4.01
Radiation Effects in Zirconium Alloys
F. Onimus and J. L. Be´chade
Commissariat a` l’Energie Atomique, Gif-sur-Yvette, France
ß 2012 Elsevier Ltd. All rights reserved.
4.01.1
Irradiation Damage in Zirconium Alloys
4.01.1.1
4.01.1.1.1
4.01.1.1.2
4.01.1.1.3
4.01.1.2
4.01.1.2.1
4.01.1.2.2
4.01.1.2.3
4.01.1.3
4.01.1.3.1
4.01.1.3.2
4.01.1.3.3
4.01.1.3.4
4.01.1.3.5
4.01.1.4
4.01.1.4.1
4.01.1.4.2
4.01.2
4.01.2.1
4.01.2.1.1
4.01.2.1.2
4.01.2.1.3
4.01.2.1.4
4.01.2.2
4.01.2.3
4.01.3
4.01.3.1
4.01.3.1.1
4.01.3.1.2
4.01.3.2
4.01.3.2.1
4.01.3.2.2
4.01.3.3
References
Damage Creation: Short-Term Evolution
Neutron–zirconium interaction
Displacement energy in zirconium
Displacement cascade in zirconium
Evolution of Point Defects in Zirconium: Long-Term Evolution
Vacancy formation and migration energies
SIA formation and migration energies
Evolution of point defects: Impact of the anisotropic diffusion of SIAs
Point-Defect Clusters in Zirconium Alloys
hai Dislocation loops
hai Loop formation: Mechanisms
hci Component dislocation loops
hci Loop formation: Mechanisms
Void formation
Secondary-Phase Evolution Under Irradiation
Crystalline to amorphous transformation of Zr-(Fe,Cr,Ni) intermetallic precipitates
Irradiation effects in Zr–Nb alloys: Enhanced precipitation
Postirradiation Mechanical Behavior
Mechanical Behavior During Tensile Testing
Irradiation hardening: Macroscopic behavior
Irradiation hardening: Mechanisms
Post-yield deformation: Macroscopic behavior
Post-yield deformation: Mechanisms
Effect of Postirradiation Heat Treatment
Postirradiation Creep
Deformation Under Irradiation
Irradiation Growth
Irradiation growth: Macroscopic behavior
Irradiation growth: Mechanisms
Irradiation Creep
Irradiation creep: Macroscopic behavior
Irradiation creep: Mechanisms
Outlook
Abbreviations
BWR
CANDU
DAD
EAM
EID
FP-LMTO
Boiling-water reactor
Canadian deuterium uranium
Diffusion anisotropy difference
Embedded atom method
Elastic interaction difference
Full-potential linear muffin-tin orbital
2
GGA
hcp
HVEM
LDA
MB
MD
NRT
2
2
2
2
4
4
4
6
7
7
8
9
9
10
10
10
13
14
14
14
14
16
16
17
18
19
19
19
21
24
24
25
26
27
Generalized gradient approximation
Hexagonal close-packed
High-voltage electron microscope
Local density approximation
Many body
Molecular dynamics
Norgett–Robinson–Torrens
1
2
Radiation Effects in Zirconium Alloys
PKA
PWR
RXA
SANS
SIA
SIPA
SIPA-AD
SIPN
SRA
TEM
Tm
UTS
YS
Primary knocked-on atom
Pressurized water reactor
Recrystallization annealed
Small-angle neutron scattering
Self interstitial atom
Stress-induced preferential absorption
Stress preferential induced nucleationanisotropic diffusion
Stress preferential induced nucleation
Stress-relieved annealed
Transmission electron microscopy
Melting temperature
Ultimate tensile strength
Yield stress
4.01.1 Irradiation Damage in
Zirconium Alloys
4.01.1.1 Damage Creation: Short-Term
Evolution
4.01.1.1.1 Neutron–zirconium interaction
Zirconium alloys are used as structural components
for light and heavy water nuclear reactor cores
because of their low capture cross section to thermal
neutrons and their good corrosion resistance. In a
nuclear reactor core, zirconium alloys are subjected
to a fast neutron flux (E > 1 MeV), which leads to
irradiation damage of the material. In the case of
metallic alloys, the irradiation damage is mainly due
to elastic interaction between fast neutrons and atoms
of the alloy that displace atoms from their crystallographic sites (depending on the energy of the incoming neutron) and can create point defects without
modifications of the target atom, as opposed to
inelastic interactions leading to transmutation, for
instance. During the collision between the neutron
and the atom, part of the kinetic energy can be transferred to the target atom. The interaction probability
is given by the elastic collision differential cross section1,2 which depends on both the neutron kinetic
energy and the transferred energy.3 For a typical fast
Þ of
neutron of 1 MeV, the mean transferred energy ðT
% 22keV. For low value of the
the Zr atom glide processes occur at even higher
stress. For very high stress, close to the YS, dislocation channeling occurs.
For cold-worked zirconium alloys, such as SRA
Zircaloy or cold-worked Zr–2.5Nb alloy,163 the SIPA
mechanism on the initial dislocations is a likely mechanism for irradiation creep. However, according to
Holt,171 the creep anisotropy of cold-worked zirconium alloys computed from the SIPA mechanism
assuming only hai type dislocations is not in agreement with the experimental anisotropy. The anisotropy computed from the climb-plus-glide mechanism
assuming 80% prism slip and 20% basal slip is in good
agreement with the experimental anisotropy, demonstrating that climb-plus-glide mechanism is probably
the effective mechanism. It should also be pointed out
that, since dislocations climb toward grain boundaries
or toward other dislocations, recovery of the initial
dislocation network occurs. In order to maintain a
steady-state creep rate, multiplication of dislocations
should also occur either via loop coalescence or via
dislocation sources, as discussed previously.
It should also be pointed out that, as there is a
coupling between swelling and irradiation creep in
stainless steel,181 we could assume a coupling
between growth and irradiation creep to occur in
zirconium alloys due to the effect of the stress on
the partitioning of point defects.134,162 Nevertheless,
the simple assumption of two separable deformation
components has proved to hold correctly for the
results given in the literature.163,180
4.01.3.3 Outlook
Concerning damage creation and point-defect cluster formation, improvement in the knowledge of
anisotropic diffusion of SIAs as well as better understanding of the microstructure of vacancy and interstitial hai loops and basal hci vacancy loops (origin of
the loop alignment, origin of the corduroy contrast
Radiation Effects in Zirconium Alloys
for instance) has to be aimed at. Multiscale modeling
approaches coupled with fine experimental analyses
of the irradiation microstructure (high-resolution
TEM, synchrotron radiation analyses, tomography
atom probe, etc.) should bring new insight concerning
the previous points mentioned but also elements in
order to propose modeling of the microstructure
evolution during irradiation: for instance, origin of the
alignments of Nb precipitates, stability of b-Nb precipitates, etc.
Concerning the mechanical behavior of Zr alloys
after irradiation, multiscale modeling of the postirradiation deformation with a better understanding of
the dislocation channeling mechanism and understanding of its effects on the postirradiation mechanical behavior are needed.
Moreover, better understanding of the postirradiation creep deformation mechanisms is also needed
using multiscale modeling.
The last point concerns the deformation mechanisms under irradiation. In that field, the basic questions
are still without answers: What are the irradiation creep
deformation mechanisms? What are the coupling
between the deformation under irradiation and the
thermal creep and growth? Progress has to be made
especially using in situ deformation devices under
irradiation, coupled with modeling approaches. (See
also Chapter 1.01, Fundamental Properties of
Defects in Metals; Chapter 2.07, Zirconium Alloys:
Properties and Characteristics and Chapter 5.03,
Corrosion of Zirconium Alloys).
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
References
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Beyster, J. R.; Walt, M.; Salmi, E. W. Phys. Rev. 1956,
104, 1319–1331.
Guenther, P.; Smith, A.; Whalen, J. Phys. Rev. C 1975,
12, 1797–1808.
Lune´ville, L.; Simeone, D.; Jouanne, C. J. Nucl. Mater.
2006, 353(1–2), 89–100.
Neely, H. H. Radiat. Effects 1970, 3, 189–201.
Biget, M.; Maury, F.; Vajda, P.; Lucasson, A.;
Lucasson, P. Radiat. Effects 1971, 7, 223–229.
Griffiths, M. J. Nucl. Mater. 1989, 165, 315–317.
Ackland, G. J.; Woodings, S. J.; Bacon, D. J. Philos. Mag.
A 1995, 71, 553–565.
Gao, F.; Bacon, D. J.; Howe, L. M.; So, C. B. J. Nucl.
Mater. 2001, 294, 288–298.
Was, G. S. Fundamentals of Radiation Materials
Science: Metals and Alloys; Springer: New York,
2007.
Norgett, M. J.; Robinson, M. T.; Torrens, I. M. Nucl. Eng.
Des. 1975, 33, 50–54.
Zinkle, S. J.; Singh, B. N. J. Nucl. Mater. 1993, 199(3),
173–191.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
27
Shishov, V.; Peregud, M. M.; Nikulina, A. V.; et al.
J. ASTM Int. (JAI); 2005, 2(8).
Woo, C. H.; Singh, B. N. Philos. Mag. A 1992, 65, 889–912.
Woo, C. H.; Semenov, A. A.; Singh, B. N. J. Nucl. Mater.
1993, 206(2–3), 170–199.
Kapinos, V. G.; Osetsky, Y. N.; Platonov, P. A. J. Nucl.
Mater. 1991, 184(2), 127–143.
Wooding, S. J.; Howe, L. M.; Gao, F.; Calder, A. F.;
Bacon, D. J. J. Nucl. Mater. 1998, 254(2–3), 191–204.
MacEwen, S. R.; Zee, R. H.; Birtcher, R. C.; Abromeit, C.
J. Nucl. Mater. 1984, 123, 1036.
Hood, G. M. J. Nucl. Mater. 1988, 159, 149–175.
Frank, W. Philos. Mag. A 1991, 63, 897–913.
Horvath, J.; Dyment, F.; Mehrer, H. J. Nucl. Mater. 1984,
126, 206–214.
Douglass, D. L. Atomic Energy Review Supplement;
International Atomic Energy Agency: Vienna, 1971;
pp 311–342.
Hood, G. M.; Schultz, R. J. Acta Mater. 1974, 22, 459.
Hood, G. M.; Zou, H.; Schultz, R. J.; Jackman, J. A.
J. Nucl. Mater. 1984, 126, 79–82.
Hood, G. M. J. Nucl. Mater. 1986, 139, 179–184.
Frank, W. J. Nucl. Mater. 1988, 159, 122–148.
Lubbehusen, M.; Vieregge, K.; Hood, G. M.; Mehrer, H.;
Herzig, C. J. Nucl. Mater. 1991, 182, 164–169.
Hood, G. M.; Zou, H.; Gupta, D.; Schultz, R. J. J. Nucl.
Mater. 1995, 223, 122–125.
Bacon, D. J. J. Nucl. Mater. 1988, 159, 176–189.
Bacon, D. J. J. Nucl. Mater. 1993, 206, 249–265.
Le Bacq, O.; Willaime, F.; Pasturel, A. Phys. Rev. B 1999,
59, 8508–8515.
Pasianot, R. C.; Monti, A. M. J. Nucl. Mater. 1999, 264,
198–205.
Pasianot, R. C.; Monti, A. M.; Simonelli, G.; Savino, E. J.
J. Nucl. Mater. 2000, 276, 230–234.
Osetsky, Y. N.; Bacon, D. J.; De Diego, N. Metall. Mater.
Trans. A 2002, 33A, 777–782.
Woo, C. H.; Liu, X. Philos. Mag. 2007, 87(16), 2355–2369.
Willaime, F. J. Nucl. Mater. 2003, 323, 205–212.
Domain, C.; Legris, A. Philos. Mag. 2005, 85, 569–575.
Domain, C. J. Nucl. Mater. 2006, 351(1–3), 1–19.
Ve´rite´, G.; Willaime, F.; Chun, F. C. Solid State Phenom.
2007, 129, 75–81.
Pe´rez, R. A.; Weissmann, M. J. Nucl. Mater. 2008,
374(1–2), 95–100.
Pasianot, R. C.; Pe´rez, R. A.; Ramunni, V. P.;
Weissmann, M. J. Nucl. Mater. 2009, 392(1), 100–104.
Johnson, R. A.; Beeler, J. R. In Interatomic Potential and
Crystalline Defects; Lee, J. K., Ed.; AIME: New York,
1981; p 165.
Woo, C. H.; Huang, H.; Zhu, W. J. Appl. Phys. A: Mater.
Sci. Process. 2003, 76, 101–106.
Barbu, A.; Martin, G. Solid State Phenom. 1993, 30/31,
179–228.
Woo, C. H. J. Nucl. Mater. 1988, 159, 237–256.
Northwood, D. O.; Gilbert, R. W.; Bahlen, L. E.; et al.
J. Nucl. Mater. 1979, 79, 379–394.
Griffiths, M. J. Nucl. Mater. 1988, 159, 190–218.
Gulden, T. D.; Bernstein, I. M. Philos. Mag. 1966, 14,
1087–1091.
Kelly, P. M.; Blake, R. G. Philos. Mag. 1973, 28(2),
415–426.
Northwood, D. O.; Fidleris, V.; Gilbert, R. W.; Carpenter,
G. J. C. J. Nucl. Mater. 1976, 61(2), 123–130.
Jostsons, A.; Kelly, P. M.; Blake, R. G. J. Nucl. Mater.
1977, 66(3), 236–256.
Northwood, D. O. Atomic Energy Rev. 1977, 15,
547–610.
28
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
Radiation Effects in Zirconium Alloys
Gilbert, R. W.; Farrell, K.; Coleman, C. E. J. Nucl. Mater.
1979, 84(1–2), 137–148.
Carpenter, G. J. C.; Watters, J. F. J. Nucl. Mater. 1981,
96, 213–226.
Griffiths, M.; Gilbert, R. W.; Fidleris, V.; Tucker, R. P.;
Adamson, R. B. J. Nucl. Mater. 1987, 150, 159–168.
Hellio, C.; de Novion, C. H.; Boulanger, L. J. Nucl. Mater
1988, 159, 368–378.
Griffiths, M. Philos. Mag. B 1991, 63(5), 835–847.
Griffiths, M. J. Nucl. Mater. 1993, 205, 225–241.
Griffiths, M.; Loretto, M. H.; Sallmann, R. E. J. Nucl.
Mater. 1983, 115(2–3), 313–322.
Griffiths, M.; Loretto, M. H.; Smallman, R. E. Philos. Mag.
A 1984, 49(5), 613.
Griffiths, M.; Mecke, J. F.; Winegar, J. E. Evolution of
microstructure in zirconium alloys during irradiation.
In Eleventh International Symposium on Zirconium in the
Nuclear Industry; Bradley, E. R., Sabol, G. P., Eds.;
American Society for testing and Materials: West
Conshohocken, PA, p 580, ASTM STP 1295.
Jostsons, A.; Kelly, P. M.; Blake, R. G.; Farrell, K.
In 9th Conference on Neutron Irradiation-Induced
Defect Structures in Zirconium, Effects of Radiation on
Structual Materials; Sprague, J. A., Kramer, D., Eds.;
American Society for Testing and Materials: West
Conshohocken, PA, 1979; pp 46–61, ASTM STP 683.
Bell, W. L. J. Nucl. Mater. 1975, 55, 14–22.
Kelly, P. M.; Blake, R. G.; Jostons, A. J. Nucl. Mater.
1976, 59, 307–315.
Foll, H.; Wilkens, M. Phys. Stat. Sol. (a) 1977, 39,
561–571.
Kapinos, V. G.; Osetsky, Y. N.; Platonov, P. A. J. Nucl.
Mater. 1992, 195(1–2), 83–101.
De Diego, N.; Osetsky, Y. N.; Bacon, D. J. J. Nucl. Mater.
2008, 374(1–2), 87–94.
Jostsons, A.; Blake, R. G.; Napier, J. G.; Kelly, P. M.;
Farrell, K. J. Nucl. Mater. 1977, 68, 267–276.
Dubinko, V.; Turkin, A.; Abyzov, A.; Griffiths, M. J. ASTM
Int. 2005, 2, 157.
Are´valo, C.; Caturla, M. J.; Perlado, J. M. J. Nucl. Mater.
2007, 367–370, 338–343.
Holt, R. A.; Gilbert, R. W. J. Nucl. Mater. 1983, 116,
127–130.
Holt, R. A.; Gilbert, R. W. J. Nucl. Mater. 1986, 137,
185–189.
Holt, R. A. J. Nucl. Mater. 1988, 159, 310–338.
Griffiths, M.; Gilbert, R. W. In Fidleris V Accelerated
irradiation growth of zirconium alloys, In Eighth
International Symposium on Zirconium in the Nuclear
Industry, Philadelphia, PA, 1989; Van Swam, L. F. P.,
Eucken, C. M., Eds.; American Society for Testing and
Materials: West Conshohocken, PA, pp 658–677, ASTM
STP 1023.
Griffiths, M.; Loretto, M. H.; Smallman, R. E. J. Nucl.
Mater. 1983, 115(2–3), 323–330.
Gilbon, D.; Simonot C Effect of irradiation on the
microstructure of zircaloy-4. In Eleventh International
Symposium on Zirconium in the Nuclear Industry;
Garde, E. M., Bradley, E. R., Eds.; American Society for
Testing and Materials: West Conshohocken, PA, 1994;
pp 521–548, ASTM STP 1245.
De Carlan, Y.; Re´gnard, C.; Griffiths, M.; Gilbon, D.
Influence of iron in the nucleation of <c> component
dislocation loops in irradiated zircaloy-4. In Eleventh
International Symposium on Zirconium in the Nuclear
Industry; Bradley, E. R., Sabol, G. P., Eds.; American
Society for Testing and Materials: West Conshohocken,
PA, 1996; pp 638–653, ASTM STP 1295.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
Adamson, R. B. Effects of neutron irradiation on
microstructure and properties of zircaloy. In Twelfth
International Symposium on Zirconium in the Nuclear
Industry; Sabol, G. P., Moan, G. D., Eds.;
American Society for Testing and Materials: West
Conshohocken, PA, 2000; pp 15–31, ASTM
STP 1354.
Faulkner, D.; Woo, C. H. J. Nucl. Mater. 1980, 90,
307–316.
Griffiths, M.; Gilbert, R. W.; Carpenter, G. J. C. J. Nucl.
Mater. 1987, 150(1), 53–66.
Gilbert, R. W.; Griffiths, M.; Carpenter, G. J. C. J. Nucl.
Mater. 1985, 135, 265–268.
Yang, W. J. S. J. Nucl. Mater. 1988, 158, 71–80.
Motta, A. T.; Lefebvre, F.; Lemaignan, C. Amorphisation
of precipitates in Zircaloy under neutron and charged
particle irradiation. In Ninth International Symposium on
Zirconium in the Nuclear Industry; Eucken, C. M.,
Garde, A. M., Eds.; American Society for Testing and
Materials: West Conshohocken, PA, 1991; pp 718–739,
ASTM Special Technical Publication 1132.
Garzarolli, F.; Goll, W.; Seibold, A.; Ray, I. Effect of
in-PWR irradiation on size, structure and composition of
intermetallic precipitates of Zr alloys; Bradley, E. R.,
Sabol, G. P., Eds.; 1996; pp 541–556, ASTM STP 1295.
Motta, A. T.; Lemaignan, C. J. Nucl. Mater. 1992, 195,
277–285.
Toffolon-Masclet, C.; Barberis, P.; Brachet, J. C.;
Mardon, J. P.; Legras, L. J. ASTM Int. 2005, 2, 81–101.
Doriot, S.; Gilbon, D.; Be´chade, J. L.; Mathon, M.;
Legras, L.; Mardon, J. P. J. ASTM Int. 2005, 2, 175–201.
Shishov, V.; Nikulina, A. V.; Markelov, V. A.; et al.
Influence of neutron irradiation on dislocation
structure and phase composition of Zr-base alloys;
Bradley, E. R., Sabol, G. P., Eds.; American Society
for Testing and Materials: West Conshohocken, PA,
1996; pp 603–622, ASTM-STP 1295.
Cann, C. D.; So, C. B.; Styles, R. C.; Coleman, C. E.
J. Nucl. Mater. 1993, 205, 267–272.
Kobylyansky, G. P.; Novoselov, A. E.; Ostrovsky, Z. E.;
et al. J. ASTM Int.; 2008, 5(4).
Howe, L.; Thomas, W. R. J. Nucl. Mater. 1960, 2(3),
248–260.
Hardy, D. G. The effect of neutron irradiation on the
mechanical properties of zirconium alloy fuel cladding in
uniaxial and biaxial tests. In Irradiation Effects on
Structural Alloys for Nuclear Reactor Applications;
Bement, A. L., Ed.; American Society for Testing and
Materials: West Conshohocken, PA, 1970;
pp 215–258, ASTM-STP 484.
Higgy, H. R.; Hammad, F. H. J. Nucl. Mater. 1972, 44,
215–227.
Rieger, G. F.; Lee, D. Strength and ductility of neutron
irradiated and textured Zircaloy-2 In Zirconium in Nuclear
Applications; Schemel, J. H., Rosenbaum, H. S., Eds.;
American Society for Testing and Materials: West
Conshohocken, PA, 1974; pp 355–369, ASTM
STP 551.
Baroch, C. J. Effect of irradiation at 130, 650, and 775 F
on tensile properties of Zircaloy-4 at 70, 650, and 775 F.
In Properties of Reactor Structural Alloys after Neutron or
Particle Irradiation; Baroch, C. J., Ed.; American Society
for Testing and Materials: West Conshohocken, PA,
1975; p 129, ASTM STP 570.
Pettersson, K.; Vesterlund, G.; Andersson, T. Effect of
irradiation on the strength, ductility, and defect
sensitivity of fully recrystallized zircaloy tube. In
Schemel, J. H., Papazoglou, T. P., Eds.; American
Radiation Effects in Zirconium Alloys
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
Society for Testing and Materials: West Conshohocken,
PA, 1979; pp 155–173, ASTM STP 681.
Onchi, T.; Kayano, H.; Higashiguchi, Y. J. Nucl. Mater.
1980, 88(2–3), 226–235.
Yasuda, T.; Nakatsuka, M.; Yamashita, K. Deformation
and fracture properties of neutron-irradiated recrystallized
Zircaloy-2 cladding under uniaxial tension. In Seventh
International Symposium on Zirconium in the Nuclear
Industry, Strasbourg, France, June 24–27, 1985;
Adamson, R. B., Van Swan, L. F. P., Eds.; American
Society for Testing and Materials: West Conshohocken,
PA, 1987; pp 734–747, ASTM STP 939.
Morize, P.; Baicry, J.; Mardon, J.-P. Effect of irradiation
at 588 K on mechanical properties and deformation
behavior of zirconium alloy strip. . In In Zirconium in the
Nuclear Industry, Strasbourg, France, June 24–27, 1985;
Adamson, R. B., Van Swan, L. F. P., Eds.; American
Society for Testing and Materials: West Conshohocken,
PA, 1987; pp 101–119, ASTM STP 939.
Byun, T. S.; Farrell, K. J. Nucl. Mater. 2004, 326,
86–96.
Lemaignan, C.; Motta, A. T Zirconium alloys in nuclear
applications;In Materials Science and Technology Series,
A Comprehensive Treatment; Cahn, R. W, Haasen, P.,
Kramer, E. J., Eds.; VCH-Verlag publisher: Weinheim,
Germany, 1994; Vol. 10B, Nuclear Materials, Part 2,
Frost, B. R. T., Ed.
Adamson, R. B.; Bell, W. L. Effects of neutron irradiation
and oxygen content on the microstructure and
mechanical properties of zircaloy In Microstructure and
Mechanical Behaviour of Materials, X’ian, Republic of
China, Oct 21–24, EMAS Warley, UK, 1985; Vol. I,
pp 237–246.
Torimaru, T.; Yasuda, T.; Nakatsuka, M. J. Nucl. Mater.
1996, 238(2–3), 169–174.
Nakatsuka, M.; Nagai, M. J. Nucl. Sci. Tech. 1987, 24,
832–838.
Zu, X. T.; Sun, K.; Atzmon, M.; et al. Philos. Mag. 2005,
85(4), 649–659.
Ribis, J.; Onimus, F.; Be´chade, J. L.; et al. J. ASTM Int.;
2008, 5(3).
Kroupa, F.; Hirsch, P. B. Discuss. Faraday Soc. 1964, 38,
49–55.
Makin, M. J. Philos. Mag. 1964, 10, 695–711.
Saada, G.; Washburn, J. J. Phys. Soc. Jpn. 1963, 18
(Suppl. 1), 43.
Foreman, A. J. E.; Sharp, J. V. Philos. Mag. 1969, 19,
931–937.
Hirsch, P. B. In Proceedings of a Conference on Point
Defect Behavior and Diffusional Processes, University of
Bristol, Sept 13–16 1976.
Carpenter, G. J. C. Scr. Metall. 1976, 10, 411–413.
Fregonese, M.; Re´gnard, C.; Rouillon, L.; Magnin, T.;
Lefebvre, F.; Lemaignan, C. Failure mechanisms of
irradiated Zr alloys related to PCI: Activated slip systems,
localized strains, and iodine-induced stress corrosion
cracking. In 12th International Symposium on Zirconium
in Nuclear Industry; Sabol, G. P., Moan, G. D., Eds.;
American Society for Testing and Materials: West
Conshohocken, PA, 2000; p 377, ASTM STP 1354.
Onimus, F.; Monnet, I.; Be´chade, J. L.; Prioul, C.;
Pilvin, P. J. Nucl. Mater. 2004, 328, 165–179.
Voskoboynikov, R. E.; Osetsky, Y. N.; Bacon, D. J. Mater.
Sci. Eng. A 2005, 400–401, 54–58.
Onchi, T.; Kayano, H.; Higashiguchi, Y. J. Nucl. Sci.
Technol. 1977, 14(5), 359–369.
Onimus, F.; Be´chade, J. L.; Duguay, C.; Gilbon, D.;
Pilvin, P. J. Nucl. Mater. 2006, 358, 176–189.
117.
29
Garde, A. M Effects of irradiation and hydriding on
mechanical properties of Zy-4 at high fluence. In Eighth
International Symposium on Zirconium in the Nuclear
Industry; Van Swam, L. F. P., Eucken, C. M., Eds.;
American Society for Testing and Materials: West
Conshohocken, PA, 1989; pp 548–569, ASTM STP 1023.
118. Williams, C. D.; Adamson, R. B.; Olshausen, K. D. Effects
of boiling water reactor irradiation on tensile properties of
Zircaloy. In European Conference on Irradiation
Behaviour of Fuel Cladding and Core Component
Materials, Karlsruhe, Germany 1974.
119. Adamson, R. B; Wisner, S. B; Tucker, R. P; Rand, R. A.
Failure strain for irradiated zircaloy based on subsized
specimen testing and analysis, the use of small scale
specimens for testing irradiated materials; Corwin, W. R.,
Rosinski, S. R., van Walle, E., Eds.; American Society for
Testing and Materials: West Conshohocken, PA, 1986,
p 171, ASTM STP 888.
120. Re´gnard, C.; Verhaeghe, B.; Lefebvre-Joud, F.;
Lemaignan, C. Activated slip systems and localized
straining of irradiated alloys in circumferential loadings.
In 13th International Symposium on Zirconium in the
Nuclear Industry; Moan, G. D., Rudling, P., Eds.;
American Society for Testing and Materials: West
Conshohocken, PA, 2002; p 384, ASTM STP 1423.
121. Coleman, C. E.; Mills, D.; van der Kuur, J. Can. Metall. Q.
1972, 11, 91–100.
122. Tomalin, D. S. Localized ductility of irradiated
Zircaloy-2 cladding in air and iodine environments.
In 13th International Symposium on Zirconium in the
Nuclear Industry; Lowe, P., Jr, Ed.; American Society for
Testing and Materials: West Conshohocken, PA, 1977;
pp 557–572, ASTM STP 633.
123. Pettersson, K. J. Nucl. Mater. 1982, 105, 341–344.
124. Onimus, F.; Be´chade, J. L.; Prioul, C.; et al. J. ASTM Int.;
2005, 2(8).
125. Fournier, L.; Serres, A.; Auzoux, Q.; Leboulch, D.;
Was, G. S. J. Nucl. Mater. 2009, 384(1), 38–4731.
126. Wechsler, M. S. The Inhomogeneity of Plastic
Deformation; ASM: Metals Park, OH, 1973; pp 19–52.
127. Luft, A. Prog. Mater. Sci. 1991, 35, 97–204.
128. Sharp, J. V. Philos. Mag. 1967, 16, 77–96.
129. Sharp, J. V. Radiat. Effects 1972, 14, 71.
130. Makin, M. J. Philos. Mag. 1970, 21, 815–821.
131. Nogaret, T.; Robertson, C.; Rodney, D. Philos. Mag.
2007, 87(6), 945.
132. Nogaret, T.; Rodney, D.; Fivel, M.; Robertson, C. J. Nucl.
Mater. 2008, 380, 22–29.
133. Lee, D.; Adamson, R. B. In Modeling of localized
deformation in neutron irradiated Zircaloy-2; Lowe, P., Jr.,
Ed.; American Society for Testing and Materials:
West Conshohocken, PA, 1977; pp 385–401, ASTM
STP 633.
134. Franklin, D. G.; Lucas, G. E.; Bement, A. L. Creep of
zirconium in nuclear reactors; Franklin, D. G., Lucas, G. E.,
Bement, A. L., Eds.; American Society for Testing
and Materials: West Conshohocken, PA, 1983; pp 1–167,
ASTM STP 815.
135. Onimus, F.; Be´chade, J. L. J. Nucl. Mater. 2009, 384,
163–174.
136. Nakatsuka, M.; Nagai, M. J. Nucl. Sci. Technol. 1987, 24,
832–838.
137. Delobelle, P.; Robinet, P.; Geyer, P.; Bouffioux, P.
J. Nucl. Mater. 1996, 238(2–3), 135.
138. Coleman, C. E.; Chow, P. C. K.; Ells, C. E.; Griffiths, M.;
Ibrahim, E. F.; Sagat, S. Rejuvenation of fracture
properties of irradiated Zr-2,5 Nb by heat treatment;
Stoller, R. E., Kumar, A. S., Gelles, D. S., Eds.; American
30
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
Radiation Effects in Zirconium Alloys
Society for Testing and Materials: West Conshohocken,
PA, 1992; pp 318–336, ASTM-STP 1125.
Dollins, C. C. Radiat. Effects 1972, 16, 271–280.
Snowden, K. U.; Veevers, K. Radiat. Effects Defects
Solids 1973, 20(3), 169–174.
Carpenter, G. J. C; Watters, J. F Irradiation damage
recovery in some zirconium alloys. In Zirconium in the
Nuclear Industry; Schemel, J. H., Rosenbaum, H. S.,
Eds.; American Society for Testing and Materials:
West Conshohocken, PA, 1974; p 400, ASTM
STP 551.
Ito, K.; Kamimura, K.; Tsukuda, Y. Evaluation of
irradiation effect on spent fuel cladding creep properties.
In Proceedings of the 2004 International Meeting on LWR
Fuel Performance, Orlando, FL, Sept 19–22, 2004.
Veevers, K.; Rotsey, W. B. J. Nucl. Mater. 1968, 27,
108–111.
Williams, C. D.; Gilbert, R. W. Radiation damage in
reactor In Proceedings of the IAEA Symposium, Vienna,
1969; Vol. 1, p 235.
Northwood, D. O.; Causey, A. R. J. Nucl. Mater. 1977, 64,
308–312.
Eyre, B. L.; Maher, D. M. Philos. Mag. 1971, 24, 767–797.
Hirth, J. P.; Lothe, J. Theory of Dislocations; Wiley: New
York, 1982.
Burton, B.; Speight, M. V. Philos. Mag. A 1986, 53, 385.
Peehs, M.; Fleisch, J. J. Nucl. Mater. 1986, 137, 190–202.
Fidleris, V. J. Nucl. Mater. 1988, 159, 22–42.
Mayuzumi, M.; Murai, K. In Proceedings of the 1993
International Conference on Nuclear Waste Management
and Environmental Remediation. Volume 1: Low and
Intermediate Level Radioactive Waste Management;
American Society of Mechanical Engineers: New York,
NY, 1993; Vol. 776, pp 607–612.
Scha¨ffler, I.; Geyer, P.; Bouffioux, P.; Delobelle, P. J. Eng.
Mater. Technol. Trans. ASME 2000, 122, 168–176.
Soniak, A.; L’Hullier, N.; Mardon, J. P.; Rebeyrolle, V.;
Bouffioux, P.; Bernaudat, C. Irradiation creep behavior of
Zr-base alloys. In Thirteenth International Symposium on
Zirconium in the Nuclear Industry, 2002; Moan, G. D.,
Rudling, P., Eds.; pp 837–862, ASTM STP 1423.
Cappelaere, C.; Limon, R.; Gilbon, D.; et al. Impact of
irradiation defects annealing on long-term thermal creep
of irradiated Zircaloy-4 cladding tube. In Thirteenth
International Symposium on Zirconium in the Nuclear,
Industry; 2002; Moan, G. D., Rudling, P., Eds.;
pp 720–739, ASTM STP 1423.
Limon, R.; Lehmann, S. J. Nucl. Mater. 2004, 335,
322–334.
Yasuda, T.; Nakatsuka, M.; Mayuzumi, M. Trans. Am.
Nucl. Soc. 1990, 61, 77–78.
Murty, K. L.; Mahmood, S. T. Effects of recrystallization
and neutron irradiation on creep anisotropy of zircaloy
cladding. .In In Ninth International Symposium on
Zirconium in the Nuclear Industry; Eucken, C. M.,
Garde, A. M., Eds.; American Society for Testing and
Materials: West Conshohocken, PA, 1990; p 198,
ASTM STP 1132.
Tsai, H.; Billone, M. C. J. ASTM Int. 2006, 3(1).
Fidleris, V.; Tucker, R. P.; Adamson, R. B. An overview
of microstructural and experimental factors that
affect the irradiation growth behavior of zirconium alloys.
In Seventh International Symposium on Zirconium in the
Nuclear Industry; Adamson, R. B., Van Swan, L. F. P.,
Eds.; American Society for Testing and Materials: West
Conshohocken, PA, 1987; pp 49–85, ASTM STP 939.
Rogerson, A. J. Nucl. Mater. 1988, 159, 43–61.
Carpenter, G. J. C.; Zee, R. H.; Rogerson, A. J. Nucl.
Mater. 1988, 159, 86–100.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
Holt, R. A. J. ASTM Int.; 2008, 5(6).
Holt, R. A. J. Nucl. Mater. 2008, 372, 182–214.
Carpenter, G. J. C.; Murgatroyd, R. A.; Rogerson, A.;
Watters, J. F. J. Nucl. Mater. 1981, 101, 28–37.
Williams, J.; Darby, E. C; Minty, D. C. C Irradiation
growth of annealed Zircaloy-2. In Sixth International
Symposium on Zirconium in the Nuclear Industry;
Franklin, D. G., Adamson, R. B., Eds.;
American Society for Testing and Materials: West
Conshohocken, PA, 1984; pp 376–393, ASTM
STP 824.
Garzarolli, F.; Dewes, P.; Maussner, G.; Basso, H. H.
Effects of high neutron fluence on microstructure and
growth of Zircaloy-4. In Eighth International Symposium
on Zirconium in the Nuclear Industry, Philadelphia, PA;
Van Swam, L. F. P., Eucken, C. M., Eds.; American
Society for Testing and Materials: West Conshohocken,
PA, 1989; pp 641–657, ASTM STP 1023.
Baron, J. L.; Esling, C.; Feron, J. L.; et al. Textures
Microstruct. 1990, 12(1–3), 125–140.
Gilbon, D.; Soniak, A.; Doriot, S.; Mardon, J. P. Irradiation
creep and growth behavior, and microstructural
evolution of advanced Zr-base alloys. In Twelfth
International Symposium on Zirconium in the Nuclear
Industry; Sabol, G. P., Moan, G. D., Eds.; American
Society for Testing and Materials: West Conshohocken,
PA, 2000; pp 51–71, ASTM STP 1354.
Franklin, D. G.; Adamson, R. B. J. Nucl. Mater. 1988, 159,
12–21.
Ibrahim, E. F.; Holt, R. A. J. Nucl. Mater. 1980, 91(2–3),
311–321.
Holt, R. A. J. Nucl. Mater. 1980, 90(1–3), 193–204.
Buckley, S. N. In Properties of Reactor Materials and
Effect of Radiation; Litter, W. J., Ed.; Butterworths:
London, 1962; p 413.
Northwood, D. O. Irradiation growth in zirconium and its
alloys. In Effects of Radiation on Structural Materials;
Sprague, J. A., Kramer, D., Eds.; American Society for
Testing and Materials: West Conshohocken, PA, 1979;
pp 62–76, ASTM STP 683.
Woo, C. H.; Go¨sele, U. J. Nucl. Mater. 1983, 119,
219–228.
Monti, A. M.; Sarce, A.; Smetninsky-De-Grande, N.;
Savino, E. J.; Tome, C. N. Philos. Mag. A 1991, 63,
925–936.
Ball, C. J. J. Nucl. Mater. 1981, 101, 147–149.
Fleck, R. G.; Holt, R. A.; Perovic, V.; Tadros, J. J. Nucl.
Mater. 1988, 159, 75–85.
Tome´, C. N.; Christodoulou, N.; Turner, P. A.; et al.
J. Nucl. Mater. 1996, 227(3), 237–250.
Field, G. J. J. Nucl. Mater. 1988, 159, 3–11.
Christodoulou, N.; Causey, A. R.; Holt, R. A.; et al.
Modeling in-reactor deformation of Zr–2.5Nb pressure
tubes in CANDU power reactors. In Eleventh
International Symposium on Zirconium in the Nuclear
Industry; 1996; Bradley, E. R., Sabol, G. P., Eds.; p 518,
ASTM STP 1295.
Matthews, J. R.; Finnis, M. W. J. Nucl. Mater. 1988, 159,
257–285.
Garde, A. M.; Smerd, P. G.; Garzarolli, F.; Manzel, R.
Influence of metallurgical condition on the in-reactor
dimensional changes of Zircaloy fuel rods. In Sixth
International Symposium on Zirconium in the Nuclear
Industry; Franklin, D. G., Adamson, R. B., Eds.; American
Society for Testing and Materials: West Conshohocken,
PA, 1984; p 289, ASTM STP 824.
Coleman, C. E.; Causey, A. R.; Fidleris, V. J. Nucl. Mater.
1976, 60, 185–194.
Tinti, F. Nucl. Technol. 1983, 60(1), 104–113.
Radiation Effects in Zirconium Alloys
185. Faulkner, D.; McElroy, R. J. Irradiation creep and growth
in zirconium during proton bombardment. In Effects of
Radiation on Structural Materials; Sprague, J. A.,
Kramer, D., Eds.; American Society for Testing and
Materials: West Conshohocken, PA, 1979; pp 329–345,
ASTM STP 683.
186. Garner, F. A.; Gelles, D. S. J. Nucl. Mater. 1988, 159,
286–309.
187.
188.
189.
190.
31
MacEwen, S. R.; Fidleris, V. J. Nucl. Mater. 1977, 66,
250–257.
Nichols, F. A. J. Nucl. Mater. 1970, 37, 59.
Griffiths, M.; Gilbert, R. W. J. Nucl. Mater. 1987, 150(2),
169–181.
Griffiths, M.; Gilbon, D.; Re´gnard, C.; Lemaignan, C.
J. Nucl. Mater. 1993, 205, 273–283.