Tải bản đầy đủ (.doc) (8 trang)

Công thức phần điện 3 pha

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (84.49 KB, 8 trang )

I C = β .I B
IC
β

I B = k bh

IB >

hFE =

IC
IB

Ud =

1
1
u d (t ).dt =

T 0


T

1
Id =

S BA =




∫i

d



∫u

d

IC
β

k bh = 1,2 ÷ 1,5

(θ )dθ

0

(θ )dθ

0

S1 + S 2
= k sd .Pd
2

ϕ AC

S1 = U 1 .I 1


ϕ A1

m

S 2 = ∑ U 2i I 2i
i =1

k dm =

ϕ An ϕ K 1 ϕ KC ϕ Kn

U 1m
U0

ϕ A1 > ϕ A 2 > ϕ A3 > .... > ϕ An
ϕ A1 > ϕ KC

Ud =
Id =

1
1
u d (θ )dθ =




Ud
Rd




2U 2 sin θdθ =

I tbv = I d

2
U 2 = 0.45U 2
π

U 2 m = 2U 2


Ud =

Id =

2 2
U 2 = 0.9U 2
π

Ud
Rd

I tbv =

Id
2


1
Ud =


I U ngV max = 2U 2
90o

6

6
∫o(u a − ub )dθ = 2π
30



U dα =

1
1
U 2 (θ )dθ =

2π 0


Ud0 =

2
U 2 = 0,45U 2
π


π


α

90 o

∫ [U

2m

sin θ − U 2 m sin(θ − 120 o )]dθ =

30 o

2U 2 sin θdθ =

U dα = U d 0

(1 + cos α )
= U d 0 f (α )
2

U dα = U d 0

(1 + cos α )
1 + cos α
= 0,9U 2
2
2


2
(1 + cos α )
U2
π
2

α2

α1


U dα

3 6
U 2 = 2,34U 2
π

π

1
1
2 2
(1 + cos α )
(1 + cos α )
=
U d (θ )dθ = ∫ 2U 2 sin θdθ =
U2
= U d0


2π 0
πα
π
2
2

U d 0 = 0,9U 2


U dα

1
1
=
U 2 (θ ) dθ =

2π 0


π


α

2U 2 sin θdθ =

3 2
U 2 [1 + co.s(α + 30 o )]



3 6
1 + Co.s (α + 30 o )
1 + Co.s (α + 30 o )
=
U2
= Ud0

3
3

( 2.24)


3
=


U dα

α + 30 o +120o



2U 2 (θ )dθ =

α + 30o

3 6
U 2 Co.sα



(2.25)

U dα = U d 0 Co.sα = 2,34U 2

(2.29)

π

3
3 6
1 + Co.s (α + 60 o )
1 + Co.s(α + 60 o )
=
2 3U 2 Sinθdθ =
U2
= Ud0
(2.30)
π α +∫60o
π
2
2

U dα

(1 + cos α )
1 + cos α
= 0,9U 2
2
2


U dα = U d 0
Id =

U dα
Rd

I tb.T

1
π −α
=
I d dθ =
Id

2π α


( 2.89)

π

I tb.D =

1


π +α




I d dθ =

0

( 2.91)

π +α
Id


( 2.92)

U dα = U d 0tia .Cosα = 1,17U 2 Cosβ
U d 0 = U d 0tia = 1,17U 2
U dα = U d 0tia (1 + cos α ) = 1,17U 2 (1 + cos α )
U dα = U d 0Cau

1 + Cosα
1 + Cosα
= 2,34U 2
2
2

Ch¬ng

Ut =

= U1


1




1
2
∫0 u1 dθ = π

π −α +
π



∫(
0

sin 2α
2 = f (α )

2U 1 sin θ ) 2 dθ =

2U 12
(1 − cos 2θ )dθ


( 3.67)


Pα =


P
sin 2π
(π − α +
)
π
2

Qα = P.

(3.68)

sin 2 α
π

(3.69)

π
U
1 Um
It = ∫
sin θdθ = m (1 + cos α )
πα R
πR

(3.70)

π
Um
1 Um 2

sin 2α
I=
(
) sin 2 θdθ =
π −α +

πα R
2
2π R

U m sin θ = L.R + ω.L.

di


( 3.72)
θ −α

U
i (θ ) = m sin(θ − ϕ ) + A.e tgϕ
Z

( 3.73)

z = R 2 + (ωL) 2

ϕ = arctg
U
i (θ ) = m
z


ωL
R
θ −α


tgϕ
sin(θ − ϕ ) − sin(α − ϕ ).e 



sin(λ + α − ϕ ) = sin(α − ϕ ).e

−λ
tgϕ

(3.74)

λ
UR =

λ

1
λ
Edt = E = E.γ

T 0
T


(3.1)

(3.71)


t

1 1
i1 (t )dt = I 1γ
T ∫0

(3.35)

i1 (t ) = I min +

E −Ut
t
L

(3.29)

i 2 (t ) = I max +

Ut
t
L

IT =

(3.30)


T

ID =

1
i 2 (t )dt = I t (1 − γ )
T ∫t1

(3.36)

UT = U D = E

PP

T

=

Pt
γ

(3.37)

Chế độ dòng điện gián đoạn
Điểm giới hạn giữa liên tục và gián đoạn tương ứng với điều kiện : I min = 0.
I tgioihan =

Eγ (1 − γ )
( 3.38)

2 L. f

Giá trị điện cảm giới hạn:
L gioihan =

Eλ (1 − γ )
2 I tgh . f (3.39)

Khoảng dẫn điện giới hạn:
γ gioihan = 1 − 2.τ . f

Trong đó:

τ=

L
Rt

Quan hệ:
γ2
2 LI t . f
(3.43)
γ2−
E
t1
t
U
1 E −Ut
1 2  E −Ut
It = ∫

dt + ∫ 
T1 − t
T 0 L
T 0 L
L

Ut
=
E

Với:

t .dt



Ngoài vùng giới hạn là vùng dòng điện liên tục mô tả bằng quan hệ:
U t = γ .E − Rt .I t

(3.44)

γ

IT =

γ
.I t
1− γ

ID = IL =


Ut =

U t max

(3.56)

It
1− γ

(3.57)

E0
I R
− t 02
1 − γ (1 − γ )
E 02
=
4 I t R0

(3.61)

(3.58)


Ut =

γ .E 0
1−γ


Ut ≈

4E
sin ωt
π

it =

(3.68)
(4.24a)

4E

π Rt2 + X t2

sin(ω.t − ϕ )

(4.25a)

π

1
I m sin(ω.t − ϕ )dω.t
2π t∫1

IT =

t1

1

ID =
I m sin(ω.t − ϕ ) dω.t
2π ∫t

I
C=

E.Tt
(1 − 2 ln 2)
3Rt ∆U c

Tt =

Lt
Rt

(4.27)

(4.280



Up =

1
2
U P2 (t )dt =
E

2π 0

3

u A (t ) =

2
E.Sinω.t
3

u B (t ) =

2
E.Sin(ω.t − 120 o )
3

u C (t ) =

2
E.Sin(ω.t − 240 o )
3

U o = 2U 2 sin 5 o
UC =

(4.26)

t
I
1
I C dt = C t


C0
C

( 4.29)

(4.30)

(6.7)
(6.8)


U2 = UC =

−E
T1
R2 C

U2 = UC =

E
T2
R2 C

(6.9)
(6,10)

E
= I C = Const
R


IR =

t

U R = UC =

t

−1
−1 E
−E
I C dt =
dt =
t


C 0
C 0R
RC

(6.11)

t
U
U
−1
UR =
U m sin ω.tdωt = m − m cos ωt

RC 0

RC RC

U cd =

Um
RC

UR =

Um
cos ωt
RC

IB =

IC
β 1 β 2η

RB =

UV
K .I B

&

(6.19)

&

U RC (1) = U m cos ωt

U m cos α = U dk

α = ar cos

U dk
Um

U d = U d 0 cos α =

(6.1)
U d0
U dk
Um

( 6.3)

α

(6.12)



×