Khóa học Toán Cơ bản và Nâng cao 11 – Thầy ĐẶNG VIỆT HÙNG
Facebook: LyHung95
07. HÀM SỐ LIÊN TỤC – P1
Thầy Đặng Việt Hùng [ĐVH]
LỜI GIẢI CHI TIẾT CÁC BÀI TẬP CÓ TẠI WEBSITE MOON.VN
[Link khóa học: Toán cơ bản và Nâng cao 11]
Bài 1: [ĐVH]. Xét tính liên tục của hàm số tại điểm được chỉ ra:
x +3
a) f ( x ) = x − 1
−1
x +3 −2
khi x ≠ 1
b) f ( x ) = x − 1
taïi x = 1
1
khi x = 1
4
khi x ≠ 1 taïi x = −1
khi x = 1
Bài 2: [ĐVH]. Xét tính liên tục của hàm số tại điểm được chỉ ra:
x−5
khi x > 5
b) f ( x ) = 2 x − 1 − 3
taïi x = 5
2
( x − 5) + 3 khi x ≤ 5
2 − 7x + 5x2 − x3
khi x ≠ 2 taïi x = 2
a) f (x) = x2 − 3x + 2
1
khi x = 2
Bài 3: [ĐVH]. Xét tính liên tục của hàm số tại điểm được chỉ ra:
1 − cos x khi x ≤ 0
a) f ( x ) =
khi x > 0
x +1
x −1
b) f ( x ) = 2 − x − 1
−2 x
taïi x = 0
khi x < 1
taïi x = 1
khi x ≥ 1
Bài 4: [ĐVH]. Tìm m, n để hàm số liên tục tại điểm được chỉ ra:
2
khi x < 1
a) f ( x ) = x
2
mx
−
3
khi x ≥ 1
x3 − x2 + 2x − 2
b) f (x) =
x −1
3x + m
taïi x = 1
khi x ≠ 1 taïi x = 1
khi x = 1
Bài 5: [ĐVH]. Tìm m, n để hàm số liên tục tại điểm được chỉ ra:
m
khi x = 0
2
x − x −6
a) f ( x ) =
khi x ≠ 0, x ≠ 3
x ( x − 3)
khi x = 3
n
taïi x = 0 vaø x = 3
x2 − x − 2
b) f ( x ) = x − 2
m
taïi x = 2
khi x ≠ 2
khi x = 2
Bài 6: [ĐVH]. Xét tính liên tục của các hàm số sau trên tập xác định của chúng:
x3 + x + 2
3
a) f ( x ) = x + 1
4
3
khi x ≠ −1
khi x = −1
x 2 − 3x + 4
b) f ( x ) = 5
2 x + 1
khi x < 2
khi x = 2
khi x > 2
Bài 7: [ĐVH]. Xét tính liên tục của các hàm số sau trên tập xác định của chúng:
Tham gia khóa Toán Cơ bản và Nâng cao 11 tại MOON.VN để có sự chuẩn bị tốt nhất cho kì thi THPT quốc gia!
Khóa học Toán Cơ bản và Nâng cao 11 – Thầy ĐẶNG VIỆT HÙNG
x2 − 4
a) f ( x ) = x + 2
−4
khi x ≠ −2
khi x = −2
x2 − 2
b) f ( x ) = x − 2
2 2
Facebook: LyHung95
khi x ≠ 2
khi x = 2
Bài 8: [ĐVH]. Tìm các giá trị của m để các hàm số sau liên tục trên tập xác định của chúng:
x2 − x − 2
a) f ( x ) = x − 2
m
khi x ≠ 2
khi x = 2
x2 + x
b) f ( x ) = 2
mx + 1
khi x < 1
khi x = 1
khi x > 1
Bài 9: [ĐVH]. Tìm các giá trị của m để các hàm số sau liên tục trên tập xác định của chúng:
x3 − x 2 + 2 x − 2
a) f ( x ) =
x −1
3 x + m
khi x ≠ 1
khi x = 1
2
b) f ( x ) = x
2mx − 3
khi x < 1
khi x ≥ 1
Tham gia khóa Toán Cơ bản và Nâng cao 11 tại MOON.VN để có sự chuẩn bị tốt nhất cho kì thi THPT quốc gia!