onthionline.net
Ưng dụng của lượng giác.
Dạng 1:Bài toán tam giác.
VD1:cmr:mọi tam giác ta luôncó:
A
2
B
2
1/SinA+sinB+sinC=4cos . cos . cos
C
2
Giai:
A+ B
A− B
A+ B
A+ B
A+ B
A− B
A+ B
. cos
+ 2 sin
. cos
= 2 sin
(cos
+ cos
2
2
2
2
2
2
2
A− B A + B
A − B A+ B
+
+
A+ B
A
B
C
. cos 2 2 2 . cos 2 2 2 = 4 sin . sin . sin
=4sin
2.
2
2
2
2sin
2/cosA²+cosB²+cosC²=1-2cosA.cosB.cosC
Giai:
1 + cos 2 A 1 + cos 2 B
cos 2 A + cos 2 B
+
+ cos( A + B ) ²=1+
+ cos( A + B )
VT:
2
2
2
=1+cos(A+B)( [ cos( A − B) + cos( A + B)]
=1-2.cosA.cosB.cosC=vp.
3/ sin2A+sin2B+sin2C=4sinA.sinB.sinC.
Vi:sin2C=sin2(ð-(A+B))=sin(2ð-2(A+B))=-sin2(A+B)
⇔ VT:2sin(A+B)(cos(A-B)-cos(A+B))=2sinC.(-2)sinA.sin(B)=4sinAsinBsinC.=vp.
3/(truong hop nay trong tam giac khong vuong)
tanA+tanB+tanC=tanA.tanB.tanC.
tan A + tan B
⇔ dpcm.
1 − tan A. tan B
A
B
B
C
A
C
4/tan tan + tan tan + tan tan = 1
2
2
2
2
2
2
Ta co:tan(A+B)=tan(ð-C)=-tanC=
Giai:
A
B
+ tan
C
1
A B
2
2 ⇔
=
taco:tan( + ) = tan( ð/2- ) =
dpcm.
C 1 − tan A. tan B
2
2 2
tan
2
tan
5/
1
onthionline.net
1
1
1
1
A
B
C
A
B
C
+
+
= (tan + tan + tan + cot . cot . cot )
sin A sin B sin C 2
2
2
2
2
2
2
A
B
C
A
B
C
ta di CM:cot + cot + cot = cot . cot . cot
Bang cach tuong tu nhu tren
2
2
2
2
2
2
1
A
B
C
A
B
C
⇔ VP : (tan + tan + tan + cot + cot + cot )
2
2
2
2
2
2
2
1
A
A 1
B
B 1
C
C
= (tan + cot ) + (tan + cot ) + (tan + cot )
2
2
2
2
2
2
2
2
2
1
.
=2
2
1
2
1
2
1
1
1
.+ .
+ .
=
+
+
= vp
A
A 2
B
B 2
C
C sin A sin B sin C
sin . cos
sin . cos
sin . cos
2
2
2
2
2
2
sin
cos
A
2
B
C
. cos
2
2
sin
+
cos
B
2
A
C
. cos
2
2
sin
+
cos
C
2
A
B
. cos
2
2
= 2 6/
A+ B
A− B
. cos
1
sin A + sin B
2
2
+
= (
)=
ta co:
B
C
A
C 2
A
B
C
A
B
C
cos . cos
cos . cos
cos . cos . cos
cos . cos . cos
2
2
2
2
2
2
2
2
2
2
sin
cos
=
A
2
sin
B
2
sin
A
B
A
B
. cos + sin . sin
2
2
2
2 = 1 + tan A . tan B
A
B
2
2
cos . cos
2
2
sin
De dang cm duoc
cos
C
2
A
B
. cos
2
2
= 1 − tan
A
B
. tan ⇔ dpcm
2
2
BAI TAP VAN DUNG:
1/ CM trong moi tam giac ta luon co :
.
2
onthionline.net
sin
A
B
C
B
A
C
C
A
B
A
B
C
A
B
B
C
. cos . cos + sin cos cos + sin cos cos = sin sin sin + tan tan + tan tan + tan
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2/ cho tam giac ABC cm:
sin( A − B ) a ^ 2 − b ^ 2
=
sin C
c^2
A
2
B
2
1
3
1
2
3/ Trong tam giac ABC biet tan tan = .CM : c = (a + b)
4/ CM trong moi tam giac ta co:
.cotA +cotB+cotC=
a ^ 2 + b^ 2 + c^ 2
4S
5/ cm rang trong moi tam giac bat ki ta co :
B
C
ha − 2r
ha
tan 2 tan 2 = h = 2r + h
a
a
a
6/ cho tam giac ABC cm:
A
B
C
1
1
1
3
bc.cot 2 + ac. cot 2 + ab. cot 2 = 4 Rp ^ 2( a + b + c − p )
7/ cmr:voi moi tam giac ABC ta luon co:
1+
r
= cos A + cos B + cos C
R
8/ CMR voi moi tam giac ta luon co:
a.cotA+b.cotB+c.cotC=2(r+R)
9/ cmr voi moi tam giac ABC ta luon co:
cosAcosBcosC≤
1
8
10/ cmr voi tam giac ABC bat ki:1
Ưng dụng của lượng giác.
Dạng 1:Bài toán tam giác.
3
onthionline.net
VD1:cmr:mọi tam giác ta luôncó:
A
2
B
2
1/SinA+sinB+sinC=4cos . cos . cos
C
2
Giai:
A+ B
A− B
A+ B
A+ B
A+ B
A− B
A+ B
. cos
+ 2 sin
. cos
= 2 sin
(cos
+ cos
2
2
2
2
2
2
2
A− B A + B
A − B A+ B
+
+
A+ B
A
B
C
. cos 2 2 2 . cos 2 2 2 = 4 sin . sin . sin
=4sin
2.
2
2
2
2sin
2/cosA²+cosB²+cosC²=1-2cosA.cosB.cosC
Giai:
1 + cos 2 A 1 + cos 2 B
cos 2 A + cos 2 B
+
+ cos( A + B ) ²=1+
+ cos( A + B )
2
2
2
=1+cos(A+B)( [ cos( A − B) + cos( A + B)]
VT:
=1-2.cosA.cosB.cosC=vp.
3/ sin2A+sin2B+sin2C=4sinA.sinB.sinC.
Vi:sin2C=sin2(ð-(A+B))=sin(2ð-2(A+B))=-sin2(A+B)
⇔ VT:2sin(A+B)(cos(A-B)-cos(A+B))=2sinC.(-2)sinA.sin(B)=4sinAsinBsinC.=vp.
3/(truong hop nay trong tam giac khong vuong)
tanA+tanB+tanC=tanA.tanB.tanC.
tan A + tan B
⇔ dpcm.
1 − tan A. tan B
A
B
B
C
A
C
4/tan tan + tan tan + tan tan = 1
2
2
2
2
2
2
Ta co:tan(A+B)=tan(ð-C)=-tanC=
Giai:
A
B
tan + tan
C
1
A B
2
2 ⇔
=
taco:tan( + ) = tan( ð/2- ) =
dpcm.
C 1 − tan A. tan B
2
2 2
tan
2
5/
1
1
1
1
A
B
C
A
B
C
+
+
= (tan + tan + tan + cot . cot . cot )
sin A sin B sin C 2
2
2
2
2
2
2
4
onthionline.net
A
B
C
A
B
C
+ cot + cot = cot . cot . cot
Bang cach tuong tu nhu tren
2
2
2
2
2
2
1
A
B
C
A
B
C
⇔ VP : (tan + tan + tan + cot + cot + cot )
2
2
2
2
2
2
2
1
A
A 1
B
B 1
C
C
= (tan + cot ) + (tan + cot ) + (tan + cot )
2
2
2
2
2
2
2
2
2
ta di CM:cot
1
.
=2
2
1
2
1
2
1
1
1
.+ .
+ .
=
+
+
= vp
A
A 2
B
B 2
C
C sin A sin B sin C
sin . cos
sin . cos
sin . cos
2
2
2
2
2
2
sin
A
2
B
C
cos . cos
2
2
+
sin
B
2
A
C
cos . cos
2
2
+
sin
C
2
A
B
cos . cos
2
2
= 2 6/
A+ B
A− B
. cos
1
sin A + sin B
2
2
+
= (
)=
ta co:
B
C
A
C 2
A
B
C
A
B
C
cos . cos
cos . cos
cos . cos . cos
cos . cos . cos
2
2
2
2
2
2
2
2
2
2
sin
cos
=
A
2
sin
B
2
sin
A
B
A
B
. cos + sin . sin
2
2
2
2 = 1 + tan A . tan B
A
B
2
2
cos . cos
2
2
sin
De dang cm duoc
cos
C
2
A
B
. cos
2
2
= 1 − tan
A
B
. tan ⇔ dpcm
2
2
BAI TAP VAN DUNG:
1/ CM trong moi tam giac ta luon co :
.
sin
A
B
C
B
A
C
C
A
B
A
B
C
A
B
B
C
. cos . cos + sin cos cos + sin cos cos = sin sin sin + tan tan + tan tan + tan
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2/ cho tam giac ABC cm:
5
onthionline.net
sin( A − B ) a ^ 2 − b ^ 2
=
sin C
c^2
A
2
B
2
1
3
1
2
3/ Trong tam giac ABC biet tan tan = .CM : c = (a + b)
4/ CM trong moi tam giac ta co:
.cotA +cotB+cotC=
a ^ 2 + b^ 2 + c^ 2
4S
5/ cm rang trong moi tam giac bat ki ta co :
B
C
ha − 2r
ha
tan 2 tan 2 = h = 2r + h
a
a
a
6/ cho tam giac ABC cm:
A
B
C
1
1
1
3
bc.cot 2 + ac. cot 2 + ab. cot 2 = 4 Rp ^ 2( a + b + c − p )
7/ cmr:voi moi tam giac ABC ta luon co:
1+
r
= cos A + cos B + cos C
R
8/ CMR voi moi tam giac ta luon co:
a.cotA+b.cotB+c.cotC=2(r+R)
9/ cmr voi moi tam giac ABC ta luon co:
cosAcosBcosC≤
1
8
10/ cmr voi tam giac ABC bat ki:1
onthionline.net
6