ 0
−2x
( −x
2
(
2
(
3x + 4 − 2 − x
3x + 4 + 2 + x
( x + 1) ( 1+
5). lim
)
)
− x 1+ 2x + 1
)
3x + 4 − 2 − x
x→ 0
3x + 4 + 2 + x
)(
1− 2x + 1
= lim
)
2x + 1
+ lim
(
x→ 0
x→ 0
)
sinx
3x + 4 − 2 − x
3x + 4 + 2 + x sinx
−x − x
2
x→ 0
+ lim
+ lim
sin x 3x + 4 + 2 + x
×
= 4− 4 = 0
x
−x − 1
x2 + 1 − cosx
x2
x→0
2
1+ x2 − 1 + (1− cosx)
÷
1+ x − 1÷
1− cosx
I = lim
= lim
+
x→0
x→0
x2
x2
x2
x
x
2sin2 ÷
sin2 ÷
x2
1
2 ÷ = lim
2 ÷ =1
=lim
+
+
2
2 ÷
x→0 2
x→0
2
2
x
x
÷
1+ x + 1 2
x ( 1+ x + 1)
÷
÷
4
1− sin2x − cos2x
1+ sin2x − cos2x
1− sin2x − cos2x
1− cos2x − sin 2x
2sin2 x − 2sin xcosx
L = lim
= lim
= lim
x→ 0 1+ sin2x − cos2x
x→ 0 1− cos2x + sin2x
x→ 0 2sin2 x + 2sin xcosx
2sinx ( sinx − cosx)
sinx − cosx
= lim
= lim
= −1
x→ 0 2sinx sin x + cosx
x→ 0 sinx + cosx
(
)
6). L = lim
x→ 0
7). limπ
x→
= lim
x→
π
3
3
cos3x + 2cos2x + 2
4cos3 x + 4cos2 x − 3cosx
= lim
π
sin3x
3sinx − 4sin3 x
x→
3
cosx ( 2cosx + 3) ( 2cosx − 1)
sinx ( 2cosx − 1) ( 2cosx + 1)
=
π
cos cosx ÷
2
8). lim
x→0
2x
sin
2
π π
π
x
2 x
sin − cosx ÷
sin 2sin2 ÷
sin π sin ÷
2
2
2 2
= lim
2
= lim
= lim π.
=π
x→0
x
→
0
x
→
0
x
x
x
2
2
2
sin
sin
π sin
2
2
2
9).
lim
x→0
= lim
x→∞
(
1− cosx
( 1−
1− x
)
2
( 1− cosx) ( 1+
1− 1− x
)(
2
1− x
)
(
2
1+ 1− x
)
2
x
2sin2 ÷ 1+ 1− x
2
= lim
x→0
2
x
4. ÷
2
)
2
( 1+
= lim
x→0
1− x
2
)
2
=2