Tải bản đầy đủ (.pdf) (12 trang)

Comprehensive nuclear materials 5 05 corrosion and stress corrosion cracking of austenitic stainless steels

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (396.59 KB, 12 trang )

r temporarily because of startups, for
example. Different systems during shutdown may be
filled with air, and this may cause air pockets during
startup. The oxygen from air will then dissolve into
the primary water and local oxidizing conditions
temporarily emerge until the oxygen is consumed by
the oxidation of metal surfaces. The risk of pitting
corrosion (and TGSCC) is, however, highest in auxiliary systems, for example, at outer surfaces, where the
temperature is low enough for condensation to occur.
Thus, pitting corrosion can occur at nominally dry
locations. Accumulation of aggressive local conditions
is enhanced by crevices.
The sources of chlorides were listed earlier.
Sulfate sources have been introduced earlier, for
example, in molybdenum disulfide greases, but
since the harmful influence of this material was identified, it is not an allowed expendable material. Again,
copper can enter the system from copper-containing
structural components.
Pitting corrosion is seldom considered to pose a
safety problem, as the wall thicknesses of pressure
boundary components are usually large enough to
sustain pitting corrosion for long times without leakage. However, pitting corrosion is always an indication of a harmful environment existing at the location
and is often associated with the risk of TGSCC,
which can cause wall cracking in short time periods.
Pitting corrosion enhances the risk of SCC as the pits
increase the local stress concentration and thus act as
crack initiators. Observation of pitting corrosion shall
therefore not be omitted as insignificant.

5.05.3 Pitting Corrosion
Pitting corrosion occurrence has several similarities to


TGSCC, that is, it requires oxidizing conditions and
presence of water with harmful ions, such as chlorides,
fluorides, sulfates, and/or copper, but no stress is needed.
The Type 304 stainless steel is more prone to pitting
corrosion than Type 316 stainless steel. Pitting corrosion

5.05.4 Microbiologically Induced
Corrosion
A rather rare corrosion mode is microbiologically
induced corrosion, or nowadays, microbiologically influenced corrosion (MIC). MIC is normal


Corrosion and Stress Corrosion Cracking of Austenitic Stainless Steels

electrochemical corrosion where the microorganisms
either chemically or physically change the conditions
on the metal surface to be favorable to corrosion.59
MIC appears as localized corrosion rather than as
uniform corrosion, and in welds rather than in base
materials. Pitting corrosion in the weld metal can
cause preferential attack of either the austenite or
the ferrite phase of the weld metal. The microorganisms of interest in MIC are mostly bacteria and fungi.
The highest risk of MIC is at temperatures from 15
to 45  C and near neutral pH, that is, in the range
from 6 to 8. MIC has been observed in fire-fighting
systems, for example.
MIC is stopped with great difficulty once it is
established due to the high sustainability of the microorganisms involved. The quality of the water in all
phases of the lifetime of the equipment is, thus, very
important at locations with risk of MIC. Water of high

quality must be used, not only during normal operation,
but also during hydrotesting of the system, for example.

13.
14.

15.

16.

17.
18.
19.
20.
21.
22.

References
1.
2.

3.

4.

5.

6.

7.

8.

9.

10.
11.
12.

Peckner, D.; Bernstein, I. M. Handbook of Stainless Steels;
McGraw-Hill: New York, 1977; pp 4-35–4-53, 751–757.
Ford, P. F. In Proceedings of 13th International
Symposium on Environmental Degradation of Materials in
Nuclear Power Systems – Water Reactors, Whistler, BC,
Canada, Aug 19–23, 2007; Allen, T. R., et al. Eds.;
Canadian Nuclear Society: Toronto, ON, 2007.
NRC. Expert Panel Report on Proactive Management of
Materials Degradation; NUREG/CR-6923; US Nuclear
Regulatory Commission: Washington, DC, 2007.
Shah, V. N.; MacDonald, P. E. Aging and Life Extension of
Major Light Water Reactor Components; Elsevier:
Amsterdam, 1993.
ASTM Standard A 262-02a. Standard Practices for
Detecting Susceptibility to Intergranular Attack in
Austenitic Stainless Steels; ASTM International: West
Conshohocken, PA, 2008; p 17.
ASTM Standard G 108-94. Standard Test Method for
Electrochemical Reactivation (EPR) for Detecting
Sensitization of AISI Type 304 and 304L Stainless Steels;
ASTM International: West Conshohocken, PA, 2004.
Folkhard, E. Welding Metallurgy of Stainless Steel;

Springer-Verlag: Wien, 1988.
Korhonen, M.; Luukas, M.; Ha¨nninen, H. In International
Conference on Efficient Welding in Industrial Applications
(ICEWIA), Lappeenranta, Finland, Aug 25–27, 1999;
Martikainen, J., Eskelinen, H., Eds.; Lappeenranta
University of Technology: Finland, 1999; pp 244–255
Aaltonen, P.; Saario, T.; Karjalainen-Roikonen, P.; et al.
In Corrosion ’96; Denver, CO, Mar 24–29, 1996, NACE
International: Houston TX, 1996; p 12 , Paper No. 81.
Andresen, P. L.; Briant, C. L. Corrosion 1989, 45, 448–463.
Arioka, K.; Yamada, T.; Terachi, T.; Miyamoto, T.
Corrosion 2008, 64(9), 691–706.
Birnbaum, H. K. In Hydrogen Effects on Material Behavior;
Moody, N. R., Thompson, A. W., Eds.; TMS: Warrendale,
PA, 1990; pp 639–660.

23.

24.

25.

26.

27.

28.
29.

30.


31.

103

Boursier, J. M.; Desjardins, D.; Vaillant, F. Corros. Sci.
1995, 37(3), 493–508.
Briant, C. L.; Andresen, P. L. In Proceedings of 3rd
International Symposium on Environmental Degradation of
Materials in Nuclear Power Systems – Water Reactors,
Traverse City, MI, Aug 30–Sept 3, 1998; Theus, G. J.,
Weeks, J. R., Eds.; TMS–AIME: Warrendale, PA, 1988;
pp 371–382.
Couvant, T.; Vaillant, F.; Boursier, J. M. Effect of strainpath on stress corrosion cracking of AISI 304L stainless
steel in PWR primary environment at 360  C. In
Proceedings of Eurocorr 2004, Nice, France, Sept 12–16,
2004; p 11, Event No. 226.
Ehrnste´n, U.; Ivanchenko, M.; Nevdacha, V.;
Yagodzinskyy, Y.; Toivonen, A.; Ha¨nninen, H.
In Proceedings of 12th International Symposium on
Environmental Degradation of Materials in Nuclear Power
Systems – Water Reactors, Salt Lake City, UT, Aug 14–18,
2005; Allen, T. R., King, P. J., Nelson, L., Eds.; TMS:
Warrendale, PA, 2005; pp 1475–1482.
Ferreira, P. J.; Robertson, I. M.; Birnbaum, H. K. Acta
Mater. 1998, 46(5), 1749–1757.
Hall, M. M., Jr. Corros. Sci. 2008, 50, 2902–2905.
Hall, M. M., Jr. Corros. Sci. 2009, 51, 225–233.
Hong, S. G.; Lee, S.-B. J. Nucl. Mater. 2004, 328,
232–242.

McDonald, D. D. J. Electrochem. Soc. 1992, 139,
3434–3449.
Kekkonen, T.; Aaltonen, P.; Ha¨nninen, H. Corros. Sci.
1985, 25, 821–836.
Angeliu, T. M.; Andresen, P.; Hall, E.; Sutliff, J.;
Sitzman, S.; Horn, R. In Proceedings of 9th International
Symposium on Environmental Degradation of Materials in
Nuclear Power Systems – Water Reactors. Newport
Beach, CA, Aug 1–5, 1999; Ford, F. P., Bruemmer, S. M.,
Was, G. S., Eds.; TMS–AIME: Warrendale, PA, 1999.
Angeliu, T. M.; Hall, E.; Sutliff, J.; Sitzmen, S.; Andresen, P.
In Corrosion 2000; NACE International: Houston, TX, 2000;
Paper No. 00186.
Ehrnste´n, U.; Ha¨nninen, H.; Aaltonen, P.; Jansson, C.;
Nenonen, P.; Angeliu, T. In Proceedings of 10th
International Symposium on Environmental Degradation of
Materials in Nuclear Power Systems – Water Reactors,
Lake Tahoe, NV, Aug 5–9, 2001; Ford, F. P., Was, G., Eds.;
NACE International: Houston, TX, 2001; p 10.
Ooki, S.; Tanaka, Y.; Takamori, K. In Proceedings of
12th International Symposium on Environmental
Degradation of Materials in Nuclear Power Systems –
Water Reactors, Salt Lake City, UT, Aug 14–18, 2005;
Allen, T. R., King, P. J., Nelson, L., Eds.; TMS: Warrendale,
PA, 2005; pp 365–376.
Yamashita, H.; Ooki, S.; Tanaka, Y.; Takamori, K.;
Asano, K.; Suzuki, S. Int. J. Press. Vess. Pip. 2008, 85,
582–592.
Andresen, P. L. Corrosion 1988, 44(7), 450.
Andresen, P. L. In Proceedings of 10th International

Symposium on Environmental Degradation of Materials in
Nuclear Power Systems – Water Reactors, Lake Tahoe,
NV, Aug 5–9, 2001; Ford, F. P., Was, G., Eds.; NACE
International: Houston TX, 2001; p 9.
Andresen, P.; Angeliu, T.; Catlin, W.; Young, L.; Horn, R.
In Corrosion, 2000, NACE 55th Annual Conference,
Orlando, FL, Mar 26–31, 2000; p 12, Paper No. 00203.
Andresen, P. L.; Emigh, P.; Morra, M.; Horn, R.
In Proceedings of 11th International Symposium on
Environmental Degradation of Materials in Nuclear Power
Systems – Water Reactors, Stevenson, WA, Aug 11–14,
2003; American Nuclear Society: La Grange Park, IL,
2003; pp 816–833.


104

Corrosion and Stress Corrosion Cracking of Austenitic Stainless Steels

32. Andresen, P. L.; Morra, M. M. J. Nucl. Mater. 2008,
383(1–2), 97–111.
33. Horn, R.; Gordon, G.; Ford, P.; Cowan, R. Nucl. Eng. Des.
1997, 174, 313–325.
34. Magdowski, R.; Speidel, M. O. In Corrosion ’96, NACE,
51st Annual Conference and Exposition, Denver, CO,
Mar 24–29 1996; p 6, Paper No. 112.
35. Ta¨htinen, S.; Ha¨nninen, H.; Trolle, M. In Proceedings of the
6th Symposium on Environmental Degradation of
Materials in Nuclear Power Systems – Water Reactors,
San Diego, CA, Aug 1–5, 1993; Gold, R. E., Simonen, E. P.,

Eds.; TMS: Warrendale, PA, 1993.
36. Prevey, P. S.; Jayaraman, N. In Proceedings of ICSP 9,
Paris, Marne la Vallee, France, Sept 6–9, 2005; p 7,
Paper No. 260.
37. Offer, H. P.; Morra, M.; Chan, A. In Proceedings of
13th International Symposium on Environmental
Degradation of Materials in Nuclear Power Systems –
Water Reactors, Whistler, BC, Canada, Aug 19–23, 2007;
Allen, T. R., et al. Eds.; Canadian Nuclear Society:
Toronto, ON, 2007; p 17.
38. Robertson, J. Corros. Sci. 1991, 32, 443–465.
39. Stellwag, B. Corros. Sci. 1998, 40, 337–370.
40. Ford, P.; Taylor, D.; Andresen, P.; Ballinger, R. Corrosion
Assisted Cracking of Stainless Steel and Low Alloys Steel
in LWR Environments; Report NP5064S; Electric Power
Research Institute: Palo Alto, CA, 1987; p 124.
41. Ford, P. F.; Andresen, P. L. In Corrosion Mechanisms in
Theory and Practice; Marcus, P., et al. Ed.; Marcel
Dekker: New York, 1995; pp 501–546.
42. Hettiarachchi, S. In Proceedings of 11th International
Symposium on Environmental Degradation of Materials in
Nuclear Power Systems – Water Reactors, Stevenson,
WA, Aug 11–14, 2003; American Nuclear Society:
La Grange Park, IL, 2003; pp 477–487.
43. Hettiarachchi, S. In Proceedings of 10th International
Conference on Environmental Degradation of Materials in
Nuclear Power Systems-Water Reactors, Lake Tahoe, NV,
Aug 5–9, 2007; Ford, F. P., Was, G., Eds.; NACE
International: Houston, TX, 2007; p 10.
44. Andresen, P. L. Personal communication, May 2009.

45. Andresen, P. L. In Proceedings of 5th International
Symposium on Environmental Degradation of Materials in
Nuclear Power Systems – Water Reactors, Monterey, CA,
Aug 25–29, 1995, American Nuclear Society: La Grange
Park, IL, 1995; pp 209–218.
46. General Electric Company. Alternative Alloys for
BWR Pipe Application; NP-2671-LD, Final Report;
San Jose, CA, 1982.
47. Ha¨nninen, H.; Aho-Mantila, I. In Proceedings of 3rd
International Symposium on Environmental Degradation of
Materials in Nuclear Power Systems – Water Reactors,
Traverse City, MI, Aug 30–Sept 3, 1987; TMS–AIME:
Warrendale, PA, 1987; pp 77–92.

48.

49.

50.

51.

52.
53.

54.

55.

56.


57.

58.

59.

Erve, M.; Wesseling, U.; Kilian, R.; et al. In 20th
MPA-Seminar, Stuttgart, Oct 6–7, 1994; Staatliche
Materialpru¨fungsanstalt (MPA) Universita¨t Stuttgart:
Stuttgart, Germany, 1994; Vol. 2. p 21, Paper No. 29.
Kilian, R. In Proceedings of 7th International Symposium
on Environmental Degradation of Materials in Nuclear
Power Systems – Water Reactors, Breckenridge, CO,
Aug 7–10, 1995; Airey, G., Ed.; NACE International:
Houston, TX, 1995; pp 529–540.
Kilian, R.; Eberle, U.; Bru¨mmer, G.; et al. In Proceedings of
the 9th Environmental Degradation of Materials in Nuclear
Power Systems – Water Reactors, Newport Beach, CA,
Aug 1–5, 1999; Bruemmer, S. M., Ford, F. P., Was, G. S.,
Eds.; TMS–AIME: Warrendale, PA, 1999; pp 347–357.
International Atomic Energy Agency. Mitigation of
Intergranular Stress Corrosion Cracking in RBMK
Reactors; Final Report of the Programme’s Steering
Committee; IAEA-EBP-IGSCC; IAEA: Vienna, 2002.
Timofeev, B.; Fedorova, V.; Buchatskii, A. Mater. Sci.
2004, 40(1), 48–59.
Scott, P. M. In Proceedings of 9th International
Symposium on Environmental Degradation of Materials in
Nuclear Power Systems – Water Reactors, Newport

Beach, CA, Aug 1–5, 1999; Ford, F. P., Bruemmer, S. M.,
Was, G. S., Eds.; TMS–AIME: Warrendale, PA, 1999.
Couvant, T.; Legras, L.; Pokor, C.; et al. In Proceedings of
13th International Symposium on Environmental
Degradation of Materials in Nuclear Power Systems –
Water Reactors, Whistler, BC, Canada, Aug 19–23, 2007;
Allen, T. R., et al. Eds.; Canadian Nuclear Society:
Toronto, ON, 2007; Vol. 1. pp 499–514.
Chynoweth, J.; Hyres, J. In Proceedings of 13th
International Symposium on Environmental Degradation of
Materials in Nuclear Power Systems – Water Reactors,
Whistler, BC, Canada, Aug 19–23, 2007; Canadian
Nuclear Society: Toronto, ON, 2007; Vol. 2, pp 1214–1225.
Kilian, R.; Wesseling, U.; Wachter, O.; Widera, M.;
Bru¨mmer, G.; Ilg, U. In Fontevraud V; Sept 23–27, 2002;
SFEN: France, 2002.
Berge, P.; Keroulas, F.; Gras, J.; Noe¨l, D.; Da Vunha
Belo, M. In Proceedings of 4th International Symposium on
Environmental Degradation of Materials in Nuclear Power
Systems – Water Reactors, Jekyll Island, GA, Aug 6–10,
1989; Cubicciotti, D., Ed.; NACE International: Houston,
TX, 1989; pp. 11-74–11-87.
McDonald, D.; Cragnolino, G.; Olemacher, J.; Chen, T.;
Dhawale, S. Intergranular Stress Corrosion Cracking of
Austenitic Stainless Steels in PWR Acid Storage Systems;
EPRI NP-2531; Electric Power Research Institute: Palo
Alto, CA, 1982.
Cramer, S., Covino, B., Jr., Moosbrugger, C. Eds.
Handbook Volume 13A: Corrosion Fundamentals, Testing
and Protection; ASM International: Materials Park, OH,

2003.



×