Tải bản đầy đủ (.doc) (6 trang)

Đề thi thử THPT năm 2018 môn Toán THPT Nguyễn Viết Xuân mã đề 106

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (495.83 KB, 6 trang )

SỞ GD&ĐT VĨNH PHÚC
TRƯỜNG THPT NGUYỄN VIẾT
XUÂN

ĐỀ THI KHẢO SÁT CHẤT LƯỢNG LẦN 4
MÔN TOÁN 12
Thời gian làm bài: 90 phút;
(50 câu trắc nghiệm)

Mã đề thi 106

B C là:
Câu 1: Chiều cao của khối lăng trụ đứng tam giác ABCA���
A. AB
B. AB�
C. Độ dài một cạnh bên
D. AC
8

3
Câu 2: Tích phân �xdx bằng?
1

A. 2

B.

47
4

C.



45
4

D.

25
4

Câu 3: Gọi G  a; b; c  là trọng tâm của tam giác ABC với A (1;2;3), B(1;3;4), C(1;4;5). Giá trị của
tổng a 2  b 2  c 2 bằng
A. 26.
B. 27
C. 38
D. 10
Câu 4: Cho hàm số có bảng biến
thiên như hình vẽ bên. Khi đó
GTLN, GTNN của hàm số trên đoạn
[-1;2] là:

A. -4 và 5

B. 0 và 1

C. -1và 2

D. 0 và 5

Câu 5: Cho 2 điểm A  2;1;3 và B  1; 2;1 .Gọi (P) là mặt phẳng qua A,B và có một vecto chỉ
uur

phương là: u P   1; 2; 2  . Vecto pháp tuyến của mặt phẳng là:
uur
uur
uur
uur
A. nP   5; 4;1
B. nP   10; 4;1
C. nP   2; 1; 4 
D. nP   0;3; 2 
Câu 6: Cho tập A = { 0;1;2;3;4;5;6;7;8;9} . Số các số tự nhiên có năm chữ số đôi một khác nhau
được lấy ra từ tập A là
A. 27162
B. 30420
C. 30240
D. 27216
Câu 7: Hàm số y = f(x) có
bảng biến thiên như sau:
Khẳng định nào sau đây là
đúng?

A. Hàm số nghịch biến trên R\{2}
B. Hàm số đồng biến trên
C. Hàm số nghịch biến trên
D. Hàm số nghịch biến trên R
Câu 8: Khẳng định nào sau đây là khẳng định đúng khi a,b là các số thực d ương khác 1.
A. a logb a  b
B. a loga b  b
C. a logb a  a
D. a loga b  a
Câu 9: Khẳng định nào sau đây là đúng về hàm số y  x 4  4 x 2  2 ?

A. Có cực đại và cực tiểu
B. Đạt cực tiểu tại x = 0
Trang 1/6 - Mã đề thi 106


C. Không có cực trị.
Câu 10:
Đường cong trong hình bên là
đồ thị của hàm số nào dưới đây?

A. y = x4 + 2x2

D. Có cực đại và không có cực tiểu

B. y =- x4 + 2x2

Câu 11: Hàm số y  x ln x có đạo hàm là:
1
A. ln x
B.
x

C. y = x4 - 2x2

D. y =- x4 - 2x2

C. 1

D. ln x  1


Câu 12: Tìm chu kì của hàm số sau f  x   sin 2 x  sin x
A. T0  2

B. T0 


2

C. T0  

D. T0 

r


4

Câu 13: Trong mặt phẳng Oxy cho v   2; 1 . Tìm tọa độ điểm A biết ảnh của nó là điểm

r
A '  4; 1 qua phép tịnh tiến theo vectơ v :
A. A  1;1
B. A  2;0 

C. A  2;3
D. A  0;2 
Câu 14: Trong các mệnh đề sau, có bao nhiêu mệnh đề sai:
f ( x) dx '  f ( x)
af ( x )dx  a �
f ( x )dx, a ��

(1) �
(2) �









f ( x )dx  �
g ( x )dx
f ( x) g ( x)dx  �
f ( x)dx �
g ( x ) dx
 f ( x)  g ( x)dx  �
(3) �
(4) �
A. 1
B. 4
C. 2
D. 3
Câu 15: Cho hình nón có chiều cao ℎ; bán kính đáy � và độ dài đường sinh là l. Tìm khẳng định
đúng:
1 2
A. S xq   rh
B. V  .r h
C. Stp   r  r  l 
D. S xq  2 rh

3
Câu 16: Đội tuyển văn nghệ của trường TPHT Nguyễn Viết Xuân có 15 người gồm 6 nam và 9 n ữ.
Để thành lập đội tuyển văn nghệ dự thi cấp tỉnh nhà trường cần chọn ra 8 h ọc sinh t ừ 15 h ọc sinh
trên. Tính xác suất để trong 8 người được chọn có số nam nhiều hơn số nữ.
545
12
45
14
A. P 
B. P 
C. P 
D. P 
6435
143
6435
143

Câu 17: Cho mặt phẳng  P : x  2y  3z  14  0 và điểm M  1; 1;1 . Tọa độ của điểm M ' đối xứng
với M qua mặt phẳng (P) là:
A.  2; 1;1 .
B.  2; 3; 2 .
C.  1; 3;7 .
D.  1;3;7 .
Câu 18: Cho phương trình cos x.cos7x  cos3x.cos5x ( 1)
Phương trình nào sau đây tương đương với phương trình ( 1) ?
A. cos4x = 0 .
B. sin 5x = 0 .
C. cos 3x = 0
x 1
Câu 19: Số tiệm cận của đồ thị hàm số y  2

x 1
A. 1
B. 0
C. 2

D. sin 4x = 0.

D. 3
Trang 2/6 - Mã đề thi 106


Câu 20: Phương trình tiếp tuyến của hàm số y  2 x 3  6 x  1 tại giao điểm của đồ thị của hàm số
y  2 x 3  6 x  1 và trục Oy là
A. y  6 x  1 .
B. y  6 x  1 .

C. y  6 x  1 .

D. y  6 x  1 .

Câu 21: Trong không gian với hệ tọa độ Oxyz, cho bốn đi ểm M  1;2;3 ,N  1;0;4 , P  2; 3;1 và

Q  2;1;2 . Cặp vectơ cùng phương là:
uuu
r
uuur
uuuu
r
uuuu
r

uuur
uuu
r
A. MN và PQ .
B. MP và NQ .
C. MQ và NP .
D. Không tồn tại.
Câu 22: Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông c ạnh b ằng a ,
thể tích khối trụ bằng:
A. pa3

B.

pa3
2

C.

pa3
3

Câu 23: Đặt a  log 3 5; b  log 4 5 . Hãy biểu diễn log15 20 theo a và b.
b  1 a 
a  1 a 
a  1 b
A. log15 20 
B. log15 20 
C. log15 20 
a  1 b
b  a  b

b  1 a 

D.

pa3
4

D. log15 20 

b  1 b
a 1 a 

n

1 �

Câu 24: Tìm hệ số của số hạng chứa x10 trong khai triển biểu thức �x 3  2 �, biết n là số tự
� x �
4
n2
nhiên thỏa mãn Cn  13Cn
A. 6435
B. 6453
C. -6435
D. – 6453






x  x2  x  1 :
Câu 25: Tìm giới hạn B  xlim
� �

A. �

B. �

C. 0

D.

4
3


4

Câu 26: Tính tích phân I  sin 2 x.cos 2 xdx

0





A. I 
B. I 
C. I 
D. I 

128
64
32
16
Câu 27: Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và mặt bên tạo với đáy một góc
450. Thể tích V khối chóp S . ABCD là
1 3
a3
a3
a3
A. V  .
B. V 
C. V  a
D. V 
24
2
6
9
4
2
2
Câu 28: Cho hàm số y  mx   m  1 x  1 . Khẳng định nào sau đây là sai?

A. Với m � 1; 0  � 1; � hàm số có 3 điểm cực trị.
B. Với m  0 thì hàm số có một điểm cực trị.
C. Đồ thị hàm số luôn có một điểm cực trị là  0;1 .
D. Hàm số luôn có 3 điểm cực trị với với mọi m �0
Câu 29: Tìm để phương trình 4x3 – 6x2 + 1 + m = 0 có 3 nghiệm phân biệt .
A. -1< m < 1
B. 1 �m �1

C. m = 1
D. m = -1
2x  3
dx là:
Câu 30: Họ nguyên hàm của hàm số � 2
2x  x  1
2
2
2
5
A.   ln 2x  1  ln x  1  C
B.   ln 2x  1  ln x  1  C
3
3
3
3
1
5
2
5
C.   ln 2x  1  ln x  1  C
D.   ln 2x  1  ln x  1  C
3
3
3
3
Câu 31: Cho cấp số nhân  un  có u1  3; q  2 . Số 192 là số hạng thứ bao nhiêu?
A. số hạng thứ 6
B. số hạng thứ 5
C. số hạng thứ 7

D. Đáp án khác
Trang 3/6 - Mã đề thi 106


Câu 32: Cho hình nón có đường sinh bằng đường kính đáy và bằng 2. Bán kính hình c ầu ngo ại ti ếp
hình nón đó là:
3
2 3
A. 3 .
B. 2 3 .
C.
.
D.
.
2
3
9x
, x �R . Nếu a  b  3 thì f  a   f  b  2  có giá trị bằng
3  9x
3
1
A. .
B. 1 .
C. 2 .
D.
4
4
Câu 34: Cho hình chóp S . ABC có SA  SB  SC và ba đường thẳng SA, SB, SC đôi một vuông góc.
Gọi M là trung điểm của SB , tìm côsin của góc  tạo bởi hai đường thẳng AM và BC .
10 .

10 .
5.
2.
A. cos  
B. cos  
C. cos  
D. cos  
10
5
10
2
3
Câu 35: Một bể nước không có nắp có hình hộp chữ nhật có thể tích bằng 1m với đáy là một hình
vuông. Biết rằng nguyên vật liệu dùng để làm thành bể có đơn giá là 2 tri ệu đ ồng cho m ỗi mét
vuông. Hỏi giá thành nhỏ nhất cần có để làm bể gần với số nào nhất sau đây?
A. 10.800.000 đồng
B. 9.500.000 đồng
C. 8.600.000 đồng
D. 7.900.000 đồng
4+ mx
Câu 36: Tìm tất cả các giá trị nguyên dương của m để hàm số y =
nghịch biến trên khoảng
x+ m
Câu 33: Cho hàm số f  x  

(1; +∞)
A. 1

B. 4


C. 3

D. 2

Câu 37: Câu 35 : Tìm m để phương trình :
1
2
5 �
 4m  4  0 có nghiệm trên �
 m  1 log 21  x  2   4  m  5 log 1
,4

2 �


2
2 x2
7
7
A. m ��.
B. m ��.
C. 3  m �
D. 3 �m � .
3
3
Câu 38: Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B , BA = BC = 1, AD = 2 .
Cạnh bên SA vuông góc với đáy và SA = 2 . Gọi H là hình chiếu vuông góc của A trên SB . Tính thể
tích V của khối đa diện SAHCD .
A. V =


2 2
3

.

B. V =

4 2
.
9

C. V =

4 2
.
3

D. V =

2 2
9

.

Câu 39: Ông B đến siêu thị điện máy để mua một cái laptop với giá 15,5 tri ệu đ ồng theo hình th ức
trả góp với lãi suất 2,5%/tháng. Để mua trả góp ông B phải tr ả tr ước 30% s ố ti ền, s ố ti ền còn l ại
ông sẽ trả dần trong thời gian 6 tháng kể t ừ ngày mua, m ỗi l ần tr ả cách nhau 1 tháng. S ố ti ền m ỗi
tháng ông B phải trả là như nhau và tiền lãi được tính theo n ợ gốc còn l ại ở cu ối m ỗi tháng. H ỏi,
nếu ông B mua theo hình thức trả góp như trên thì số ti ền phải tr ả nhi ều h ơn so v ới giá niêm y ết
là bao nhiêu? Biết rằng lãi suất không đổi trong thời gian ông B hoàn n ợ. (làm tròn đ ến ch ữ s ố

hàng nghìn)
A. 1.628.000 đồng
B. 2.325.000 đồng
C. 1.384.000 đồng
D. 970.000 đồng
Câu 40: Trong không gian với hệ trục tọa độ Oxyz , cho điểm G(1; 4;3) . Viết phương trình mặt
phẳng cắt các trục Ox, Oy, Oz lần lượt tại A, B, C sao cho G là trọng tâm tứ diện OABC ?
x y
z
x y
z
x y z
x y z
A. + + = 1 .
B. + + = 0 .
C. + + = 1 .
D. + + = 0 .
4 16 12
4 16 12
3 12 9
3 12 9
1
a
dx  2  b ln x  c ln  1  x 2 
Câu 41: Cho I  �
3
2
x
x 1 x 
Khi đó S = a + b + c bằng

1
A. 0
B.
2

C. -2

D. -1
Trang 4/6 - Mã đề thi 106


2
Câu 42: Phương trình 2 x 3  3x 5 x  6 có hai nghiệm x1 , x2 trong đó x1  x2 , hãy chọn phát biểu
đúng?
A. 3x1  2 x2  log 3 8 .
B. 2 x1  3 x2  log 3 8 .
C. 2 x1  3x2  log3 54.
D. 3 x1  2 x2  log 3 54.

3
Câu 43: Đường thẳng  d  : y  12x  m  m  0  là tiếp tuyến của đường cong  C  : y  x  2 . Khi đó
đường thẳng (d) cắt trục hoành và trục tung tại hai điểm A, B. Tính diện tích OAB .
49
49
49
A.
B.
C.
D. 49
4

2
8

Câu 44:
Hai người cùng chơi trò chơi phóng phi tiêu, mỗi người đứng
cách một tấm bảng hình vuông ABCD có kích thước là 4x4dm một
khoảng cách nhất định. Mỗi người sẽ phóng một cây phi tiêu vào
tấm bảng hình vuông ABCD (như hình vẽ). Nếu phi tiêu cắm vào
hình tròn tô màu hồng thì người đó sẽ được 10 đi ểm. Xét phép th ử
là hai người lần lượt phóng 1 cây phi tiêu vào tấm bảng hình
vuông ABCD (phép thử này đảm bảo khi phóng là trúng và dính vào
tấm bảng hình vuông, không rơi ra ngoài). Tính xác suất để có
đúng một trong hai người phóng phi tiêu được 10 đi ểm.( k ết qu ả
cuối cùng làm tròn số đến 4 chữ số thập phân)

A. 0, 2333
B. 0, 2331
C. 0, 2330
D. 0, 2332
Câu 45: Có bao nhiêu giá trị nguyên của tham số m � 2017; 2017  để hàm số
y  sin 4 x  sin 3 x  sin 2 x  m 2  4m  3  0, x �R
A. 4033
B. 4034
C. 4032

D. 2018

Câu 46: Trong không gian với hệ tọa độ Oxyz , cho điểm A  a;0;0  , B  0; b;0  , C  0;0; c  , trong đó
1 2 3
   7. Biết mặt phẳng  ABC  tiếp xúc với mặt cầu

a  0 , b  0 , c  0 và
a b c
72
2
2
2
 S  :  x  1   y  2    z  3  . Thể tích của khối tứ diện OABC là
7
2
1
3
5
A. .
B. .
C. .
D. .
9
6
8
6

u0  2011

u3
1 . Tìm lim n .
Câu 47: Cho dãy số (un ) được xác định bởi: �
un1  un  2
n

un


A. �
B. �
C. 3
D. 1
Câu 48: Cho hai mặt cầu  S1  ,  S 2  có cùng bán kính R thỏa mãn tính chất: tâm của  S1  thuộc

 S2 

và ngược lại. Tính thể tích phần chung V của hai khối cầu tạo bởi ( S1 ) và ( S 2 ) .

A. V 

2 R 3
.
5

B. V 

5 R 3
.
12

C. V   R 3 .

Câu 49: Trong mặt phẳng tọa độ Oxyz cho  E  có phương trình

D. V 
x2


 R3
.
2

y2

 1,  a, b  0  và đường
a 2 b2
tròn  C  : x 2  y 2  7. Để diện tích elip  E  gấp 7 lần diện tích hình tròn  C  khi đó
A. ab  7 .

B. ab  49 .

C. ab  7 .



D. ab  7 7 .
Trang 5/6 - Mã đề thi 106


Câu 50: Đặt f  n    n 2  n  1  1 . Xét dãy số  u n  sao cho u n 
2

f  1 .f  3 .f  5  ...f  2n  1
. Tính
f  2  .f  4  .f  6  ...f  2n 

lim n u n
A. lim n u n 


1
2

B. lim n u n  2
C. lim n u n  3
1
D. lim n u n 
3
-----------------------------------------------

----------- HẾT ----------

Trang 6/6 - Mã đề thi 106



×