Tải bản đầy đủ (.doc) (15 trang)

GIỚI HẠN HÀM SỐ LƯỢNG GIÁC

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (116.23 KB, 15 trang )

GIỚI HẠN HÀM SỐ LƯỢNG GIÁC
sinx
Dạng 4: lim
=1
x→ 0
x
Câu 1: Tìm các giới hạn sau:
tan2x
sin5x
1). lim
2). lim
x

0
x→ 0
3x
x
1− cosx
sin5x.sin 3x.sin x
4). lim
5). lim
2
x→ 0
x

0
x
45x3
sin7x − sin5x
lim
x→ 0


sinx
1− cos5x
1− cos2 2x
7). lim
8). lim
x→ 0 1− cos3x
x→ 0
x.sinx
x.sinax
L = lim
x→ 0 1− cosax
LỜI GIẢI
sin5x
1 sin5x 1
= lim ×
=
1). lim
x→ 0
x→ 0 5
x
5x
5
tan2x
2 tan2x 2
= lim ×
=
2). lim
x→ 0
x→ 0 3
3x

2x
3
x
2sin2
1− cosx
2 = limtan x = 0
= lim
3). lim
x→ 0
x

0
x
x x→ 0
sinx
2
2sin cos
2
2

3). lim
x→ 0

1− cosx
sinx

6).

9).


2

x

x
sin ÷
1− cosx
1
2
2÷ = 1
4). lim
= lim
= lim 
2
2
x→ 0
x

0
x

0
x
2 x ÷ 2
x

÷
 2 
sin 5x.sin3x.sin x
1 sin 5x sin 3x sinx 1

= lim ×
×
×
=
5). lim
3
x→ 0
x

0
3 5x
3x
x
3
45x
sin7x − sin5x
2cos6xsin x
= lim
= lim2cos6x = 2
6). lim
x→ 0
x→ 0
x→ 0
sinx
sinx
2sin2

2

5x


5x 
sin ÷
1− cos5x
25 
2
2 ÷
7). lim
= lim
= lim ×
x→ 0 1− cos3x
x→ 0
x→ 0 9
3x
5x

÷
2sin2
÷
2
 2 
5x
3x
sin
2 = 1, lim 2 = 1)
( Vì lim
x→ 0
x→ 0
5x
3x

sin
2
2
2
( 1− cos2x) ( 1+ cos2x)
1− cos 2x
8). lim
= lim
x→ 0
x

0
x.sinx
x.sinx
2sin2

2

 3x 

÷ 25
× 2 ÷ =
9
 sin 3x ÷
÷

2 


= lim


2sin2 x ( 1+ cos2x)
x.sin x

x→ 0

= lim2( 1+ cos2x)
x→ 0

sinx
=4
x

ax
ax
ax
ax
cos
cos
2
2 = lim x ×cos ax = lim 2 ×
2
x→ 0
x→ 0
ax
ax
ax
a
2
2sin2

sin
sin
2
2
2
2
ax
ax
cos
2 = 1 và lim
2 = 2 ). Vậy L = 2 .
(Vì lim
x→ 0
x→ 0
ax
a
a
a
sin
2
2
Câu 2: Tìm các giới hạn sau:
1− cosax
sin x.sin 2x....sin nx
1− cosax
1). lim
2). lim
3). lim
(a ≠ 0)
n

x→ 0 1− cosbx
x→ 0
x→ 0
n!x
x2
sinx − tan x
tanx − sin x
sin x − sina
4). lim
5). lim
6). lim
3
3
x→ 0
x→ 0
x→ a
x− a
x
sin x
cosx − cosb
1− 2x + 1
7). lim
8). lim
9).
x→ b
x→ 0
x− b
sin2x
cos(a + x) − cos(a − x)
lim

x→ 0
x
LỜI GIẢI
ax

ax bx 
2sin2
sin

1− cosax
a
2 = lim  ×
2× 2 ÷
=
÷
1). L = lim
x→ 0 1− cosbx
x

0
bx
 b ax sin bx ÷
2sin2
÷
2

2
2 
ax
bx

sin
a
2
= 1, lim 2 = 1. Vậy L =
Vì lim
x→ 0
x→ 0
ax
bx
b
sin
2
2
sin x.sin 2x....sin nx
2). L = lim
x→0
n!xn
sin x.sin 2x....sin nx
sinx sin 2x sin nx
= lim
= lim
×
×××
n
x→ 0
x

0
x
2x

nx
1.2.3....nx
sin x
sin 2x
sinnx
Vì lim
= 1, lim
= 1,×××, lim
=1
x→ 0
x→ 0
x→ 0
x
2x
nx
Vậy L = 1.
x.sinax
= lim
9). L = lim
x→ 0 1− cosax
x→ 0

x.2sin

2

3). L = lim
x→ 0

Vậy L =


1− cosax
= lim
x→ 0
x2

a2
.
4

ax
ax

ax 
sin
2  sin
÷
a
2 = 1).
2 = lim 
2 ÷ (vì lim
x→ 0
x→ 0 4
ax
ax
x2

÷
÷
2

 2 

2sin2


4).

sinx − tanx
L = lim
= lim
x→ 0
x→ 0
x3

sin x
cosx = sinx ( cosx − 1)
x3
x3 cosx

sinx −
2

x

x
−2sin2 sinx
 sin 2 ÷ sin x −1
2
= lim
= lim 

×
÷ ×
x→ 0
x→ 0
x 2cosx
x3 cosx
 x ÷
÷
 2 
x
sin
2 = 1, lim sinx = 1, lim −1 = − 1 .
Vì lim
x→ 0
x→ 0
x→ 0 2cosx
x
x
2
2
1
Vậy L = −
2
sin x
x
tanx − sin x
− sin x
2sin2
1


cosx
5). lim
2
x→ 0
= lim cosx 3
= lim
= lim
sin3 x
x→ 0
x→ 0 cosxsin2 x
x→ 0 cosxsin2 x
sin x
2


x
sin ÷
1

.
2 x ÷

÷
 2  =1
= lim
2
x→ 0
2
 sinx 
cosx.

÷
 x 
x+ a
x− a
x− a
sin
sin
x
+
a
2
2 = limsin
2 = sina
×
x→ a
x− a
x−a
2
2
x+ b
x− b
x− b
−2sin
sin
sin
cosx − cosb

x+ b
2
2

2 = − sin b
= lim
= lim  − sin
7). lim
÷.
x→ b
x→ b
x→ b
x− b
x− b
2  x− b

2
−1
1
1− 2x + 1 = lim 2x ×
=−
8). lim
x→ 0 sin 2x
x→ 0
2
1+ 2x + 1
sin2x
sin x − sina
= lim
6). lim
x→a
x→ a
x− a


2sin

cos(a + x) − cos(a − x)
−2sinasinx
sin x
= lim
= lim
.(−2sina)
x

0
x

0
x
x
x
sinx
(Vì lim
= 1 ). Vậy L = −2sina
x→ 0
x
Câu 2: Tìm các giới hạn sau:
tanx − tanc
1− cos3 x
sin2 x − sin2 a
1). lim
2). lim
3). lim
x→ c

x→ 0 xsin x
x→a
x− c
x2 − a2
cosαx − cosβx
sin5x − sin 3x
πx
4). lim
5). lim
6). lim ( 1− x) tan
2
x→ 0
x

0
x

1
sin x
x
2
9). L = lim
x→ 0


7). xlim
→−2
9). lim

x3 + 8

tan(x + 2)

8). lim
x→ 0

1− cosx.cos2x.cos3x
1− cosx

sin ( a + 2x) − 2sin ( a + x) + sina
2

x

x→ 0

10) lim

tan ( a + 2x) − 2tan ( a + x) + tana

x→ 0

x2

LỜI GIẢI
1). lim
x→ c

tanx − tanc
sin(x − c)
1

1
sin(x − c)
= lim
×
=
= 1 ).
(vì lim
2
x

c
x

c
x− c
x− c
cosxcosc cos c
x− c

(

)

1− cos3 x
( 1− cosx) 1+ cosx + cos2 x
= lim
x→ 0 xsin x
x→ 0
xsinx


2). lim

x
2
2 . 1+ cosx + cos x = 3 .
= lim
1+ cosx + cos x = lim
x→ 0
x→ 0
x
x
x
x
2
x.2sin cos
2cos
2
2
2
2
2sin2

3). lim
x→a

= lim
x→a

=


x
2

(

2

)

sin

( sin x − sina) ( sin x + sina)
sin2 x − sin2 a
= lim
2
2
x

a
x −a
( x − a) ( x + a)

2cos

x+ a
x− a
x−a
x+ a
sin
sin

cos
( sinx + sina)
2
2 ×sinx + sina = lim
2 ×
2
x→a
x− a
x−a
x+ a
x+ a
2.
2
2

2cosa.sina sin2a
=
.
2a
2a

x(α + β)
x(α − β)
−2sin
×sin
cosαx − cosβx
2
2
lim
= lim

x→ 0
x→ 0
x2
x2
x(α + β)
x(α − β)
sin
sin
2
2
2
2 .lim (α + β) (α − β) (−2) = β − α .
= lim
×lim
x→ 0
x(α + β) x→0 x(α − β) x→0 2
2
2
2
2
sin5x − sin 3x
2cos4xsinx
= lim
= lim(2cos4x) = 2
5). lim
x→ 0
x→ 0
x→ 0
sin x
sinx

πx
6). L = lim ( 1− x) tan
. Đặt t = x − 1, vì x → 1⇒ t → 0
x→1
2
π
π π 
π
L = lim(−t)tan ( t + 1) = lim(−t)tan  + t ÷ = limtcot t
t→ 0
t→ 0
t→ 0
2
2
2
2


4).

π
π
π
cos t
t cos t
2
2
2 =2
= limt.
= lim

×
t→ 0
t

0
π
π
π
π
sin t
sin t
2
2
2


7). xlim
→−2

(

)

x3 + 8
( x + 2) x2 − 2x + 4
x+ 2
= lim
= lim
x2 − 2x + 4 = 12
x

→−
2
tan(x + 2) x→−2
tan(x + 2)
tan(x + 2)

( Vì xlim
→−2

(

x+ 2
= 1 ).
tan(x + 2)

1− cosx.cos2x.cos3x
1− cosx
1

cosx.
cos2x.cos3x
+ ( 1− cos2x) cos3x + ( 1− cos3x)
(
)

8). lim
x→ 0

lim


1− cosx
1

cosx.
cos2x.cos3x
(
)
( 1− cos2x) cos3x + lim 1− cos3x
= lim
+ lim
x→ 0
x→ 0
x→0 1− cosx
1− cosx
1− cosx
3x
2sin2
2sin2 xcos3x
2
= limcos2x.cos3x + lim
+ lim
x→ 0
x→0
x→ 0
x
x
2sin2
2sin2
2
2

x→ 0

2


3x

 sin 2
÷

÷
3x
x
x

÷
4sin2 cos2 cos3x
2  = 1+ 4 + 9 = 14
2
2
= 1+ lim
+ lim9. 
2
x→ 0
x→ 0
x

x

sin2

sin

÷
2
2

x ÷

÷

2 
sin ( a + 2x) − 2sin ( a + x) + sina
9). lim
x→ 0
x2
sin ( a + 2x) − sin ( a + x) + sina − sin ( a + x)
= lim
x→ 0
x2

3x 
x

x
x
2cos a + ÷sin − 2cos a + ÷sin
2
2
2
2





= lim
2
x→ 0
x
x

3x 

x 
x
x
2sin  cos a +
÷− cos a + 2 ÷
−4sin sin ( a + x) sin
2
2




2
2
= lim
= lim
x→ 0
x→0

x2
x2
2


x
 sin 2 ÷
= lim ( −1) 
÷ sin ( a + x) = − sina
x→ 0
 x ÷
÷
 2 
10). lim
x→ 0

tan ( a + 2x) − 2tan ( a + x) + tana
x2

)


= lim

(

)

tan ( a + 2x) − tan ( a + x) − tan ( a + x) − tana
2


x
sinx
sinx

cos(a + 2x)cos(a + x) cos(a + x)cosa
= lim
x→ 0
x2


sin x 
cosa − cos(a + 2x)
sinx 
2sinxsin(a + x)
= lim 2 
÷ = lim
÷
2 
x→ 0 x
x

0
x  cos(a + 2x)cos(a + x)cosa 
 cos(a + 2x)cos(a + x)cosa 
x→ 0

2

 2sina

 sinx  
2sin(a + x)
.
= lim 
÷=
÷
3
x→ 0
 x   cos(a + 2x)cos(a + x)cosa  cos a
Câu 3: Tìm các giới hạn sau:
sinax + tan bx
cos3x − cos5x.cos7x
(a + b ≠ 0)
1). lim
2). lim
x→ 0
x→ 0
(a + b)x
x2
cosax − cosbx.coscx
x→ 0
x2

4). lim
x→ 0

3). lim
5). lim
x→ 0


sin ( a + x) − sin ( a − x)

tan ( a + x) − tan ( a − x)

sin2 2x − sin x.sin 4x
x→ 0
x4

2x + 1 − 3 x2 + 1
sinx

6). lim

 1
1 

8). lim

÷
x→ 0 sin x
tanx 


1− cos5x.cos7x
x→ 0
sin2 11x
sinx − sin 2x
lim
x


0

x
9).
x 1− 2sin2 ÷
2

7). lim

10). lim
x→ 0

1+ x2 − cosx
x2

LỜI GIẢI
1). lim sinax + tan bx = lim
x→ 0
x→ 0
(a + b)x
= lim
x→ 0

sin bx
sin bx
cosbx = lim sinax + lim
x→ 0 (a + b)x
x→ 0 (a + b)x.cosbx
(a + b)x


sinax +

a sinax
b
sin bx
a
b
×
+ lim
×
=
+
=1
x

0
a + b ax
(a + b)cosbx bx
a+ b a+ b

2). lim
x→ 0

cos3x − 1+ ( 1− cos5x) cos7x + 1− cos7x
cos3x − cos5x.cos7x
= lim
2
x→ 0
x
x2


( 1− cos5x) cos7x + lim 1− cos7x
cos3x − 1
lim
2
x

0
x→ 0
x
x2
x2
3x
5x
7x
−2sin2
2sin2 cos7x
2sin2
2 + lim
2
2
= lim
+ lim
x→ 0
x→ 0
x→ 0
x2
x2
x2
= lim

x→ 0

2

2

2


3x 

5x 

7x 
sin ÷
sin ÷
sin ÷


−9 
25cos7x
49
2 ÷ + lim
2 ÷ + lim 
2 ÷ = − 9 + 25 + 49 = 65
= lim .

x→ 0 2
x→ 0
x


0
3x
5x
7x
2
2
2 2 2
2

÷

÷
÷
÷
÷

÷
 2 
 2 
 2 


cosax − 1− ( cosbx − 1) coscx + 1− coscx
cosax − cosbx.coscx
= lim
2
x→ 0
x→ 0
x

x2
ax
bx
cx
−2sin2
2sin2
coscx
2sin2
2
2
2
= lim
+ lim
+ lim
x→ 0
x→ 0
x→ 0
x2
x2
x2

3). lim

2

2

2



ax 

bx 

cx 
sin ÷
sin
sin ÷
2
2
2
÷
−a 
b2 coscx 
c2 
2
2
2 ÷ = −a + b + c
= lim
×

÷ + lim
÷ + lim ×
x→ 0 2
x→ 0
x→ 0 2
2
2
 ax ÷
 bx ÷

 cx ÷
÷
÷
÷
 2 
 2 
 2 
2

4).

lim
x→ 0

sin ( a + x) − sin ( a − x)

tan ( a + x) − tan ( a − x)

= lim
x→ 0

2cosasinx
sin 2x
cos(a + x)cos(a − x)
= lim
x→ 0

5). lim
x→ 0


cosacos(a + x)cos(a − x)
= cos3 a
cosx

2x + 1 − 3 x2 + 1
sinx

2x + 1 − 1+ 1− 3 x2 + 1
2x + 1 − 1
1− 3 x2 + 1
= lim
+ lim
x→ 0
x→ 0
x→0
sinx
sin x
sin x
2
2x
−x
= lim
+ lim
2
x→ 0
sin x 2x + 1 + 1 x→0 sinx 1+ 3 x2 + 1 + 3 x2 + 1 





x
2
x
−x
2
= lim
×
+ lim
×
=
+ 0= 1
2
x→ 0 sin x
x→ 0 sin x
1+ 1
2x + 1 + 1
1+ 3 x2 + 1 + 3 x2 + 1
lim

(

)

(

)

(

)


sin 2x − sin x.sin 4x
sin 2x − 2sin xsin2xcos2x
= lim
4
x

0
x
x4
sin 2x ( 2sinxcosx − 2sinxcos2x)
2

2

6). lim
x→ 0

= lim

x4

x→ 0

= lim
x→ 0

2sin 2x.sin x ( cosx − cos2x)
x4


= lim
x→ 0

4sin 2x.sinx.sin

3x
x
.sin
2
2

x4


3x  
x
sin ÷  sin ÷
 sin2x   sin x  
2
2 ÷= 6
= lim6×
÷×
÷×
÷×
x→ 0
 2x   x   3x ÷  x ÷

÷
÷
 2   2 

1− cos5x.cos7x
7). lim
x→ 0
sin2 11x
5x
7x
2sin2 cos7x
2sin2
1− cos5x) cos7x + 1− cos7x
(
2
2
= lim
= lim
+ lim
x→ 0
x→ 0
x→ 0 sin2 11x
sin2 11x
sin2 11x


2

2


5x 

7x 

 sin 2 ÷
 sin 2 ÷

÷ cos7x

÷
 5x ÷
 7x ÷
÷
÷
25
 2  × 49 = 25 + 49 = 37
= lim  2 
×
+
lim
2
x→ 0
484 x→0  sin11x  2 484 484 484 242
 sin11x 
 11x ÷
 11x ÷




x
2sin2
 1
1 

 1
cosx 
1− cosx
2


= lim
8). lim

÷ = lim 
÷ = lim
x→ 0 sinx
x→ 0
x
x
tanx  x→ 0  sin x sinx  x→0 sinx

2sin cos
2
2
x
= limtan = 0 .
x→ 0
2
3x
−x
x
3x
2cos sin
sin − cos

sinx − sin 2x
2
2 = lim

2 = −1
= lim
9). lim
x→ 0
x→ 0
x→ 0
x
xcosx
cosx

2 x
x 1− 2sin ÷
2
2

10). lim
x→ 0

= lim
x→ 0

1+ x2 − cosx
1+ x2 − 1+ 1− cosx
1+ x2 − 1
1− cosx
= lim

= lim
+ lim
2
2
x→ 0
x→ 0
x→ 0
x
x
x2
x2
2

x2

(

x

)

1+ x2 + 1

+ lim
x→ 0

2sin2
x2

x

2 = lim
x→ 0

2


x
sin ÷
1
1 
2 ÷ = 1 + 1 = 1.
+ lim ×
x

0
2  x ÷ 2 2
1+ x2 + 1

÷
 2 

Câu 3: Tìm các giới hạn sau:
π

1+ tan x − 1+ sin x
1). limtan2x.tan
2). lim
 − x÷
π
4

x

0
x→


x3
4

cosx
π
x+
2
sin(x − 1)
lim 2
x→1 x − 4x + 3
2sinx − 1
7). limπ
2
x→ 4cos x − 3
4).

lim

π
x→−
2

6


5). lim
x→π

8). limπ
x→

4

1+ cosx

( x − π)

2

2sinx − 1
2cos2 x − 1

π

sin  − x ÷
6


lim
π 1− 2sin x
x→
6

LỜI GIẢI
π


2x.tan  − x ÷ . Đặt t = x − π , vì x → π ⇒ t → 0
1). L = limtan
π
4
x→


4
4
4

3). lim
x→1

x+ 3− 2
tan(x − 1)

6).

9).





π
L = lim  tan  2t + ÷(−1)tant = lim ( cot2t.tan t )
t→ 0
2



 t→ 0
cos2t sint
cos2t sin t
cos2t 1
= lim
= lim
= lim
=
t→ 0 sin2t cost
t→ 0 2sintcost cost
t→ 0 2cos2 t
2
sinx ( x − cosx)
tanx − sin x
= lim
1+ tan x − 1+ sin x = lim
x→ 0

 x→0 x3.A.cosx
2). lim
3
3
x→ 0
x  114+ 4
tan
sin
x
44x2+ 4 14+ 4

43x ÷

÷

A

2


x
x
sin ÷
 sin x  
1
1
2sin xsin2
2
= .
2 = lim

÷. x ÷ .
= lim 3
x→ 0
x
2A.cosx
4


÷
x→ 0 x .A.cosx


÷
 2 
x+ 3− 2
= lim
3). lim
x→1 tan(x − 1)
x→1

(

x + 3− 4

)

x + 3 + 2 tan(x − 1)

= lim
x→ 1

x−1
1
tan(x − 1) x + 3 + 2

x− 1
1
1
= 1, lim
= )
x→1

tan(x − 1)
x+ 3+ 2 4
1
Vậy L = .
4
cosx
L = lim
π
π
π
4).
π . Đặt t = x + , vì x → − ⇒ t → 0
x→−
2 x+
2
2
2
 π
cos t − ÷
 2  = lim sin t = 1 .
L = lim
t→ 0
t→ 0
t
t
1+ cosx
5). L = lim
2 . Đặt t = x − π , vì x → π ⇒ t → 0
x→π
( x − π)

(Vì lim
x→1

2

L = lim
t→ 0

6). L = lim
x→1
L = lim
t→ 0

1+ cos(t + π)
1− cost
= lim
= lim
2
t

0
t→ 0
t
t2

2sin2
t2

t


t
sin ÷

1
2 = lim 
2÷ = 1 .
t→ 0 2
2
 t ÷
÷
 2 

sin(x − 1)
sin(x − 1)
= lim
2
x

1
x
x − 4x + 3
( − 1) ( x − 3) . Đặt t = x − 1, vì x → 1⇒ t → 0

sin t
sint 1
1
= lim
×
=− .
t.(t − 2) t→0 t t − 2

2
2sin x − 1
2sin x − 1
2sinx − 1
= lim
= lim
2
2
π
π 1− 4sin2 x
x→ 4 1− sin x − 3
x→
x→ 4cos x − 3
6
6
6

7). L = limπ

(

)


= lim
π
x→
6

2sinx − 1

−1
1
= lim
=−
π
( 1− 2sinx) ( 1+ 2sin x) x→ 1+ 2sin x 2
6

8). L = limπ
x→

= lim
π
x→
4

( 1−

4

2sin x − 1
2sin x − 1
2sin x − 1
= lim
= lim
2cos2 x − 1 x→ π 2 1− sin2 x − 1 x→ π 1− 2sin2 x
4
4

(


2sin x − 1

)(

2sinx 1+ 2sinx

)

)

= lim
π
x→
4

−1

1
=− .
2
1+ 2sinx

π

π


π
sin  − x ÷

sin  − x ÷
sin  x − ÷
6
6
 = lim
6
 = lim

9). = limπ
π
π
1− 2sin x x→

1  x→ 
π
x→
6
6 −2 sinx −
6 2 sinx − sin

÷

2





x π 
x π 

x π 
2sin  − ÷cos − ÷
cos − ÷
 2 12 
 2 12  = lim 1
 2 12  = 3
= lim
π
π 2
3

x
π


x
π


x π
x→
x→
6 4cos
6
cos + ÷
 2 + 12 ÷sin  2 − 12 ÷





 2 12 
Câu 4: Tìm các giới hạn sau:
1− 2sinx
1). x→ π π
−x
6
6
lim

π

sin  − x ÷
4 
2). lim
π
x→ 1− 2sin x
4

4). lim

x2 + 1 − cos2x
x2

5). lim

7). limπ

sin x − 3cosx
sin3x


8). lim

x→ 0

x→

3

x→ 0

1+ 2x − cosx − x
x2

1− cosx cos2x
x→ 0
x2

3).

lim
π
x→
4

6). lim

3

x→ 0


2 − 2cosx

π
sin  x − ÷
4


2x + 1 − 1− x
sin2x

1− 3 cosx
x→ 0
tan2 x

9). lim

LỜI GIẢI

1

π
2 sin x − ÷
2 sin x − sin ÷
1− 2sinx
lim
2
6
2sin x − 1
 = lim 
1). x→ π π

= lim
= lim 
π
π
π
−x
6
π
π
π
x→
x→
x→
x−
x−
x−
6
6
6
6
6
6
6
x π 
x π 
x π 
4cos + ÷sin  − ÷
sin  − ÷
2
12

2
12



 = lim
 2 12  2cos x + π  = 3
= lim

÷
π
π
x π 
x π 
x→
x→
 2 12 
6
6
2 − ÷
− ÷

 2 12 
 2 12 
π


π
sin  − x ÷
sin  x − ÷

4
4

 = lim

= lim
2). limπ
π
x→ 1− 2sin x
x→
2sinx − 1 x→ π4
4
4


π

π
sin  x − ÷
sin  x − ÷
4
4

 = lim

π

2  x→ 4 2  sinx − sin π 
2  sin x −
÷






2 ÷




x π
x π
x π
2sin  − ÷cos − ÷
2cos − ÷
 2 8
 2 8  = lim
 2 8 = 2
= lim
π
π

x
π


x
π



x
π
x→
x→
4
4
2cos + ÷sin  − ÷
cos + ÷
 2 8
 2 8
 2 8

2

π
−2 cosx −
÷
−2 cosx − cos ÷

÷
2
4
 = lim 
3). lim 2 − 2cosx = lim 
π
π
π

π



π


π

x→
x→
x→
4 sin x −
4
4
sin  x − ÷
sin  x − ÷


4
4




x π
x π
x π
4sin  + ÷sin  − ÷
2sin  + ÷
2
8
2

8



 = lim
 2 8 = 2
= lim
π
π
x π
 x π  x→
x π
x→
4 2sin
4 cos
 2 − 8 ÷cos 2 − 8 ÷
 2 − 8÷






x2 + 1 − cos2x
. Đặt f ( x) =
x2

4). lim
x→ 0


x2 + 1 − cos2x
x2

x2 + 1 − 1+ 1− cos2x
x2 + 1 − 1
1− cos2x
=
lim
+ lim
2
2
x

0
x

0
x
x
x2

lim
x→ 0

• Tính lim
x→ 0

x2 + 1 − 1
x2 + 1− 1
1

1
= lim
= lim
=
2
x→0 2
x→0
2
2
2
x
x + 1+ 1
x
x + 1+ 1

)

(

2

2
• Tính lim 1− cos2x = lim 2sin x = 2lim  sin x ÷ = 2
x→ 0
x→ 0
x→0
x2
x2
 x 


1
5
+ 2=
2
2
1+ 2x − cosx − x
1+ 2x − cosx − x
5). L = lim
. Đặt f ( x) =
2
x→ 0
x
x2
Vậy limf ( x) =
x→ 0

1+ 2x − (1+ x) + 1− cosx
1+ 2x − (1+ x)
1− cosx
= lim
+ lim
2
2
x

0
x

0
x

x
x2

L = lim
x→ 0

1+ 2x − ( 1+ x)
1+ 2x − (1+ x)
= lim
2
x→ 0 2
x
x
1+ 2x − (1+ x)
2

• Tính lim
x→ 0
= lim
x→ 0

2

x

(

(

− x2


)

1+ 2x − (1+ x)

= lim
x→ 0

(

−1

)

1+ 2x + (1+ x)

=−
2

• Tính lim
x→ 0

1− cosx
= lim
x→ 0
x2

1
2


x

x
sin ÷
2 = lim 1 
2÷ = 1
x→ 0 2
x
2
x2

÷
÷
 2 

2sin2

1 1
Vậy limf ( x) = − + = 0 .
x→ 0
2 2

)


3

6). L = lim
x→ 0


L = lim

3

x→ 0

2x + 1 − 1− x
. Đặt f ( x) =
sin 2x

= lim
x→ 0

2x + 1 − 1− x
sin 2x

3
2x + 1 − 1+ 1− 1− x
2x + 1 − 1
1− 1− x
= lim
+ lim
x

0
x

0
sin2x
sin2x

sin2x
3

• Tính

3

lim
x→ 0

2x + 1 − 1
= lim
x→ 0
sin2x


2sinxcosx 


(


sin 2x 


(

2x + 1− 1

)


2

2x + 1 + 3 2x + 1 + 1

2x
x
= lim
×
2
 x→ 0 sin x

3
2x + 1 + 3 2x + 1 + 1
cosx 


3

)

1

(

3

)



2x + 1 + 3 2x + 1 + 1

2

1− 1− x
x
x
1
1
= lim
= lim
×
=
• Tính lim
x→ 0
x

0
x

0
sin2x
sin x 2cosx 1+ 1− x
4
2sinxcosx 1+ 1− x

(

Vậy limf ( x) =
x→ 0


)

(

)

1 1 7
+ =
3 4 12

sin2 x − 3cos2 x
sin x − 3cosx = lim sinx − 3cosx =
3
π
x→ 3sinx − 4sin x
sin3x
sinx 3− 4sin2 x sin x + 3cosx
x→
3
3

7). limπ
=

4sin x − 3

(

)(


sinx 3− 4sin x sinx + 3cosx
2

8). L = lim
x→ 0

)

=

−1

(

sin x sinx + 3cosx

1− cosx cos2x
1− cos2 xcos2x
=
lim
x→ 0
x→ 0 2
x2
x 1+ cosx cos2x

(

cos2 x + sin2 x − cos2 xcos2x


(

x→ 0

= lim
x→ 0

x2 1+ cosx cos2x
2sin xcos x + sin x
2

2

2

(

x 1+ cosx cos2x
2

)

=

)

−2
3

1− cosx cos2x

x2

L = lim

= lim

)(

(

2

)

)

cos x ( 1− cos2x) + sin2 x

= lim
x→ 0

= lim
x→ 0

)

2

(


x2 1+ cosx cos2x

)

sin x
2cos x + 1
3
×
=
2
x
1+ cosx cos2x 2
2

2

1− 3 cosx
x→ 0
tan2 x

9). L = lim

x
2sin2 cos2 x
2
L = lim
= lim
2
x→ 0
x→ 0

x
x



tan2 x 1+ 3 cosx + 3 cosx 
4sin2 cos2 1+ 3 cosx +
2
2


1− cosx

= lim

(

)

(

)

cos2 x


3
cosx 

Câu 5: Tìm các giới hạn sau:

x→ 0

x
2cos2 1+ 3 cosx +
2

2

=

1
6.

(

3

)

2

cosx 


=

1
3



tanx − 1
2sin2 x − 1
3

1). limπ
x→

4

2). lim
x→ 0

1− cosxcos2x
x2

3).

 2

lim 
− cotx ÷
x→ 0 sin 2x


4). lim

1− 2x + 1 + sinx

3x + 4 − 2 − x
1− sin2x − cos2x

L = lim
x→ 0 1+ sin2x − cos2x

7).

x2 + 1 − cosx

5). lim

x→ 0

x2

x→0

π

cos cosx ÷
cos3x + 2cos2x + 2
lim
2

8). lim
π
sin3x
x→
x→0
x
3
sin2

2

6).

9).

lim

x→0

1− cosx

( 1−

1− x

)

2

LỜI GIẢI
1). L = limπ
x→

4

tanx − 1
2sin2 x − 1
3


tanx − 1
2


sin2 x − cos2 x  3 tan x + 3 tan x + 1


sin x − cosx
= lim
2
π
 3

x→
tan
x
+ 3 tanx + 1
4 cosx ( sin x − cosx) ( sinx + cosx)


1
1
= lim
=
2
π
 3
 3
x→
3

tanx
+
tanx
+
1
4 cosx ( sin x + cosx)


1− cosxcos2x
2). lim
x→ 0
x2
cosx( cosx − cos2x)
sin2 x + cos2 x − cosxcos2x
sin2 x
= lim
= lim 2 + lim
2
x→ 0
x→ 0
x→ 0
x
x
x2
3x
x

3x  
x
2cosxsin sin

sin ÷  sin ÷

2
2 = 1+ lim 
2 ÷×
2 ÷×9 ×cosx = 1+ 9 = 17
= 1+ lim
2
x→ 0
x

0
3x
x
8
8 8
x

÷
÷
÷ 
÷
 2   2 
L = lim
π
x→
4

(


)(

)

(

(

)

)

 2

− cotx ÷
3). L = lim

x→ 0 sin2x



1
cosx 
1− cos2 x
sin2 x
L = lim 

=
lim
=

lim
= limtanx = 0
÷
x→ 0 sinxcosx
sinx  x→0 sin xcosx x→ 0 sin xcosx x→ 0

4). L = lim
x→ 0

1− 2x + 1 + sin x
3x + 4 − 2 − x


L = lim

1− 2x + 1 + sinx

x→ 0

= lim
x→ 0

= lim
x→ 0

−2x

( −x

2


(

2

(

3x + 4 − 2 − x

3x + 4 + 2 + x

( x + 1) ( 1+

5). lim

)

)

− x 1+ 2x + 1

)

3x + 4 − 2 − x

x→ 0

3x + 4 + 2 + x

)(


1− 2x + 1

= lim

)

2x + 1

+ lim

(

x→ 0

x→ 0

)

sinx
3x + 4 − 2 − x

3x + 4 + 2 + x sinx
−x − x
2

x→ 0

+ lim


+ lim

sin x 3x + 4 + 2 + x
×
= 4− 4 = 0
x
−x − 1

x2 + 1 − cosx
x2

x→0



2
 1+ x2 − 1 + (1− cosx)


÷
  1+ x − 1÷
1− cosx 



I = lim
= lim 
+

x→0

x→0 
x2
x2
x2 




x
x
2sin2 ÷
sin2 ÷


x2
1
2 ÷ = lim 
2 ÷ =1
=lim 
+
+
2
2 ÷
x→0  2
x→0 
2
2
x
x
÷

1+ x + 1 2
 x ( 1+ x + 1)
÷

÷


4 

1− sin2x − cos2x
1+ sin2x − cos2x
1− sin2x − cos2x
1− cos2x − sin 2x
2sin2 x − 2sin xcosx
L = lim
= lim
= lim
x→ 0 1+ sin2x − cos2x
x→ 0 1− cos2x + sin2x
x→ 0 2sin2 x + 2sin xcosx
2sinx ( sinx − cosx)
sinx − cosx
= lim
= lim
= −1
x→ 0 2sinx sin x + cosx
x→ 0 sinx + cosx
(
)


6). L = lim
x→ 0

7). limπ
x→

= lim
x→

π
3

3

cos3x + 2cos2x + 2
4cos3 x + 4cos2 x − 3cosx
= lim
π
sin3x
3sinx − 4sin3 x
x→
3

cosx ( 2cosx + 3) ( 2cosx − 1)
sinx ( 2cosx − 1) ( 2cosx + 1)

=

π


cos cosx ÷
2


8). lim
x→0
2x
sin
2

π π

π

x
2 x
sin  − cosx ÷
sin  2sin2 ÷
 sin  π sin ÷
2
2 
2 2
 = lim
2

= lim
= lim  π.




x→0
x

0
x

0
x
x
x
2
2
2
sin
sin
π sin


2
2
2 



9).

lim

x→0


= lim
x→∞

(

1− cosx

( 1−

1− x

)

2

( 1− cosx) ( 1+
1− 1− x

)(
2

1− x

)

(

2

1+ 1− x


)

2

 x
2sin2  ÷ 1+ 1− x
 2
= lim
x→0

2

 x
4. ÷
 2

)

2

( 1+
= lim
x→0

1− x
2

)


2

=2



×