Ngày giảng:
Tiết 40 Các trờng hợp bằng nhau của
tam giác vuông
A. Mục tiêu : HS cần:
- Nắm đợc trờng hợp bằng nhau của hai tam giác vuông
- Biết vận dụng các trờng hợp bằng nhau của hai tam giác vuông để CM
các đọan thẳng bằng nhau, các góc bằng nhau.
- Tiếp tục rèn luyện khả năng phân tích tìm cách giải và trình bày bài toán
chứng minh hình học
B. Chuẩn bị của thầy và trò:
GV: Thớc, eke, compa
HS: Thớc, eke, compa
C. Các hoạt động dạy học:
ổn định lớp:
Hoạt động của GV- HS Tg Nội dung chính
Hoạt động1:Kiểm tra bài
cũ
Hãy nêu các trờng hợp
bằng nhau của tam giác
vuông đợc suy ra từ các tr-
ờng hợp bằng nhau của
tam giác?
GV vẽ hình 1 lên bảng
HS1 chứng tỏ 2 tam giác
vuông bằng nhau theo tr-
ờng hợp (c.g.c)
GV vẽ hình 2 lên bảng
HS2 Chứng tỏm 2 tam
giác vuông bằng nhau
theo trờng hợp (g.c.g)
GV vẽ hình 3 lên bảng
HS3 chứng tỏ 2 tam giác
vuông bằng nhau theo tr-
ờng hợp (cạnh huyền - góc
nhọn)
Hoạt động 2:
Các trờng hợp bằng nhau
đã biết của 2 tam giác
vuông
10'
8
,
1/ a/ ABC và DEF có
 = D = 90
0
AB = DE
AC = DF
ABC = DEF (c.g.c)
b/ ABC và DEF có
 = D = 90
0
AC = DF
C = F
ABC = DEF (g.c.g)
c/ ABC và DEF có
 = D = 90
0
B = E
BC = EF
ABC = DEF
(cạnh huyền - góc nhọn)
1/Các tr ờng hợp bằng nhau đã biết của 2 tam
giác vuông
HS làm ?1 củng cố cho
phần 1
Đề bài và hình vẽ trên
bảng phụ
Hoạt động 2: Trờng hợp
bằng nhau về cạnh huyền
và cạnh góc vuông
GV: yêu cầu hai HS đọc
nội dung trong khung ở
tr.135SGK
GV Yêu cầu HS toàn lớp
vẽ hình và viết GT, KL
của định lý đó
Phát biểu định lý Pytago?
Định lý Pyta go có ứng
dụng gì?
Vậy nhờ định lý Pytago ta
có thể tính cạnh AB theo
cạnh BC; AC nh thế nào?
Tính cạnh DE theo cạnh E
F và DF nh thế nào?
Hoạt động 3: Củng cố-
luyện tập
Hs làm ?2 /SGK
Gv gọi 1 HS trình bày C1
Gọi 1 Hs trình bày C2
15
,
10
p
?1 H143: AHB = AHC ( c.g.c)
H144: DKE = DKF (g.c.g)
H145: MIO = NIO (cạnh huyền- góc nhọn)
2/ Trờng hợp bằng nhau về cạnh huyền và cạnh
góc vuông
*Định lý: SGK/135
ABC, Â = 90
0
; DEF , D = 90
0
GT BC = EF, AC = DF
KL ABC = DEF
Chứng minh
Đặt BC = EF = a , AC = DF = b
Xét ABC vuông tại A có :AB
2
+ AC
2
= BC
2
nên
AB
2
= BC
2
- AC
2
= a
2
- b
2
(1)
Xét DEF vuông tại D có DE
2
+DF
2
= EF
2
nên
DE
2
= EF
2
- DF
2
= a
2
- b
2
(2)
Từ (1) và (2) AB
2
= DE
2
AB = DE
Vậy: ABC = DEF (c.c.c)
?2 ABC (AB =AC)
AH BC ( HBC)
AHB = AHC
C1: Xét AHB và AHC (H
1
= H
2
= 90
0
)
AHC chung, cạnh huyền AB = AC
AHB = AHC (cạnh huyền - cạnh góc
vuông)
C2:ABC cân AB = AC; B = C
AHB = AHC ( cạnh huyền - góc nhọn)
Hoạt động 4: Hớng dẫn học ở nhà (3p)
- Học thuộc các định lý
- Làm BT 63, 64/SGK
- Giờ sau luyện tập