Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
Banfileword.com
BỘ ĐỀ 2018
MÔN TOÁN
ĐỀ THI THỬ THPT QG NĂM 2018
THPT QUẢNG XƯƠNG 1 – THANH HÓA- LẦN 1
Thời gian làm bài: 90 phút;
(50 câu trắc nghiệm)
MA TRẬN
Mức độ kiến thức đánh giá
Lớp 12
(68%)
Lớp 11
(32%)
Tổng số
câu hỏi
STT
Các chủ đề
Nhận
biết
Thông
hiểu
Vận
dụng
Vận dụng
cao
1
Hàm số và các bài toán
liên quan
5
5
7
3
19
2
Mũ và Lôgarit
2
2
1
2
7
3
Nguyên hàm – Tích
phân và ứng dụng
0
0
0
0
0
4
Số phức
0
0
0
0
0
5
Thể tích khối đa diện
0
1
3
4
8
6
Khối tròn xoay
0
0
0
0
0
7
Phương pháp tọa độ
trong không gian
0
0
0
0
0
1
Hàm số lượng giác và
phương trình lượng
giác
0
0
1
0
1
2
Tổ hợp-Xác suất
0
1
1
0
2
3
Dãy số. Cấp số cộng.
Cấp số nhân
0
1
1
0
2
4
Giới hạn
0
1
0
1
2
5
Đạo hàm
0
0
1
0
1
6
Phép dời hình và phép
đồng dạng trong mặt
phẳng
0
1
1
0
2
7
Đường thẳng và mặt
0
1
1
0
2
Trang 1
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
phẳng trong không gian
Quan hệ song song
Tổng
8
Vectơ trong không gian
Quan hệ vuông góc
trong không gian
0
0
0
0
0
1
Bài toán thực tế
0
1
0
2
3
Số câu
7
14
17
12
50
Tỷ lệ
14%
28%
34%
24%
Trang 2
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
ĐỀ KHẢO SÁT CHẤT LƯỢNG NĂM 2018
THPT QUẢNG XƯƠNG 1 – THANH HÓA- LẦN 1
Banfileword.com
BỘ ĐỀ 2018
MÔN TOÁN
Thời gian làm bài: 90 phút;
(50 câu trắc nghiệm)
Câu 1: Cho các hàm số y = cos x, y = sin x, y = tan x, y = cot x . Trong các hàm số trên, có bao nhiêu
hàm số chẵn ?
B. 3
A. 1
C. 2
D. 4
Câu 2: Tìm nghiệm của phương trình log 2 ( x − 5 ) = 4.
B. x = 3
A. x = 21
D. x = 13
C. x = 11
Câu 3: Lãi suất gửi tiền tiết kiệm của các ngân hàng trong thời gian qua liên tục thay đổi. Bác Mạnh gửi
vào một ngân hàng số tiền 5 triệu đồng với lãi suất 0, 7% / tháng . Sau sáu tháng gửi tiền, lãi suất tăng lên
0,9% / tháng . Đến tháng thứ 10 sau khi gửi tiền, lãi suất giảm xuống 0, 6% / tháng và giữ: ổn đinh. Biết
rằng nếu bác Mạnh không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào
vốn ban đầu (ta gọi đó là lãi kép). Sau một năm gửi tiền, bác Mạnh rút được số tiền là bao nhiêu? (biết
trong khoảng thời gian này bác Mạnh không rút tiền ra)
A. 5436521,164 đồng B. 5452771, 729 đồng C. 5436566,169 đồng D. 5452733, 453 đồng
Câu 4: Trong các hàm số dưới đây, hàm số nào nghịch biến trên tập số thực ¡
x
2
A. y = ÷
e
2
a x 2 + 1 + 2017 1
= ; lim
x + 2018
2 x →+∞
x →−∞
Câu 5: Cho lim
A. P = −1
2
C. log π ( 2x + 1)
B. y = log 1 x
B. P = 2
4
(
x
π
D. y = ÷
3
)
x 2 + bx + 1 − x = 2. Tính P = 4a + b .
C. P = 3
D. P = 1
Câu 6: Cho khối chóp S.ABC có đáy ABC là tam giác đều cạnh a và hai mặt bên ( SAB ) , ( SAC ) cùng
vuông góc với đáy. Tính thể tích khối chóp S.ABC biết SC = a 3.
A.
a3 3
2
B.
a3 3
4
C.
2a 3 6
9
D.
a3 6
12
Câu 7: Cho hàm số y = − x 4 + 2x 2 có đồ thị như hình vẽ bên. Tìm tất cả các giá trị
4
2
thực của tham số m để phươngtrình − x + 2x = log 2 m có bốn nghiệm thực phân
biệt
A. 0 ≤ m ≤ 1
B. m > 0
C. m ≥ 2
D. 1 < m < 2
Câu 8: Tìm nghiệm của phương trình 4 x + 2 x +1 − 3 = 0.
Trang 3
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
A. x = 2
B. x = 1
C. x = −1
D. x = 0
Câu 9: Tìm giá trị lớn nhất của hàm số y = x + e 2x trên đoạn [ 0;1] .
y = 2e
A. max
x∈[ 0;1]
y = e2 + 1
B. max
x∈[ 0;1]
y =1
D. max
x∈[ 0;1]
y = e2
C. max
x∈[ 0;1]
Câu 10: Cho hàm số hàm số y =f ( x ) liên tục trên ¡ và có bảng biến thiên:
x
−∞
y'
y
−1
0
0
-
+
+∞
+∞
1
-
0
+
+∞
0
−3
3
Khẳng định nào sau đây là đúng?
A. Hàm số có đúng hai điểm cực trị.
B. Hàm số có giá trị cực tiểu bằng −1 và 1.
C. Hàm số có giá trị lớn nhất bằng 0 và giá trị nhỏ nhất bằng −3.
D. Hàm số đạt cực đại tại x = 0.
Câu 11: Đồ thị của hàm số nào dưới đây có tiệm cân đứng ?
A. y =
2x
x −1
B. y =
π
x − x +1
2
2
D. y = log 2 ( x + 1)
C. y = e x
Câu 12: Cho chuyển động xác định bởi phương trình S = t 3 − 3t 2 − 9t , trong đó t được tính bằng giây và
S được tính bằng mét. Tính vân tốc tại thời điểm gia tốc triệt tiêu.
A. −12 m / s
B. −21m / s
C. −12 m / s 2
D. 12 m / s
Câu 13: Đồ thị hàm số y = x 3 − 3x 2 + 2ax + b có điểm cực tiểu A ( 2; −2 ) . Tính a + b.
A. a + b = −4
B. a + b = 2
Câu 14: Biết rằng đồ thi của hàm số y =
C. a + b = 4
( a − 3) x + a + 2018
x − ( b + 3)
D. a + b = −2
nhận trục hoành làm tiệm cận ngang và
trục tung làm tiệm cân đứng. Khi đó giá trị của a + b là:
B. −3
A. 3
C. 6
D. 0
Câu 15: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B với AC = a. Biết SA vuông góc
với đáy ABC và SB tạo với đáy một góc bằng 60o .Tính thể tích V của khối chóp S.ABC.
A. V =
a3 6
48
B. V =
a3 6
24
C. V =
Trang 4
a3 6
8
D. V =
a3 3
24
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
2
2
Câu 16: Trong mặt phẳng Oxy , cho đường tròn ( C ) : ( x + 1) + ( y − 3 ) = 4. Phép tịnh tiến theo véc tơ
r
v = ( 3; 2 ) biến đường tròn ( C ) thành đường tròn có phương trình nào sau đây?
A. ( x-1) + ( y + 3) = 4.
B. ( x+2 ) + ( y + 5 ) = 4.
C. ( x-2 ) + ( y − 5 ) = 4.
D. ( x+4 ) + ( y − 1) = 4.
2
2
2
2
2
Câu 17: Cho hai hàm số f ( x ) =
2
1
x 2
và g ( x ) =
2
2
x2
. Gọi d1 , d 2 lần lượt là tiếp tuyến của mỗi đồ thị hàm
2
số f ( x ) , g ( x ) đã cho tại giao điểm của chúng. Hỏi góc giữa hai tiếp tuyến trên bằng bao nhiêu?
A. 30o
B. 90o
C. 60o
D. 45o
Câu 18: Phát biểu nào sau đây sai ?
A. Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song.
B. Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song.
C. Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì song song
D. Một đường thẳng và một mặt phẳng (không chứa đường thẳng đã cho) cùng vuông góc với một đường
thẳng thì song song với nhau.
Câu 19: Trong hộp có 5 quả cầu đỏ và 7 quả cầu xanh kích thước giống nhau. Lấy ngẫu nhiên 5 quả
cầu từ hộp. Hỏi có bao nhiêu khả năng lấy được số quả cầu đỏ nhiều hơn số quả cầu xanh.
A. 245
B. 3480
C. 246
D. 3360
Câu 20: Cho bốn mệnh đề sau:
1) Nếu hai mặt phẳng ( α ) và ( β ) song song với nhau thì mọi đường thẳng nằm trong mặt phẳng ( α )
đều song song với ( β ) .
2) Hai đường thẳng nằm trên hai mặt phẳng song song thì song song với nhau.
3) Trong không gian hai đường thẳng không có điểm chung thì chéo nhau.
4) Có thể tìm được hai đường thẳng song song mà mỗi đường thẳng cắt đồng thời hai đường thẳng chéo
nhau cho trước
Trong các mệnh đề trên có bao nhiêu mệnh đề sai?
A. 4
B. 2
C. 3
D. 1
x 2 − 2x
khix > 2
Câu 21: Tìm tất cả các giá trị của tham số m để hàm số f ( x ) = x − 2
liên tục tại x = 2.
mx − 4 khi x ≤ 2
A. Không tồn tại m
B. m = 3
C. m = −2
Trang 5
D. m = 1
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
Câu 22: Cho hàm số y = f ( x ) có đạo hàm trên ¡ và f ' ( x ) > 0 ∀x ∈ ( 0; +∞ ) . Biết f ( 1) = 2. Khẳng định
nào dưới đây có thể xảy ra ?
A. f ( 2017 ) > f ( 2018 )
B. f ( −1) = 2
C. f ( 2 ) = 1
D. f ( 2 ) + f ( 3) = 4
3x 2 − 2x + 1) bằng :
(
Câu 23: Giá trị của lim
x →1
A. 2
C. +∞
B. 1
D. 3
10
1
Câu 24: Hệ số của x trong khai triển + x 3 ÷ bằng:
x
6
A. 792
B. 252
C. 165
D. 210
Câu 25: Tham số m để phương trình 3 sin x + m cos x = 5 vô nghiệm.
A. m ∈ ( −∞ − 4] ∪ [ 4; +∞ )
B. m ∈ ( 4; +∞ )
C. m ∈ ( −4; 4 )
D. m ∈ ( −∞; −4 )
3
x
Câu 26: Cho hàm số y = f ( x ) = ln ( e + m ) có f ' ( − ln2 ) = . Mệnh đề nào dưới đây đúng?
2
A. m ∈ ( 1;3)
B. m ∈ ( −5; −2 )
C. m ∈ ( 1; +∞ )
D. m ∈ ( −∞;3)
1 3
2
Câu 27: Tìm tất cả các khoảng đồng biến của hàm số y = x − 2x + 3x − 1
3
A. ( 1;3)
B. ( −∞;1) và ( 3; +∞ )
C. ( 1; +∞ )
D. ( −∞;3)
C. P = x
D. P = x 9
1
Câu 28: Rút gọn biểu thức P = x 3 . 6 x với x > 0.
1
A. P = x 8
B. P = x 2
Câu 29: Cho dãy số ( u n ) với u n = ( −1)
n
2
n. Mệnh đề nào sau đây đúng?
A. Dãy số ( u n ) là dãy số bị chặn.
B. Dãy ( u n ) là dãy số tăng.
C. Dãy số ( u n ) là dãy số giảm.
D. Dãy số ( u n ) là dãy số không bị chặn.
Câu 30: Trong các dãy số sau đây dãy số nào là cấp số nhân?
A. Dãy số −2, 2, −2, 2,..., −2, 2, −2, 2...
B. Dãy số các số tự nhiên 1, 2,3,...
n
C. Dãy số ( u n ) , xác định bởi công thức u n = 3 + 1 với n ∈ ¥ *
u1 = 1
D. Dãy số ( u n ) , xác định bởi hệ :
*
u n = u n −1 + 2 ( n ∈ ¥ : n ≥ 2 )
Trang 6
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
Câu 31: Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB = a, AD = 2a, SA vuông góc với mặt
đáy và SA = a 3 .Tính thể tích khối chóp S.ABCD bằng:
A.
2a 3 3
3
B.
a3 3
3
2
Câu 32: Tìm đạo hàm của hàm số y = 2x −
C. a 3 3
D. 2a 3 3
1
+ sin 2x + 3x + 1.
x
A. y ' = 4x −
1
+ cos2x + 3x ln 3
x2
B. y ' = 4x +
1
3x
+
2cos2x
+
x2
ln 3
C. y ' = 4x +
1
+ 2cos2x + 3x ln 3
x2
D. y ' = 2x +
1
+ cos2x + 3x
x2
Câu 33: Với hai số thực dương a, b tùy ý và
l o g 3 5.log 5 a
− log 6 b = 2. Khẳng định nào dưới đây
1 + log 3 2
là khẳng định đúng?
A. a = b log 6 2
B. a = b log 6 3
C. a = 36b
D. 2a + 3b = 0
Câu 34: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, ∆SAB đều cạnh a nằm trong mặt;
phẳng vuông góc với mp ( ABCD ) . Biết mp ( SCD ) tạo với mp ( ABCD ) môt góc bằng 30o Tính thể tích
V của khối chóp S.ABCD.
A. V =
a3 3
8
B. V =
a3 3
4
C. V =
a3 3
2
D. V =
a3 3
3
Câu 35: Cho lằng trụ đứng ABC.A 'B'C ' có cạnh BC = 2a, góc giữa hai mặt phẳng ( ABC ) và ( A ' BC )
bằng 60o . Biết diện tích của tam giác ∆A ' BC bằng 2a 2 . Tính thể tích V của khối lăng trụ ABC.A 'B 'C '
A. V = 3a 3
B. V = a 3 3
C. V =
2a 3
3
D. V =
a3 3
3
Câu 36: Đồ thị hàm số y = x 3 − 3x + 2 có 2 điểm cực trị A, B . Diện tích tam giác OAB với O ( 0;0 ) là
gốc tọa độ bằng :
A. 2
B.
1
2
C. 1
D. 3
Câu 37: Trong mặt phẳng Oxy, cho điểm B ( −3; 6 ) . Tìm toạ độ điểm E sao cho B là ảnh của E qua
o
phép quay tâm O góc quay ( −90 ) .
A. E ( 6;3)
B. E ( −3; −6 )
C. E ( −6; −3)
Trang 7
D. E ( 3;6 )
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
Câu 38: Biết x1 , x 2 ( x1 < x 2 ) là hai nghiệm của phương trình log 3
x1 + 2x 2 =
(
(
)
x 2 − 3x + 2 + 2 + 5x
2
−3x +1
= 2 và
)
1
a + b với a, b là hai số nguyên dương. Tính a + b.
2
A. a + b = 13
B. a + b = 14
C. a + b = 11
Câu 39: Biết rằng đường thẳng d : y = −3x + m cắt đồ thị
( C) :
D. a + b = 16
y =
2x + 1
tại hai điểm phân biệt A và
x −1
B sao cho trọng tâm G của tam giác OAB thuôc đồ thị (C) với O ( 0; 0 ) là gốc tọa độ. Khi đó giá trị thực
của tham số m thuộc tập hợp nào sau đây?
A. ( 2;3]
B. ( 5; −2]
Câu 40: Biết rằng 2
x+
1
2
C. ( 3; +∞ )
D. ( −∞; −5]
= log 2 14 − ( y − 2 ) y + 1 trong đó x > 0. Tính giá trị của biểu thức
P = x 2 + y 2 − xy + 1.
A. 1
C. 3
B. 2
D. 4
Câu 41: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy
( ABCD )
và SA = a. Điểm M thuộc cạnh SA sao cho
SM
= k, 0 < k < 1. Khi đó giá trị của k để mặt
SA
phẳng ( BMC ) chia khối chóp S.ABCD thành hai phần có thể tích bằng nhau là:
A. k =
−1 + 5
2
B. k =
1+ 5
4
C. k =
−1 + 5
4
D. k =
−1 + 2
2
·
·
Câu 42: Cho hình chóp S.ABC có SA = SB = SC, góc ·ASB = 90o, BSC
= 60o, ASC
= 120o. Tính góc
giữa đường thẳng SB và mặt phẳng ( ABC ) .
A. 45o
B. 60o
C. 30o
D. 90o
Câu 43: Môt xưởng sản xuất những thùng bằng kẽm hình hôp chữ nhật không có nắp và có các kích
thước x, y, z
(
dm ) . Biết tỉ số hai cạnh đáy là x : y = 1: 3 và thể tích của hộp bằng 18 ( dm3 ) . Để tốn ít
vật liệu nhất thì tổng x + y + z bằng :
A.
26
3
B. 10
C.
19
2
Câu 44: Cho các mệnh đề :
1) Hàm số y = f ( x ) có đạo hàm tại điểm x 0 thì nó liến tục tại x 0 .
2) Hàm số y = f ( x ) liên tục tại x 0 thì nó có đạo hàm tại điểm x 0 .
Trang 8
D. 26
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
3) Hàm số y = f ( x ) liên tục trên đoạn [ a; b ] và f ( a ) . f ( b ) < 0 thì phương trình f ( x ) = 0 có ít nhất một
nghiệm trên khoảng ( a; b )
4) Hàm số y = f ( x ) xác định trên đoạn [ a; b ] thì luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên
đoạn đó.
Số mệnh đề đúng là:
A. 2
B. 4
C. 3
D. 1
Câu 45: Cho hàm số y = x 4 − 2mx 2 + 1 − m . Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có
ba điểm cực trị tạo thành một tam giác nhân gốc tọa độ O làm trực tâm.
A. m = −1
B. m = 0
C. m = 1
D. m = 2
Câu 46: Một tổ có 9 học sinh nam và 3 học sinh nữ. Chia tổ thành 3 nhóm mỗi nhóm 4 người để làm
3 nhiệm vụ khác nhau. Tính xác suất để khi chia ngẫu nhiên nhóm nào cũng có nữ .
A.
16
55
B.
8
55
C.
292
1080
Câu 47: Tìm tất cả các giá trị thực của tham số m để hàm số y =
D.
292
34650
mx − 1
nghịch biến trến khoảng
m − 4x
1
−∞ ÷
4
A. −2 ≤ m ≤ 2
B. −2 < m < 2
C. m > 2
D. 1 ≤ m < 2
d > 2018
3
2
Câu 48: Cho hàm số f ( x ) = a x + bx + cx + d với a, b, c, d ∈ ¡ ;a > 0 và
. Số
a + b + c + d − 2018 < 0
cực trị của hàm số y = f ( x ) − 2018 bằng
A. 3
B. 2
C. 1
D. 5
Câu 49: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy. Góc
giữa SC và mặt đáy bằng 45o . Gọi E là trung điểm BC. Tính khoảng cách giữa hai đường thẳng DE và SC.
A.
a 5
19
B.
a 38
19
C.
a 5
5
Câu 50: Hàm số y = f ( x ) có đồ thị y = f ' ( x ) như hình vẽ.
1 3 3 2 3
Xét hàm số g ( x ) = f ( x ) − x − x + x + 2017
3
4
2
Trong các mệnh đề dưới đây:
( I ) g ( 0 ) < g ( 1)
Trang 9
D.
a 38
5
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
( II ) min g ( x ) = g ( −1)
x∈[ −3;1]
( III )
Hàm số g ( x ) nghịch biến trên ( −3; −1)
g ( x ) = max { g ( −3) ,g ( 1) }
( IV ) xmax
∈[ −3;1]
Số mệnh đề đúng là:
A. 2
B. 1
C. 3
--- HẾT ---
Trang 10
D. 4
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
Banfileword.com
BỘ ĐỀ 2018
MÔN TOÁN
ĐỀ THI THỬ THPT QG NĂM 2018
THPT QUẢNG XƯƠNG 1 – THANH HÓA- LẦN 1
Thời gian làm bài: 90 phút;
(50 câu trắc nghiệm)
BẢNG ĐÁP ÁN
1-A
2-A
3-D
4-A
5-B
6-D
7-D
8-D
9-B
10-D
11-A
12-A
13-B
14-D
15-B
16-C
17-B
18-C
19-C
20-C
21-B
22-B
23-A
24-D
25-C
26-D
27-B
28-B
29-D
30-A
31-A
32-C
33-C
34-B
35-B
36-A
37-C
38-B
39-C
40-B
41-A
42-C
43-C
44-A
45-C
46-A
47-D
48-D
49-B
50-D
Banfileword.com
BỘ ĐỀ 2018
MÔN TOÁN
ĐỀ THI THỬ THPT QG NĂM 2018
THPT QUẢNG XƯƠNG 1 – THANH HÓA- LẦN 1
Thời gian làm bài: 90 phút;
(50 câu trắc nghiệm)
Trang 11
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
LỜI GIẢI CHI TIẾT
Câu 1: Đáp án A
Hàm số chẵn là: y = cos x
Câu 2: Đáp án A
log 2 ( x − 5 ) ⇔ x − 5 = 2 4 ⇔ x = 21
Câu 3: Đáp án D
Số tiền bác Mạnh thu được : 5 ( 1 + 0, 007 ) + ( 1 + 0, 009 ) ( 1 + 0, 006 ) = 5, 452733453 triệu đồng
6
3
3
Câu 4: Đáp án A
x
2
2
Hàm số nghịch biến trên R là: y = ÷ . (Do cơ số 0 < a = < 1).
e
e
Câu 5: Đáp án B
lim
a x + 1 + 2017
= lim
x →−∞
x + 2018
lim
(
2
x →−∞
x →+∞
1 2017
+
x2
x = −a = 1 ⇔ a = − 1
2018
2
2
1+
x
−a 1 +
)
b
bx + 1
x 2 + bx + 1 − x = lim
÷ = = 2 ⇔ b = 4. Vậy 4a + b = 2
2
x →+∞
x + bx + 1 − c 2
Câu 6: Đáp án D
( SAB ) ⊥ ( ABC )
⇒ SA ⊥ ( ABC ) .
( SAC ) ⊥ ( ABC )
Xét tam giác SAC vuông tại A nên
SA = SC 2 − AC 2 = a 2. S∆ABC =
a2 3
1 a2 3
a3 6
; VS.ABC = .
.a 2 =
4
3 4
12
Câu 7: Đáp án D
4
2
Ta có phương trình − x + 2x = log 2 m có 4 nghiệm phân biệt ⇔ 0 < log 2 m < 1 ⇔ 1 < m < 2
Câu 8: Đáp án D
4 +2
x
x +1
2x = 1
=0⇔ x
⇔x=0
2 = −3 ( vn )
Câu 9: Đáp án B
Trang 12
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
2x
Xét hàm số y = x + e 2x trên đoạn [ 0;1] , ta có y ' = 1 + 2e > 0 ∀x ∈ ( 0;1) . Suy ra hàm số đã cho là hàm
y = y ( 1) = 1 + e 2 .
số đồng biến trên [ 0;1] . Khi đó max
[ 0;1]
Câu 10: Đáp án D
Hàm số đạt cực đại tại x = 0.
Câu 11: Đáp án A
Đồ thi của hàm số y =
2x
có tiệm cận đứng là đường thẳng x = 1
x −1
Câu 12: Đáp án A
v = S' = 3t 2 − 6t − 9, a = S'' = 6t − 6;a = 0 ⇔ 6t − 6 = 0 ⇔ t = 1 ⇒ v ( 1) = −12 ( m / s )
Câu 13: Đáp án B
a = 0
a = 0
y ' ( 2 ) = 0
⇔
⇔
⇒a+b=2
Ta có:
−4 + 4a + b = −2
b = 2
y ( 2 ) = −2
Câu 14: Đáp án D
a − 3 = 0; b + 3 = 0
a = 3
⇔
⇒a+b=0
Bài toán thỏa mãn ⇔
( a − 3) ( b + 3) + a + 2018 ≠ 0
b = −3
Câu 15: Đáp án B
AC a 2
a 6
·
·
SA ⊥ ( ABC ) ;SBA
= 60o; AB = BC =
=
,SA = AB.tan SBA
=
,
2
2
2
S∆ABC
1
1 a 2 a 2 a2
1
1 a 6 a 2 a3 6
= .AB.BC = .
.
= . Thể tích khối chóp là V = SA.S∆ABC = .
. =
2
2 2
2
4
3
3 2 4
24
Câu 16: Đáp án C
( C ) : tâm I ( −1;3) , R = 2.Tvr ( 3;2) ( I ) = I ' ( 2;5 ) ⇒ ( C ' ) : ( x − 2 )
2
+ ( y − 5) = 4
2
Câu 17: Đáp án B
−1
1
, k 2 = g ' ( 1) = 2
Hai đồ thị hàm số cắt nhau tại A 1;
÷ ⇒ k1 = f ' ( 1) =
2
2
Ta có k1k 2 =
−1
. 2 = −1 nên hai tiếp tuyến vuông góc với nhau
2
Câu 18: Đáp án C
Câu 19: Đáp án C
5
4
1
3
2
Số khả năng lấy được số quả đỏ nhiều hơn số quả cầu xanh là: C5 + C5 .C7 + C5 .C7 = 246
Câu 20: Đáp án C
Trang 13
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
Các mệnh đề sai 2,3, 4
Câu 21: Đáp án B
f ( 2 ) = 2m − 4; lim+ f ( x ) = lim+
x →2
x →2
x ( x − 2)
x 2 − 2x
= lim+
= lim+ x = 2
x→2
x →2
x−2
x−2
lim f ( x ) = lim− ( mx − 4 ) = 2m − 4.
x → 2−
x →2
f ( x ) = lim− f ( x ) = f ( 2 ) ⇔ 2m − 4 = 2 ⇔ m = 3
Hàm số liên tục tại 2 ⇔ xlim
→ 2+
x →2
Câu 22: Đáp án B
Ta có f ( x ) đồng biến trên ( 0; +∞ ) nên:
f ( 2 ) + f ( 3) > 2f ( 1) = 4;f ( 2 ) > f ( 1) = 2;f ( 2018 ) > f ( 2017 ) . Khẳng định có thể xảy ra là f ( −1) = 2
Câu 23: Đáp án A
lim ( 3x 2 − 2x + 1) = 3.12 − 2.1 + 1 = 2
x →1
Câu 24: Đáp án D
k
4k −10
4
, cho 4k − 10 = 6 ⇔ k − 4 ⇒ hệ số của x 6 là C10
= 210
SHTQ: C10 x
Câu 25: Đáp án C
2
2
2
2
ĐK phương trình vô nghiệm là: 3 + m < 5 ⇔ m < 16 ⇔ m ∈ ( −4; 4 )
Câu 26: Đáp án D
Ta có f ' ( x ) =
3
1
1 3
1
ex
. Lại có f ' ( − ln 2 ) = ⇒ : m + ÷ = ⇒ m = − ⇒ m ∈ ( −2;0 )
x
2
2
2 2
6
e +m
Câu 27: Đáp án B
y ' = x 2 − 4x + 3 > 0 ⇔ x ∈ ( −∞;1) ∪ ( 3; +∞ ) . Nên hàm số đồng biến trên ( −∞;1) và ( 3; +∞ )
Câu 28: Đáp án C
1
3 6
1
3
1
6
P = x . x = x .x = x
1 1
+
3 6
1
2
=x = x
Câu 29: Đáp án D
Dãy u n = − ( 1)
n
n là dãy số không bị chặn vì lim u n = lim n = +∞
Câu 30: Đáp án A
Dãy số −2, 2, −2, 2, −2,..., 2, −2, 2, −2,... là cấp số nhân với u1 = −2, q = −1
Câu 31: Đáp án A
1
1
2a 3 3
Ta có V = SA.SABCD = .a 3.a.2a =
3
3
3
Câu 32: Đáp án C
Trang 14
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
1
y ' = 2 + 2cos2x + 3x ln 3
x
Câu 33: Đáp án C
Ta có
log 3 5.log 5 a
log 3 a
a
− log 6 b = 2 ⇔
− log 6 b = 2 ⇔ log 6 a − log 6 b = 2 ⇔ log 6 = 2 ⇔ a = 36b
1 + log 3 2
log 3 6
b
Câu 34: Đáp án B
Gọi E là trung điểm AB, SE =
a 3
,SE ⊥ ( ABCD )
2
Gọi G là trung điểm của CD,
a 3
3a
3a
·
= 30 , EG = SE.cot 30 =
. 3=
⇒ AD = BC =
( (·SCD ) , ( ABCD ) ) = SGE
2
2
2
o
⇒ SABCD = AB.CD = a.
o
3a 3a 2
1
1 a 3 3a 2 a 3 3
.
=
⇒ V = .SE.SABCD = .
.
=
2
2
3
3 2
2
4
Câu 35: Đáp án B
Gọi H là hình chiếu của A trên BC ⇒ AH ⊥ BC.
Ta có AA ' ⊥ ( ABC ) ⇒ AA ' ⊥ BC
(
)
·
· 'HA = 60o.
và AH ⊥ BC ⇒ BC ⊥ ( A ' AH ) ⇒ ( ABC ) ; ( A ' BC ) = A
2.S∆A 'BC 4a 2
1
Diện tích ∆A ' BC là S∆A 'BC = .A ' H.BC ⇒ A 'H =
=
= 2a.
2
BC
2a
· 'HA =
sin A
AA'
⇒ A A ' = sin 60o.2a = a 3 , AH = A ' H 2 − A 'A 2 = 4a 2 − a 3
A 'H
(
1
⇒ S∆ABC = .AH.BC = a 2 .
2
Vậy thể tích lăng trụ là VABC.A 'B'C' = A A '.S∆ABC = a 3.a 2 = a 3 3.
Câu 36: Đáp án A
x = 1
3
2
2
⇒ A ( 1;0 ) , B ( −1; 4 )
Ta có y ' = ( x − 3x + 2 ) ' = 3x − 3 ⇒ 3x − 3 = 0 ⇔
x = −1
⇒ AB = 2 5, AB : 2x + y − 2 = 0, d ( O, AB ) =
2
1
⇒ S = AB.d ( O, AB ) = 2
2
5
Câu 37: Đáp án C
Điểm E ( −6; −3)
Câu 38: Đáp án B
Điều kiện: x ∈ ( −∞1] ∪ [ 2; +∞ )
Trang 15
)
2
=a
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
Đặt t = x 2 − 3x + 2, t ≥ 0 ⇒ x 2 − 3x + 1 = t 2 − 1 nên phương trình có dạng:
log 3 ( t + 2 ) + 5t
2
−1
= 2 ( *)
Xét hàm số f ( t ) = log 3 ( t + 2 ) + 5t
2
−1
trên [ 0; +∞ ) .
Hàm số đồng biến trên [ 0; +∞ ) và f ( 1) = 2 .
PT (*) ⇔ f ( t ) = f ( 1) ⇔ t = 1 ⇔ x 2 − 3x + 2 = 1 ⇔ x 2 − 3x + 1 = 0 ⇒ x1 =
Do đó x1 + 2x 2 =
3− 5
3+ 5
, x2 =
2
2
a = 9
1
9+ 5 ⇒
⇒ a + b = 14
2
b = 5
(
)
Câu 39: Đáp án C
Xét phương trình
2x + 1
x ≠ 1
= −3x + m ⇔
2
x −1
f ( x ) = 3x − ( m + 1) x + m + 1 = 0 ( 1)
2
∆
= m − 10m − 11 > 0
⇔ m ∈ ( −∞; −1) ∪ ( 11; +∞ ) . Khi đó A ( x A ; −3x A + m ) ; B ( x B ; −3x B + m ) Theo
ĐK:
f ( 1) = 3 ≠ 0
viet ta có: x A + x B =
Ta có: x G =
m +1
.
3
xA + xB + x0 m +1
y + yB + y0 m − 1
m +1 m −1
=
yG = A
=
⇒ G
;
÷
3
9
3
3
3
9
m +1
+1
m −1
9
=
. Suy ra m = 15 + 325
Vì G ∈ ( C ) ⇔
m +1
3
2
−1
9
2.
Câu 40: Đáp án B
Ta có x +
1
x+
1
1
≥ 2 x. = 2 ⇒ 2 x ≥ 4. Lại có: 14 − ( y − 2 ) y + 1 = 14 − ( y + 1) y + 1 + 3 y + 1
x
x
3
f ( t ) = f ( 1) = 16 Vậy
Đặt t = y + 1 ≥ 0 Ta xét hàm số f ( t ) = − t + 3t + 14 trên [ 0; +∞ ) có kết quả t∈max
[ 0; +∞ )
14 − ( y − 2 ) y + 1 ≤ 16 ⇒ log 2 14 − ( y − 2 ) y + 1 ≤ 4 .
Khi đó 2
x+
1
x
x = 1
= log 2 14 − ( y − 2 ) y + 1 ⇔
⇒P=2
y = 0
Câu 41: Đáp án A
Giả sử ( MBC ) cắt SD tại N. Khi đó MN / /BC / /AD suy ra
Trang 16
SM SN
=
= k ( k > 0)
SA SD
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
VS.MBC SM
VS.MNC SM SN
VS.MBC k VS.MNC k 2
2
=
=
k,
=
.
=
k
.
= ;
= .
Ta có
Do đó:
VS.ABC SA
VS.ADC SA SD
VABCD 2 VS.ABCD
2
Bài toán t/m khi
k k2 1
−1 + 5
+
= ⇔ k2 + k −1 = 0 ⇒ k =
2 2 2
2
Câu 42: Đáp án C
Đặt SA = a. Tính được AB = a 2, BC = a 3 ⇒ AC 2 = AB2 + BC 2 ⇒ tam giác ABC vuông tại B.
Gọi O là trung điểm của AC, khi đó OA = OB = OC ⇒ S, O cùng thuộc trục của đường tròn ngoại tiếp
tam giác ABC, suy ra SO ⊥ ( ABC ) . Do đó OB là hình chiếu vuông góc của SB lên mặt phẳng ( ABC )
OB
3
·
nên góc giữa SB và ( ABC ) là ϕ = SBO.
cosϕ =
=
⇒ ϕ = 30o.
SB
2
Câu 43: Đáp án C
y = 3x, ta có xyz = 18 ⇒ x =
2
Xét hàm f ( x ) = 3x +
6
6
48
6
.Sday + Sxq = xy + 2 ( xz + yz ) = x.3x + 2 x. 2 + 3x. 2 ÷ = 3x 2 +
2
x
x
x
x
48
trên ( 0; +∞ ) , ta được f ( x ) nhất khi x = 2 .
x
Khi x = 2 ⇒ y = 6, z =
3
19
⇒ x + y + z = ( dm )
2
2
Câu 44: Đáp án A
Mệnh đề đúng 1,3
Câu 45: Đáp án C
x = 0
3
.
Ta có: y ' = 4x − 4mx = 0 ⇔ 2
x = m
Hàm số có 3 điểm cực trị m > 0
Khi đó gọi A ( 0;1 − m ) , B
(
) (
)
m; −m 2 − m + 1 , C − m. − m 2 − m + 1 là các điểm cực trị của đồ thị hàm số
⇔ m = 0, m = −1, m = 1. Kết hợp đk ta được m = 1.
Câu 46: Đáp án A
4
4
Không gian mẫu C12 .C8 .1 = 34650. Chỉ có 3 nữ và chia mỗi nhóm có đúng 1 nữ và 3 nam.
1
3
1
3
Nhóm 1 có C3 .C9 = 252 cách. Lúc đó còn lại 2 nữ, 6 nam,nhóm thứ 2 có C 2 .C6 = 40 cách chọn. Cuối
cùng còn 4 người là một nhóm: có 1 cách. Theo quy tắc nhân thì có: 252.40.1 = 10080 cách. Vậy xác
suất cần tìm là P =
10080 16
=
.
34650 55
Câu 47: Đáp án D
Trang 17
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
m2 − 4
y
'
=
.
Ta có:
2
( m − 4x )
mx − 1
Để hàm số y =
nghịch biến trên khoảng
m − 4x
m2 − 4 < 0
1
1 ⇔ m ∈ [ 1; 2 )
−∞; ÷ ⇔ m
4
∉
−∞
;
÷
4
4
Câu 48: Đáp án D
Ta có hàm số g ( x ) = f ( x ) − 2018 là hàm số bậc ba liên tục trên ¡ .
g ( x ) = −∞; lim g ( x ) = +∞.
Do a > 0 nên xlim
→−∞
x →+∞
Để ý g ( 0 ) = d − 2018 > 0;g ( 1) = a + b + c + d − 2018 < 0 nên phương trình g ( x ) = 0 có đúng 3 nghiệm
phân biệt trên ¡ .
Khi đó đồ thị hàm số g ( x ) = f ( x ) − 2018 cắt trục hoành tại 3 điểm phân biệt nên hàm số
y = f ( x ) − 2018 có đúng 5 cực trị.
Câu 49: Đáp án B
·
SA ⊥ ( ABCD ) ⇒ AC là hình chiếu của SC trên ( ABCD ) ⇒ SCA
= 45o.
∆SAC vuông cân tại A ⇒ SA = a 2
Dựng CI / /DE, suy ra DE / / ( SCI ) . Dựng AK ⊥ CI cắt DE tại H và cắt CI tại K. Trong ( SAK ) dựng
HF ⊥ SK, do CI ⊥ ( SAK ) ⇒ HF ⊥ ( SCI ) , AK =
SK = AK 2 + SA 2 =
CD.AI 3a
1
a
=
, HK = AK =
CI
3
5
5
a 95
SA.HK a 38
⇒ d ( DE,SC ) = d ( H, ( SCI ) ) = HF =
=
5
SK
19
Câu 50: Đáp án D
3
3
3
2 3
2
Ta có g ' ( x ) = f ' ( x ) − x − x + = f ' ( x ) − x + x − ÷. Căn cứ vào đồ thị ta có:
2
2
2
2
f ' ( −1) = −2 g ' ( −1) ' = 0
⇒ g ' ( 1) = 0
f ' ( 1) = 1
f ' ( −3) = 3
g ' ( −3 ) = 0
3
3
2
Vẽ Parabol ( P ) :y = x + x − trên cùng hệ trục với đồ thị của hàm số y = f ' ( x )
2
2
3
3
2
Ta có: Trên ( −3; −1) thì f ' ( x ) < x + x − nên g ' ( x ) < 0∀x ∈ ( −3; −1)
2
2
Trang 18
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
3
3
2
Trên ( −1;1) thì f ' ( x ) > x + x − nên g ' ( x ) > 0∀x ∈ ( −1;1)
2
2
Khi đó BBT của hàm số g ( x ) trên đoạn [ −3;1] :
g ( x ) = g ( −1) , g ( 0 ) < g ( 1) , hàm số g ( x ) nghịch biến trên ( −3; −1) và
Vậy xmin
∈[ −3;1]
m ax g ( x ) = max { g ( −3) , g ( −1) }
x∈[ −3;1]
x
g '( x )
−3
−1
-
0
1
+
g( x)
g ( −1)
----- HẾT -----
Trang 19