Tải bản đầy đủ (.pdf) (7 trang)

Phản ứng khử Birch trong hóa hữu cơ

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (406.75 KB, 7 trang )

Myers

Chem 215

Birch Reduction

Reviews:

Additivity of Substituent Effects:

Rabideau, P. W.; Marcinow, Z. Org. React. 1992, 42, 1-334.
OCH3

H3C

Mander, L. N. In Comprehensive Organic Synthesis; Trost, B. M. and Fleming, I., Ed.;
Pergamon: Oxford, 1991, Vol. 8, pp. 489-521.

H3C

Na, NH3, MeOH

OCH3

44%

Hook, J. M.; Mander, L. N. Natural Prod. Rep. 1986, 3, 35-85.

Birch, A. J. J. Chem. Soc. 1944, 430-436.

Propects for Stereocontrol in the Reduction of Aromatic Compounds: Donohoe, T. J.; Garg, R.;


Stevenson, C. A. Tetrahedron: Asymmetry 1996, 7, 317-344.

CO2H 1. Na, NH3, MeOH

H3C

H3C

CO2H

2. NH4Cl

Mechanism:

94%
Electron-Donor Substituents (X):
X

Chapman, O. L.; Fitton, P. J. Am. Chem. Soc. 1963, 85, 41-47.
X

X

X
M, NH3

H
H

ROH




M

(X = R, OR, NR2)

M, NH3

Conditions:

H
H



• Metals: Li, K, Na, occasionally Ca or Mg.

M

(rate-limiting
step)

• Co-solvents: diethyl ether, THF, glymes.

ortho protonation

• Reductions of alkyl benzenes and aryl ethers require a
stronger acid than ammonia; alcohols are typically employed.


X

H

H

W
ROH

M, NH3

0.26

–2.99

Na

0.18

–2.59

K

0.21

–2.73

Na (excess), EtOH, NH3
W


W H(R)



2 – 2M

(Birch reduction)

NH4Cl

H H
M

M

Li, EtNH2

or RX

W
(W = CO2H, CO2R,
COR, CONR2, CN, Ar)

Li

Normal reduction
potential at –50 °C
in NH3 (V)

• Reduction in low molecular weight amines (Benkeser reduction):

M, NH3

W



Solubility in NH3
at –33 °C
(g-atom M/mol NH3)

From: Briner, K. In Encyclopedia of Reagents for Organic Synthesis, Paquette, L. A., Ed.;
John Wiley and Sons: New York, 1995, Vol. 5, pp. 3003-3007.

Electron-Withdrawing Substituents (W):

M, NH3

Metal

H

• Protonation of cyclohexadienyl anions is kinetically controlled and occurs at the central carbon.

W

• Proton sources (where appropriate): t-BuOH and EtOH are most common, also MeOH, NH4Cl,
and water.

H


• Regioselectivity of protonation steps in the Birch reduction:
Zimmerman, H. E.; Wang, P. A. J. Am. Chem. Soc. 1993,
115, 2205-2216.

meta
protonation

ROH

H H

H H

ROH or
NH3

• Aromatic carboxylic acids and carboxylates are readily reduced with Li/NH3 in the absence
of alcohol additives.

+

(Benkeser Reduction)

• Reduction in low molecular weight amines (in the absence of alcohol additives) furnishes
more extensively reduced products than are obtained under Birch conditions (M, NH3, ROH).
A Comparison of Methods Using Lithium/Amine and Birch Reduction Systems: Kaiser, E. M.
Synthesis 1972, 391-415.
Kent Barbay



Asymmetric Birch Reduction:

Reductive alkylation:
• Enolates derived from 1,4-dihydrobenzoic acids are selectively alkylated at the α-carbon.
CO2H

Reviews: Schultz, A. G. Acc. Chem. Res. 1990, 23, 207-213; Schultz, A. G. Chem. Commun.
1999, 1263–1271.

HO2C CH3
1. KNH2, NH3

RX

O
N

2. CH3I
91%

H
O

Nelson, N. A.; Fassnacht, J. H.; Piper, J. U. J. Am. Chem. Soc. 1961, 83, 206-213.
See also: Birch, A. J. J. Chem. Soc. 1950, 1551-1556.

R

OM
M, NH3, THF


O
N

RX
H

N
t-BuOH (1 equiv)
(M = Li, Na, or K)

–78 °C

H

O

O
(proposed convex attack)

• Loewenthal and co-workers first demonstrated single step reductive alkylation of
aromatic compounds:
CO2H

1. Na, NH3

HO2C CH3

MeI


67

60

EtI

82
75

>98

PhCH2Br
CH2=CH2CH2CH2Br

73
89

>96
96

ClCH2CH2CH2Br

91

(n.d.)

CH2=CH2CH2Br

2. CH3I
69%

Bachi, M. D.; Epstein, J. W.; Herzberg-Minzly, Y.; Loewenthal, H. J. E. J. Org. Chem. 1969,
34, 126-135.

• Reductive alkylations of aromatic esters, amides, ketones, and nitriles typically are conducted
in the presence of one equivalent of an alcohol:

H
O
N

OCH3
CH3O
1. K, NH3
CO2t-Bu
t-BuOH (1 equiv)

yield (%) de (%)

RX

CO2t-Bu
CH(CH3)2

O
TFA

2. i-PrI
94%

CH3

CH3

OCH3
R

N
M, NH3, THF

H
t-BuOH (1 equiv)
O
(M = Li, Na, or K)
OCH
3
CH3

–78 °C

OCH3

2. BrCH2CH2CH2Cl
85%

Schultz, A. G.; Macielag, M. J. Org. Chem. 1986, 51, 4983-4987.

N
H
O
CH3 OCH3


O
CH3

70-88% yield,
>96% de
RX = MeI, EtI, PhCH2Br,
Br , Cl

1. Li, NH3, THF
t-BuOH (1 equiv)

O

RX
O
M

RX

Hook, J. M.; Mander, L. N.; Woolias, M. Tetrahedron Lett. 1982, 23, 1095-1098.

CN

opposite
facial
selectivity

>96

Br


CN
(CH2)3Cl
OCH3

• Transition state may be complex, viz., enolate aggregation and nitrogen pyramidalization.
• Schultz proposes that Birch reduction results in kinetically controlled formation of a dimeric
enolate aggregate wherein the metal is chelated by the aryl ether; the side chain of the chiral
auxiliary is proposed to block the β-face of the enolate.
Schultz, A. G.; Macielag, M.; Sundararaman, P.; Taveras, A. G.; Welch, M. J. Am. Chem. Soc.
1988, 110, 7828-7841.

Kent Barbay


• 1,6-Dialkyl-1,4-cyclohexadienes are accessible by asymmetric Birch alkylation:

OCH3

O

OCH3

O

H3C

H3C

H2 (1 atm), CH2Cl2


N

[Ir(cod)py(PCy3)]PF6

98%

OTBS

OCH3

O

O

N

53–77%

98%

OTBS

R

CH3I

OCH3

OK


1. K (2.2 equiv), NH3,
THF, t-BuOH (1 equiv)

CH3

PDC, t-BuOOH

N

2. RX, –78 → 25 °C

CH3

OCH3

O

Celite, PhH

1. s-BuLi, THF, –78 °C

N

CH3

H3C

OCH3


O

CH3

OCH3

O
N

O

N

N

H3C

OTBS

2. MeI, –78 °C

R

R

yield (%)

de (%)

H


90

> 98

Me

66

93

Et

79

90

CH2CH=CH2

76

93

CH2CH2CH=CH2

69

90

62


95

77

93

71

94

88

96

79

95

69

96

R

CH2Ph
CH2CH2Ph
CH2OCH2CH2SiMe3
CH2CH2OTBS
CH2CH2OMe


Schultz, A. G.; Hoglen, D. K.; Holoboski, M. A. Tetrahedron Lett. 1992, 33, 6611–6614.
• Heterogenous hydrogenation with rhodium on alumina occurs anti to the bulky amide,
presumably due to steric factors.

H3C

CH3

OCH3

O

H3C

H2, Rh on Al2O3 CH3

N

O

EtOAc, 55 psi

OTBS

OCH3

O
N


O
OTBS

89%

Schultz, A. G.; Hoglen, D. K.; Holoboski, M. A. Tetrahedron Lett. 1992, 33, 6611–6614.
• Dihydroxylation of 3-cyclohexen-1-ones obtained by Schultz's asymmetric Birch alkylation occurs
exclusively anti to the amido substiuent:

R

Ph

R'

OCH3

O
N

H3O+

R

OCH3

R'

OCH3


O
N
O

OsO4, NMO

HO
R

OCH3

OH O
R'

H2O, acetone

N
O

Schultz, A. G.; Green, N. J. J. Am. Chem. Soc. 1991, 113, 4931–4936.
Transformations of asymmetric Birch alkylation products:
• Amide-directed hydrogenation with Crabtree's catalyst:

H3C

OCH3

O
N


H2 (1 atm), CH2Cl2
[Ir(cod)py(PCy3)]PF6

Ph

H3C

OCH3

O
N

H

89%

Ph

yield (%)

R

R'

H

Me

91


H

CH2Ph

86

H

(CH2)3N3

88

H

(CH2)3Cl

94

CH2Ph

Et

73

Me

Et

76


Schultz, A. G.; Dai, M.; Tham, F. S.; Zhang, X. Tetrahedron Lett. 1998, 39, 6663–6666.
Schultz, A. G.; Green, N. J. J. Am. Chem. Soc. 1991, 113, 4931–4936.
Kent Barbay


• Regio- and stereo-selective epoxidation has been demonstrated:

H3C

OMOM O
O

O
N

CH3

H3C

CH3

OMOM

O

R1

R2

O


OCH3

O

H3C

O

H3C

H

6 N aq. HCl

OCH3

O
N

MeLi, THF

CH3

0 → 23 °C

OH

O


CH3
CH3

H

58%

Ph

95%

O

H3C

Schultz, A. G.; Macielag, M.; Sundararaman, P.; Taveras, A. G.; Welch, M. J. Am. Chem. Soc.
1988, 110, 7828-7841.

reflux, 7 h
Ph

I

75–98%

• Addition of alkyllithium reagents:

• Acid catalyzed cleavage of the alkylation products requires harsh conditions:

N


R2

R1
O

Methods of cleavage of Schultz's chiral auxiliaries:

OCH3

I2, THF, H2O

Schultz, A. G.; Dai, M.; Khim, S.-K.; Pettus, L.; Thakkar, K. Tetrahedron Lett. 1998, 39, 4203–4206.

Schultz, A. G.; Harrington, R. E.; Tham, F. S. Tetrahedron Lett. 1992, 33, 6097–6100.

O

O

89–100%

>13 : 1 diastereoselectivity

H3C

O

OCH3


O
N

MeOH, 25 °C

OCH3

CH3

R2

R1

6 N aq. HCl

N

N

acetone
68%

CH3

• Iodolactonization:

Asymmetric synthesis of amino-substituted cyclohexenes:
Schultz, A. G.; Green, N. J. J. Am. Chem. Soc. 1991, 113, 4931–4936.

O


H

R1

N

O

R

N
H
O

N
H

THF, t-BuOH (2 equiv)

O

R NH

H

100 °C

2


NH4Cl

62–82%
R1

• Lactonization can be effectively employed for amide cleavage:
H3C

OCH3

O

1. BF3•OEt2

N

2. H2O
H
O

SiMe3

H3C

O

H
O

R1


H

82%

Schultz, A. G.; Green, N. J. J. Am. Chem. Soc. 1991, 113, 4931–4936.

H3C

OCH3

O
N

O
H3C

m-CPBA
O

O

82%
OTBS

H3C

O

OCH3

N

O
OTBS

R2 O
H

RX

O CH
3

NaOMe, MeOH;
H+
100%

O
CH3

Schultz, A. G.; Hoglen, D. K.; Holoboski, M. A. Tetrahedron Lett. 1992, 33, 6611–6614.

O

N

N
H

H

OK

N

H

R = Me, Et, Bn

Schultz, A. G.; McCloskey, P. J.; Court, J. J. J. Am. Chem. Soc. 1987, 109, 6493–6502.

CH3

N

K (4.4 equiv), NH3
H

N
H

O

18 N aq. H2SO4

KO

R2 O

• Olefinic substrates undergo protiolactonization under the conditions of acidic hydrolysis:


R1

R2 O
R

H
H

O

RX

yield (%)

N

H
N
O
H
de (%)

H

H

MeI

54


70

H

H

EtI

68

82

H

H

NH4Cl

73

not reported

H

Me

MeI

53


> 88

Me

H

NH4Cl

84

one diastereomer

Me

H

MeI

78

52

Me

H

EtI

87


78

Me

H

CH2=CHCH2Br

68

> 95 : 5

Me

H

BnBr

78

> 95 : 5

Schultz, A. G.; McCloskey, P. J.; Court, J. J. J. Am. Chem. Soc. 1987, 109, 6493–6502.
Kent Barbay


Chiral substrates:

Asymmetric Birch Reduction of heterocycles:


O
Ph CH3
O
N
CH3
Boc O

CH3

1. Li, NH3, THF, –78 °C
(CH3OCH2CH2)2NH
2. Isoprene
3. RX
91-96%

2. NaOH
3. (Boc)2O

R

Me

N CO H
2
Boc

R
OR'
N
Boc O


1. Li, NH3, THF
t-BuOH (1 equiv)
–78 °C

CH3 2. RX

Et

79
71

78
86

i-Bu

70

90

CH2Ph

67

90

R

O

CH3

N

CH3
>90% de
R = CH3
R = CH2CH=CH2
R = CH2Ph

(R' = (–)-8-phenylmenthol)

yield(%) ee(%)

R
1. TFA

N

CH3

72%
66%
68%

Schultz, A. G.; Kirinich, S. J.; Rahm, R. Tetrahedron Lett. 1995, 36, 4551-4554.

H

H

1. Li, NH3, THF

CH3O
HO2C

• Addition of the chelating amine (CH3OCH2CH2)2NH was found to increase yields; the anion derived
from this amine is less basic and less nucleophilic than LiNH2, supressing byproduct formation.

CO2H

2. CH3I
51%

CH3O
HO2C CH3CO2H

House, H. O.; Strickland, R. C.; Zaiko, E. J. J. Org. Chem. 1976, 41, 2401-2408.

Donohoe, T. J.; Guyo, P. M.; Helliwell, M. Tetrahedron Lett. 1999, 40, 435-438.

CH3

OCH3

OM

Na, NH3
–78 °C

O


N

O

Dissolving metal reductions of conjugated alkenes:

CH3
OCH3

CH3

O

H3CO

OCH3

O

• Styrenes, conjugated dienes, and enones are more readily reduced under dissolving metal
conditions than are aromatics; reduction occurs at low temperature without alcohol additives.

RX

N
–78 °C

62-88%


OCH3

N
R O
OCH3

RX

O O
H3C

(proposed TS geometry)

H
CH3

6 N HCl
100 °C

CO2H
O

R

R

yield(%)

ee(%)


Me
Et

86

>94

74

>94

i-Bu

68

>94

H3CO

O O
H3C

K, NH3
THF, –70 °C

H
H

62%


H

H3CO

Ananchenko, S. N.; Limanov, V. Y.; Leonov, V. N.; Rzheznikov, V. N.; Torgov, I. V.
Tetrahedron 1962, 18, 1355-1367.
• Trans-fused products are favored, carbon proposed pyramidalized in the transition state.

Donohoe, T. J.; Helliwell, M.; Stevenson, C. A.Tetrahedron Lett. 1998, 39, 3071-3074.

Kent Barbay


Transformations of Birch Reduction products:

Stereochemical and/or regiochemical control by intramolecular protonation:
H3C CH3

• Synthesis of α,β or β,γ-unsaturated cyclohexanones

H3C CH3

CH2OH
H

H

H

CH3


THF, –78 °C
TBSO
H
93%
H3C CH3

TBSO
H
H3C CH3

H

CH2OH

Li, NH3

CH3

H3C OH

H3C OH

H

H

Li, NH3
H


H
EtOH

MeO

90%

aq HCl
H

H
H

H

O
CH3
CH2OH

H3CO

H
H

THF, –40 °C

H

O
CH3

CH2OH

100%

β

O
CH3
H
CH2OH

H3C

O
H
CH3
H
CH2OH
H

Na, NH3,
THF, –40 °C

OTBS t-BuOH, –33 °C H3C

• Ozonolysis of Birch reduction products:

OH

Lin, Z.; Chen, J.; Valenta, Z. Tetrahedron Lett. 1997, 38, 3863-3866.


H3CO

–78 °C, 4 hr

(t1/2 ca. 10 h)
R = H or R = OMe

R

H Li, NH3, THF
t-BuOH

H HO
H

Rapid
R = OH

O

H

H3CO

O

O3, CH2Cl2, MeOH,

OH


Li, NH3, i-PrOH

CH3
OTIPS

Li, NH3, THF
t-BuOH

O

96%

H3CO

• Initial intramolecular protonation at the β-position is proposed.

H

H3C

OTBS

92%
Fuchs, P. L.; Donaldson, R. E. J. Org. Chem. 1977, 42, 2032-2034.

71%

R


TBAF

Li, NH3, THF

H3C O

H3CO

H

• Reduction of aryl silyl ethers and synthesis of β,γ-unsaturated cyclohexanones:

whereas:

α

OH

Nelson, N. A.; Wilds, A. L. J. Am. Chem. Soc. 1953, 75, 5366-5369.

H3CO

H3C O

H

O

H3C O
Na, NH3,


H

83%

aq oxalic acid

Corey, E. J.; Lee, J. J. Am. Chem. Soc. 1993, 115, 8873-8874.

β

H

O

H3C

α

H

77%

MeO

• It is proposed that the stereochemical outcome is the result of intramolecular protonation
of the radical anion.

H3C O


H3C OH

H3CO

CH3
OTIPS

py, –78 °C; Me2S
56% (two steps)

OH
CH3
OTIPS

Evans, D. A.; Gauchet-Prunet, J. A.; Carreira, E. M.; Charette, A. B. J. Org. Chem. 1991, 56,
741-750.

Cotsaris, E.; Paddon-Row, M. N. J. Chem. Soc., Chem. Commun. 1982, 1206-1208.

Kent Barbay


Birch Reduction – Application in Synthesis:
• Reductive alkylation of aromatics without electron-withdrawing groups is unsuccessful.

(±)-Gibberellic Acid:

• Directed metalation of Birch products is possible:

CH3

CH3

CH3

Birch

O

O

NEt2

NEt2

CH3O

OCH3

CO2CH3
O

Amupitan, J.; Sutherland, J. K. J. Chem. Soc., Chem. Commun. 1978, 852-853.
Bishop, P. M.; Pearson, J. R.; Sutherland, J. K. J. Chem. Soc., Chem. Commun. 1983, 123-124.

H
CH3O

H

88%


OMOM
O

CH3O
CH3O2C

O
CO2CH3

CO2H

H
Cl

OCH3

OCH3
O

O

OCH3
CN

O

0.1 mole %
80–90 °C


H3C

O

OCH3 K, NH , t-BuOH,
3

O

–78 °C;

O

80% (two steps)

But:

1. Ph3P

O

O

2. ArCOCl, Et3N

O
≥ 99% ee

58%


H
H

Eaborn, C.; Jackson, R. A.; Pearce, R. J. Chem. Soc., Perkin Trans. I 1975, 470-474.

OH

O
O

SiMe3

2. AIBN, Bu3SnH

N
O

Li, NH3

SiMe3

2. HCl, MeOH
3. I2, THF, H2O

O 1. BnOH, THF, n-BuLi

Br

O


N3

CH3

EtOH, –70 °C

1. DEAD, PPh3,
(PhO)2P(O)N3

O I

I

Rabideau, P. W.; Karrick, G. L. Tetrahedron Lett. 1987, 28, 2481-2484.
• In the absence of competing factors, allylic silanes are generally produced from Birch reduction
of aryl silanes; this is attributed to stabilization of negative charge at the α-carbon by silicon.

OCH3

O
N

TBAF

CH3

COOH

BrCH2CH2OAc
OCH3

–78 → 25 °C;
KOH, MeOH
96%, single diastereomer

OCH3

CH3

SiMe3

OH

N

• Silyl substituents can be used to modify the regiochemistry of Birch reduction:

SiMe3

OH

H

(±)-Gibberellic Acid

Birch, A. J.; Dastur, K. P. Tetrahedron Lett. 1972, 41,4195-4196.

M, NH3

HO


(+)-Lycorine:

• Isomerization is proposed to occur through a charge transfer complex.

CH3

CO

OMOM
O

Hook, J. M.; Mander, L. N.; Urech, R. J. Org. Chem. 1984, 49, 3250-3260.

75%

CH3

CH3I, –33 °C
84%

H

O

CH3O
CH3O2C CH3 CO2H

CN

t-BuOK, THF;

K, NH3, –78 °C;

O

• Diels-Alder cycloaddition by isomerization of 1,3-dienes in situ:

Cl

OCH3

CO H
CO2CH3 2

I

H3CO

2. RBr
3. H+

PPA

Li, NH3, THF,–33 °C;

HO2C

1. n-BuLi, HMPA
–70 °C

Reduction


CH3O

CH3O

O

HO
CO2Bn

H
O

N

O
(single diastereomer)

H
O

N

O
(+)-Lycorine

Schultz, A. G.; Holoboski, M. A.; Smyth, M. S. J. Am. Chem. Soc. 1996, 118, 6210-6219.

Kent Barbay




×