Tải bản đầy đủ (.pdf) (499 trang)

Pressure vessel handbook e megyesy 10th ed pdf

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (26.01 MB, 499 trang )

Welcome to the CD-ROM edition of
the Pressure Vessel Handbook.

Click on the arrow buttons on the tool bar above to page
through the book. Pages which were blank in the print
version of the Pressure Vessel Handbook have had
substitute pages inserted in order to retain the book's
page numbering. To jump to a section from the table of
contents, click your mouse on the section title.


WARNING!
This document is copyright 1997 by Pressure Vessels Inc., and
may not be reproduced, stored in a retrieval system, or
transmitted in any form or by any means electronic, mechanical,
recording or otherwise, without prior written permission.
It is intended for single user use. Information about site licenses
and network use may be obtained by contacting:
Pressure Vessels Incorporated
P.O. Box 35365
Tulsa, OK 74153 USA
www.pressure-vessel.com





P

V
H


T

E e d

ni

withforeword by

P

B

Professor of Chemical Engineering
University of Tulsa
Tulsa, Oklahoma

E

M

PRESSURE VESSEL PUBLISHING, INC.
P.O. Box 35365 “ Tulsa, OK 74153

t t i

oh


FOREWORD


Engineers who design equipment for the chemical process industry
are sooner or later confronted with the design of pressure vessels and
mounting requirements for them. This is very often a frustrating
experience for anyone who has not kept up with current literature
in the field of code requirements and design equations.
First he must familiarize himself with the latest version of the
applicable code. Then he must search the literature for techniques
used in design to meet these codes. Finally he must select material
properties and dimensional data from various handbooks and company
catalogs for use in the design equations.
Mr. Megyesy has recognized this problem.

For several years he

has been accumulating data on code requirements and calculational
methods. He has been presenting this information first in the form
of his “Calculation Form Sheets” and now has put it all together in
one place in the Pressure Vessel Handbook.
I believe that this fills a real need in the pressure vessel industry
and that readers will find it extremely useful.

Paul Buthod


PREFACE
This reference book is prepared for the purpose of making formulas,
technicaldata, designand construction methods readily available for the
designer, detailer, Iayoutmen and others dealing with pressure vessels.
Practical men in this industry often have difficulty finding the required
data and solutions, these being scattered throughout extensive literature

or advanced studies. The author’s aim was to bring together all of the
above material under one cover and present it in a convenient form.
The design procedures and formulas of the ASME Code for Pressure
Vessels, Section VIII Division I have been utilized as well as those
generally accepted sources which are not covered by this Code. From
among the alternative construction methods described by the Code the
author has selected those which are most frequently used in practice.
In order to provide the greatest serviceability with this Handbook,
rarely occurring loadings, special construction methods or materials have
been excluded from its scope. Due to the same reason this Handbook
deals only with vessels constructed from ferrous material by welding,
since the vast majority of the pressure vessels are in this category.
A large part of this book was taken from the works of others, with some
of the material placed in different arrangement, and some unchanged.
The author wishes to acknowledge his indebtedness to Professor
S4ndor Kalinszky, J&os Bodor, Lasz16F61egyhiizyand J6zsef Gyorii for
their material and valuable suggestions, to the American Society of
Mechanical Engineers and to the publishers, who generously permitted
the author to include material from their publications.

The authorwishesalso to thank all those who helpedto improvethis
new edition by their suggestions and corrections.
Suggestions and criticism concerning some errors which may remain
in spite of all precautions shall be greatly appreciated. They contribute to
the further improvement of this Handbook.
Eugene F. Megyesy



9


CONTENTS
PART I

Design and Construction of Pressure Vessels .................................... 11

PART II

Geometry and Layout of Pressure Vessels ...................................... 25’7

PART III

Measures and Weights .................................................................... 321

PART IV

Design of Steel Structures .............................................................. 447

PARTV

Miscellaneous ................................................................................. 465


PART L
DESIGN AND CONSTRUCTION

OF PRESSURE VESSEL

1. VesselsUnderinternalPressure_~__~~_~~~~~~~..~.~~~~ti~ti~~~~. 15
StressesinCylindricalShel~Definitions,Formulas,Pressureof

Fluid, Pressure-TemperatureRatings of American Standard
,CarbonSteelPipe Flanges.
2.

Vessels Under External Pressure ..........................................................
Definitions, Formulas, Minimum Required TicknessofCylindricalSheH,ChafiforDeteminingThicknessofCylindrical
and
SphericalVesselsunderExternal PressurewhenConstructedof
Carbon Steel,

31

3.

Design ofTall Towers ..........................................................................
Wind Load, Weight of Vessel, Seismic Load, Vibration, Eccentric Load, Elastic Stability, Deflection, Combination of Stresses,
Design of Skirt Support, Design of Anchor Bolts (approximate
method), Design of Base Ring (approximate method), Design of
Anchor Bold and Base Ring, Anchor Bolt Chair for Tall Towers.

52

4.

Vessel Suppotis .....................................................................................
Stresses in Large Horizontal Vessels Supported by Two Saddles,
Stresses in Vessels on Leg Support, Stresses in Vessels Due to
Lug support.

86


5.

Openings ............................................................................................... 122
Inspection Openings, Openings without Reinforcing Pad, Opening with Reinforcing Pad, Extension of Openings, Reinforcement of Openings, Strength of Attachments, Joining Openings to
Vessels, Length of Couplings and Pipes for Openings.

6.

Nozzle Loads ........................................................................................ 153

7.

Reinforcement at the Junction of Cone to Cylinder .............................. 159

8.

Welding of Pressure Vessels ................................................................. 170
Welded Joints, But Welded Joint of Plates of Unequal Thicknesses, Application of Welding Symbols.

9.

Regulations, Specifications ................................................................... 181
Code Rules Related to Various Services, Code Rules Related to
Various Plate Thicknesses of Vessel, Tanks and Vessels Containing Flammable and Combustible Liquids, Properties of
Materials, Description of Materials, Specification for The Design and Fabrication of Pressure Vessels, Fabrication Tolerances.

10. Materials of Foreign Countries ............................................................. 194
11. Welded Tanks ....................................................................................... 204



13. Rectangular Tanks ................................................................................ 212
14. Corrosion .............................................................................................. 221
15. Miscellaneous ... ... .... .. . . . ..~...o..o...u,mv..u.mv..~..u...ti..~..~..~..u..~ 232
Fabricating Capacities, Pipe and Tube Bending, Pipe Engagemerit, Drill Sizes for Pipe Taps, Bend Allowances, Lengthof
Stud Bolts, Pressure Vessel Detailing, Preferred Locations,
CommonErrors,LiRingAttachments, SafeLoadsforRopesand
Chains, Transportation ofVessels.
16. Painting Steel Surfaces ..~...o..o...~....a...~.

U.V......O...

247

1NREFERENCESTHROUGHOUTTHISBOOK"CODE"sTANDSF0RASME
O
O
C MI E EC HT AEYNN I GC I FA N
BL E O
E AR I S ) L
(AMERICAN S

N
E
R
P R E VS SE CU S RS SO
E E EV
C DRL
T
II FU EO C O

LNI N S OET RI US C T IR O N
O P R E VS ES SU
D SRI F EE
V1—
LI A SSA , I M O E N
S R T I A C N AND NA R D .

1

E

D


S

P

V

Pressure vessels are subject to various loadings, which exert stresses of
different intensities in the vessel components. The category and intensity of
stresses are the function of the nature of loadings, the geometry and construction of the vessel components.
LOADINGS (Code UG-22)
a, Internal or external pressure
b. Weight of the vessel and contents
c. Static reactions from attached equipment, piping, lining, insulation, internals,
supports
d. Cyclic and dynamic reactions due to pressure or thermal variations
e. Wind pressure and seismic forces

f. Impact reactions due to fluid shock
g“ Temperature gradients and differential thermal expansion

STRESSES (Code UG-23)
a. Tensile stress
b. Longitudinal compressive stress

c. General primary membrane stress
induced by any combination of
loadings. Primary membrane
stress plus primary bending stress
induced by combination of loadings, except as provided in d. below.
d. General primary membrane stress
induced by combination of earthquake or wind pressure with other
loadings (See definitions pages
beginn-ing473.)

MAXIMUM
ALLOWABLE

STRESS

Sa
The smaller of S. or the value of
factor B determined by the procedure
described in Code UG 23 (b) (2)

S
1.5 Sa


1.2 times the stress permitted in a., b.,
or c. This rule applicable to stresses
exerted by internal or external pressure or axial compressive load on a
cylinder.

Seismic force and wind pressure need not be considered to act simultaneously.
S.= Maximum allowable stress in tension for carbon and low alloy steel
Code Table UCS-23; for high alloy steel Code Table UHA-23., psi. (See
properties of materials page 180- 184,)


/

,

STRESSES IN CYLINDRICAL SHELL

Uniforminternalorexternalpressureinducesinthelongitudinalseamtwotimeslargerunit
stress than in the circumferentialseam becauseof the geometryof the cylinder.
A vessel under external pressure, when other forces (wind, earthquake, etc. ) are not
Tn C
l
factors, must be designed to resist the circumferential buckling o

oh y
.d
i e od dh t e e tsh ms o tie rdge e qhn uf ei’ rW ei o mo t e hlns t t o . aaeh d
ei n n r r g
s
present, these combined loadings m g

o a a hv
e e p an rw
y vl be
n ir a i eed q rt ul
ei
r l e
t
t
ph
w l ah wh a s a ni t t i esact fer a chte t co sisrr yc ui m
h f sbe ro ue t n oct ie ak l nl
i ln
gy
p

r

T

ot

m
v

c o m p sh r edt s t se r i xev epetu r es a e r t ss n e sse a onudntl trs i r e in pe lt ud r ese e r ss n se a ou l r
b dh e t a eb tr lfm oi nlr em
eh d u l a y se :

s


F

t

.

D

$

R

M

U

L

A

S

C I R C U M F E R E N T I A LL O N G I T U D I N A L
J
O
I
N
JT
O
I

N

.

+

O

s,
3 .$



D=
P=
s, =
s* =
[ =

S2


s, ‘/
~

,R

T

s~ = ~


M
I

N O T A T I O N
d
ie ao vm a eei ts n e s cr e h l f ,e
n ot e e x r pt n r e ae pr sl n s a ur l r s e ,

s
i

Longitudinal
stress, psi
1
Circumferential (hoop) stress, psi
Thickness of shell, corrosion allowance
excluded, inches

EXAMPLE
;iven

D

=

P=
f

=


96 inches
15 psi
0.25 inches

PD
s, = ~

s* = $

15 X 96

=

~

= 1440 psi

15 X 96

=

= 2

p

8

8s


lhmi v pt

cr e e h s

2 X 0.25
F
s

t
s

ou
gti

iw
o n n pe t d r er a er rewss nl s r at iunc l or r h eni
o rc vvb ea ep sp rera osnb x t is fm ao nt ree hdm

H=%

3

w

Hh= C
2

haeat d iwdi b c cd ghaoe
u
I y ae :


er h i r oet t i ei foc
(

ga w l h e t t r

f ,

.


I

P

N

R

1. OPERATING PRESSURE
The pressure which is required for the process, served by the vessel, at which
the vessel is normally operated.
2.

DESIGN PRESSURE

The pressure used in the design ofa vessel. It is recommended to design a vessel
and its parts for a higher pressure than the operating pressure. A design pressure
higher than the operating pressure with 30 psi or 10 percent, whichever is the
greater, will satis@this requirement, The pressure of the fluid and other contents

of the vessel should also be taken into consideration. See tables on page 29 for
pressure of fluid.
3.

MAXIMUM ALLOWABLE WORKING PRESSURE

The internal pressure at which the weakest element of the vessel is loaded to the
ultimate permissible point, when the vessel is assumed to be:

(a) in corroded condition
(b) under the effect ofa designated temperature
(c) in normal operating position at the top
(d) undertheeffectof otherloadings(wind load, external pressure, hydrostatic pressure, etc.) which are additive to the internal pressure.
When calculations are not made, the design pressure may be used as the
maximum allowable working pressure (MA WP) code 3-2.
A common practice followed by many users and manufacturers of pressure
vessels is to limit the maximum allowable working pressure by the head or shell,
not by small elements as flanges, openings, etc.
See tables on page 28 for maximum allowable pressure for flanges.
See tables on page 142 for maximum allowable pressure for pipes.
The term, maximum allowable pressure, new and cold, is used very oflen, It
means the pressure at which the weakest element of the vessel is loaded to the
ultimate permissible point, when the vessel:
(a) is not corroded (new)
n
(b) t

i

h


t

(

te

and the other conditions (c and d above) also need not to be taken into
consideration.
4.

HYDROSTATIC TEST PRESSURE

O and one-halfntimes the maximum
e
allowable working pressure or the design
pressure to be marked on the vessel when calculations are not made to determine
the maximum allowable working pressure.

If the stress value of the vessel material at the design temperature is less than at
the test temperature, the hydrostatic test pressure should be increased proportionally.
H

y

d

r t o ss

t bea hc t oi


cnas a d

aul ftc a tl b le re hdil bec

a c t roi e am
ol np

le e

ts e n d

.


I t

c

pressure
s i e hshall
en be:
s s ,

t h at

e

t


1

StressValueS
Temperature
)( M A . W.Press.
al
l xx o5
w.
.
StressValueS At DesignTemperature
(Or DesignPress.)

V
f

e w s
tsh me e al
xhasr li
l s a bn ht g eae aa p ss r l, tse

P

r S i e m r

H

y

d


av

r i

yc

l emwo uweo m
ap r br k l el ei si nbs m t gu i r t e
lsei h tse dt u o rat ew hb
nl
ne e :

eh

d

+

e

900 lb

r t o os mt uea l t t ii -c svc h ea m
Cs t b sU
ef r eo ( Gl

s d- :

e9 e


9

)

A Pneumatic test may be used in lieu of a hydrostatic test per Code UG-100
P
s
a

tr
t e oe s s ot m a t afb lxa s i li sol mhwo uwo m
pa r br k l ew ei s t ns h gu
r ehe
n
ro ae pn
go t t an v h
ec r fh sayb c tsn o f en m
e w lpo s ua t it t i ese f dt a c t oh r y
s o us r a ap frn e ce si eCct r Uy i f obG
, e - d d1
0 n e1
.

t
s

5. MAXIMUMALLOWABLESTRESS VALUES

The maximuma


l

a g
i it
t b u
i t
l o n g ic t
C
p
U
o

s
ct
g

l l t o ews an vt b s l apr ie e lel r f m
uesd i i est f mt sfo ea e dt r e e r nr i t a
r ova p
1eb eaT n l m
8 n ga e xa9hn l ie l m
c o. o uwm
e am
p s rb e l ts es ri v e
sd
eo ce hys o l e i sd n gdnsh er u in ebc t ajlf l l e o clt at p s ed rhd i o n doa g u
o u md pi snr ea itls t s ris v se h b hshd ee s t a elna re cl ml c i t ol n ree d i n
abC cd & d -r
e 2 .
3

, ,
.

s
e

6. JOINT EFFICIENCY
The efficiency of different types of welded joints are given in table on page
172. The efficiency of seamless heads is tabulated on page 176.
T
f o l phl o c aw o i
t h i ac kt
nm e an s
f r e qu u t e nso y st l
g
f i t l .v o ~o ge hs i t
T
e

s
f

fgen o g t eru am t s icu s nlo at m esr p e uqdw h tu o ei a r
ee ld
xhsa li l mdw
o uw
eo m
ap r br kl ef ei st n sm gu o r ho e
ar
a yeph h

eTe de f n s lo a rfo hcl m
d y d lu i. sl n aeda hr s i c e a f lr l
usn ed iur ni aeas tl nugm ao hc ,vl
eel i r y n
s
.

it t h rg
se i whs e ger s oiot na ew
v hlnte mch ir r l lc un m
eh f j ey r en no t ie a il
ii lc i t e oen chn y te s l- ao hsn sga hinj lt u fe do f i f n eiia ocl wi ne n cht y ,

f

e
l

n
e

r

besides the internal pressure additional loadings(wind load, reaction of
s
t
t

a
t

s

ad cd
al l euor ns s g ) i ib t une ed o gin t n dae l inT snr i g ef o ih ani r . s o o e
n
r
sh
at
rhrai t i eg s t ss i ie phsn er gper
o s t nau eq i h niumo n and oe r -c e h
ah l s f
it t hlr o ne g ihs s t e u sed i nn aea l m
.

T

f

o

rf htm g u s l io aeh c serc o r t rda ei nh g ml y :
t

PR
= 24SE+ 0.4P

Seenotation on page 22.

P=


2SEt
R – 0.4t


I

P

N

R

FORMULAS IN TERMS OF INSJDEDIMENSIONS
NOTATION
P = D

pe
o p
vt

w
S= S

E = J
e of f ip i c 1i en a n c t y 7g.
r s o e m i s a sg l aul n or R =
wex I a bnrr . l as ei
d i n i dc u eh s
e,
r r pke

is
sn u gs rD = e I
ndi i s a i m
i n e d t c ee hr , e
o rm
a
ea pl t ps e u ssr at i e= a if t l g h i ,i c e k n n ec s hs , e
C
= C o rAa r l ol ois wi .n ao nnc c eh .

A

CYLINDRICAL SHELL (
t

R
e

PR
f= SE– O.6P

P

LS

EO

A N

s t su

i at t ll hr s l e i yog h seo ev S
ns e arn en
p r ep c e a d i g n g e
.
2 W
[ w h t h aiehe c x ok. lhcnn o ete isl ae n s nd
r
oa P e d x 0 i c S u. et f es 3 o drgE
r 8 hsm
i i u5
t C
A
po h 1p s e db nah dep - ei ap x l l i 2e

SPHERE

HEMISPHERICAL

PR
‘= 2SE–0,2P

2
s

s
e

s

M G )


SE t
= m-m

1. U

B

e
s

p=

gi m
ne g s .
slhs
ie f
l v , a e se
l de .

HEAD

2SE t
R +0.2t

r
1-

R


-1 -–

f

1. F h

w e i aos at t
o t h
t s ej h hi
o t s
i e[ h h a
2 W
t w h t h aiehe
0
S . t f 6 o gE
r
I s
b -ah p
ap3

.
.

Ih r d loua r t aisu e gnft fhg si
i ol a et f it e eeld hfno f l si
e m
h fa e s d n e
c x 0k. l cnnR o. ePe e sl e 3xs d
6 hm
i ti uC

5 lvA, a epo hse p
l li , e l d e .

thce i , e n e c
thac if { es n c
.
6e
c 5s e
e nd n n de ei

2:1 ELLIPSOIDAL HEAD

I

b

0



PD
‘= 2SE– O.2P
1. F

a
1

/1 = 1>/4

e l l ih po

m
a i i on
4
(

P= -Dy;jt

sw
e o t ia hrd rado leta smh r t , a ehi j e o o
nxt t 2 1 os hihC
d r A e aspo espr e nd n : , de ei
c
)
.


E
D

ED
P =

S= 1
5
E = 0
j
s

S


AI

G
T

X
NA

p d
pe
r s
p 7s
vt5 o
1p
@5 6l
.
e . f f oi8 s cp
oo s
ia hh n
h
e

:

E = 1

j . e of 0f oi is c0 ei n ea , n m tc l y e
s f
h
e

a
d
s
ni
rnc
a hs d ie i8 ds u
es
*
e is
sg ui R n=r 4 ie
9 i e ni f A dnc i hsa mie e6 dst e e r *
rsSa 0 e l 0 s Dtiu=
s
e wq [ u h i ai irc ken ln d ec s lhs , e
5a 7
0t 0
”e= r I F
C
=
0
.
nc A 1o c ra 2r hl. ol e5so iws o u n n c e
oi 5t e - ne x, c a ym i n ef i d .
r
eHe t tnm sl e i f l * s dac .o crd oi r o ngo d d vi e nt a di ot n e
w t c i o r a rhlt ol so ihw o ea n n c e
l
l

SEEDESIGNDATAABOVE

SEE DESIGN[),N”f’A
AIK)VE

I)c[crmincIhc rcquird lhicknms,
01”o shell
,=

I(K) x 48.1?5

=

().325 in.

fhwrmine the maximum:Ill(nv;IbleIf(whingpressure, P
I’br().5()() in thi~k kh{.11wtlrn Ihc tIS<,Il i, in IICW
currditi(m.

() 125 in.

P =

I7500 x 0.85 -- 0.6 x 100
+ C.A.

17500 x ().X5 x ().5(M)
- 154psi
48 +
x

in.

fJse: ().50() in, pkrfc
—.

SEE DESIGNDATAABOVE
The head furnishedwithmrtslraigh[ Ilwrge.
Detcrrnirrethe required thickness. I d’ ii hemispherical
head.
/=

]00 x 48, Izfi
2 x I7500 x 0.85 -- 0.2 x I00

SEE DESIGNL)A’rAABOVE
Determine IIw maximumallowuhlcvrn-kingpressure. P
I’or().3125 in [hi(k head. when it is in IICNctmdili(m

= ().16? in.

+ C.A.

p ,..

,? x I7500 x 0.X5x 0.3 I25
W + 0.2 x (),3I25

0.125 in.

+ IOJ p~i

0.287 in.

Use: ().3125 in MIN.

HEAD

SEE DESIGNDATAABOVE
Dctcrrninethe requiredthicknessot’a SCJMICSS
ellipsoidal
head
100 X 96.25
‘ -




= 0,275 in.
0.2 x 100

+ C.A.

0.125 in,

2 x 17500 x 1.0

in,
Use: o 437s in, MIN. THK. HEAD

SEE DESIGNDA’I’AABOVE
Determinethe maximumdlmv:iblc U[wkingprcwurc. P
for 0,275 in. thick. seamless head \!’heni! is in corroded
condition.

2

X

17500 X

1,0

X

0.275

96.?5 + 0.2 x 0.275—

= 10(1psi


I

P

N

FORMULAS IN TERMS OF INSIDE DIMENS1ONS
D = I

NOTATION
P = D

w

S= .
E = J
R = I

dn i s ai mi n e d tc e e hr , e
hbr o. l t ei an n (c lhI a eu p fd fe
dni
eg g l r e e
,e
s
oa,s d e dii i din
suec
sh
l grn
kn
n sr u ai i c dd nk i e cl u e h s
t e h 2ai i c k n ln ec s l sh , e
s o r a r l ol ois wi n ao nnc c eh ,

pe
r s o e m i s a sg l aul n or a we=x Oa
o p r r pke
si
sn u gs r
ea
Sv
to m
a r a ;pl t ps e u ssr aLi e= Ia if
r = I
e of f ip i c 1i en a n c t y g7,r = W

rn
a is d ni i dc u he s
e,= C

1

CONE



c

CONICAL SECTION
2SEt c
‘= 2D + 1.2t
s

a (SE–= O.6P)
o

a

o
a

1 T h a
a a h apnn g lg re. t el e3 fo e axh
,t
e0a t
W

i‘Dgh
r t e 3e s nah pa. t a ne e0ia racs re l i q ny au ;s
(
A C p 1po e- dn 5 d (e i ex
)
)

A %

~ 2

A

E

F SL
A M
D
N
GI H EN
ES D H
E
( T O R I S P HH E R I EC A L A
W



=h 1

0.885PL

f= SE– o. 1 ‘

6e /

P=

ED A
D

2 n

SEt
0.885 L+0.lt

fr

P

~
When Vr l

<
\

1


M

t


PLM
‘= 2SE– O.2P

1.
J

V
.0

r

A O LF
50

UA
0

1e

h

s

s

n

2SEt
‘= LM+oo2t


“ EC

ST

OM F R



3

1

2

3



.

0

1

M
*

a


: L = D + 2t

(see note 2 on

f

pa

ca

i


21

E

X

DESIGN DATA:
P = lOOpsidesignpressure
S = 17500psistressvalueof
SA515-70plate@650°F
E = 0.85,efficiency
ofspot-examined
joints
E = 1.00,jointefficiencyofsearnless

R = 48inchesinsideradius*
D = 96inchesinsidediameter*

wallthickness,inches
~ = required
L = 30°0nehalfoftheapexangle
t = Resuiredwallthickness
inches
C.A = 0,125inchescon-osionallowance
* incorrodedcondition
greaterwith
thecorrosionallowance

SEE DESIGN DATAABOVE
Cos30° = 0.866
Determine the required thickness, r
of a cone

SEE DESIGN DATAABOVE
Determine the maximum allowable
working pressure, P for 0.500 in. thick
cone, when the vessel is in new
condition.

100x 96.25
‘2X 0.866(17500X

2x

+C.A.
Use0,500in.plate

0,125in.

0.500in.

xO.85xO.500x0.866= 133psi
96+ 1.2XOo500Xo.866

SEE DESIGN DATAABOVE

SEE DESIGN DATAABOVE

L/r = 16$

Determine the maximum allowable
working pressure, P for 0.6875 in. thick
seamless head, when the vessel is in
new condition.

Determine the required thickness, t of a
seamless ASME flanged and dished
head.
f=

0.885X100x96.I25
17500x 1.0-0.1x 100
+C.A.
Use0.625in.plate

=0.486 in.

(j


0.125in.
0.606in.

Use0.625in.min.thickhead
o La i g t r t
NOTE: When the r
A

b4 c

a ml

bc t ua f l

= 141psi

SEEDESIGNDATAABOVE
~=
61

~= 1.75 from table.
Determine the required thickness t of a
seamless ASME flanged and dished
head.
100x96,125X1.75
t=
‘0.481 in.
100
2 x 17500
+C.A.


17500x1,0x0,6875
0.885x96+ 0,1 x0,6875

0.125in.
0.611in.

SEEDESIGNDATAABOVE
Knuckle radius r = 6 in. L/r=

p.

%
Knuckle radius r = 6 in. L/r= ~ = 16
A4= 1.75 from table
Determine the maximum allowable
working pressure, P for a 0.481 in. thick
seamless head when the vessel is in
corroded condition.
p=

2 x 17500X1.0xO.481
= 100psi
96.125X 1.75+0,2 xO.481

i/e 1 a nho to6f nreca so- r n3 Cs tn otr uv,d c te aoi o hnl )
oay tir ehe%
md +ul k L l y ae (l /:
= r 3
)


u


22

I

P

N

FORMULAS IN TERMS OF OUTSIDE DIMENSIONS
NOTATION
P=D

pe
op
vt

w
S= S
1

7
E = Joint efficiency,page 1
r s o e m i s a sgl aul n or w
. l t einches
=ex O a ubr radius,
s

i
d
e
r r pke
si
sn u gs r: eO
u id ti asi m i n e d= tc ee hr
o rm
a
ae pl t ps e u ssr ai e= W
a if t l g h ai , i c e k n ln ec s l sh ,
8
9 C.A: = Comosionallowance,inches

A

CYLINDRICAL SHELL (
+

PR
* = SE + 0.4P

R

LS

P = R y;4t

EO


,
e

A N

.

b

~ 1 U

G3)

2

B

s t su
iat t l hr sl .e i yogh seo e v snS e arn en
p
1
a
g
e
4
W
t w h t h aiehe c x ok. lhcnn o eet isl ae ns nd
r
oa P e d x 0i c S u. et fse 3 o dr gEr 8shim v u5
t C

A
po h 1p s e db nah dep - ei ap x l l i 2 e

g
slhs
e
l

SPHERE and HEMISPHERICAL HEAD
PR
f = 2SE + 0.8P
@

f

d’

R

1 F h
o t h
o t s

P - ~ y;

B*

w e i ao s at t fh r d .loua r t asiu e gnft fhgsi thce
t s ej h hi i oi la e t fi te leed hnf o fl is t hca f
i et hh a e m

h f ae s d n e .
R

S

.

t

P

E h

,

e

1-3,shallbe applied.
c

2:1 ELLIPSOIDAL HEAD
PD

h

‘= 2S45+1,8P

-

P=D~l—

.

+
1 F e l l hi po wes o t ai hr d. odra t eal m s h art ,a hei j
m
a ii o
tnx t 2 so hC
hi :Ar e paso e1ps1 r e- nd n 4 ,

u
h = D14


23

E

X

DESIGN DATA:
P = IOOpsidesignpressure
S = 17500psistressva1ueof
SA515-70plate@650°F
E= O.8&efliciencyofspot-examined
joints ofshellandhemis.headtoshell
E = 1.00,jointefficiencyofseamless

E = 1.OOjointefficiency
ofseamlessheads
l? =48inchesoutsideriidius

D= 96 inchesoutsidediameter
t =Requiredwallthickness,
inches
C.A.= 0.125inchescorosionallowance

SEE DESIGN DATAABOVE

SEE DESIGN DATAABOVE

Determine the required thickness, t
of a shell

Determine the maximum allowable
working pressure, P for 0.500 in. thick
shell when the vessel is in new condition.

100X48
‘= 17500x0.85-0.4x 100 ‘0”322 ‘n”
+C.A.

P=

0.125in.
0.447in.

17500xO.85xO.500
= 155psi
48-0.4 x0,500

Use:0.500in.thickplate


SEE DESIGN DATAABOVE
Head furnished without straight flange.
Determine the required thickness, t of a
hemispherical head.
t=

2x17500 %;t0.8x100
+

‘0-161 ‘r-

C

0.

.A

i

SEE DESIGN DATAABOVE
Determine the maximum allowable
working pressure, P for 0.3125 in. thick
head, when the vessel is in new
condition.

ip.
1.

2x 17500xO.85x().3125

48-0.8 x0,3125
n 2

5

=194psi

.

0.286in.
Use:0.3215in.min.thickhead
SEE DESIGN DATAABOVE

SEE DESIGN DATAABOVE

Determine the required thickness t of a
seamless ellipsoidal head.

Determine the maximum allowable
working pressure, P for 0.273 in. thick
head, when it is in new condition.

t=

100x96
2 x 17500 X 1
1

.


+C.A.
Use0.4375in.min.thickhead

.

0

0,125in.
0.398in.

x 17500x1.0X
8 p. + 2X

96-1.8 xO.273

= 100psi


I

P

N

FORMULASIN TERMSOF OUTSIDEDIMENSIONS
N

~

A


T

I

O

N

Outsidediameter.inches
~ = one half of the included(apex)
P = Designpressureor max. allowable
dn
eg g l r e e
w
o p r r psi
ke
si
sn u g r
ea
S= S
v & o m
a e a pl ts p e u ssr aLi e= O
a fi l gu r t , oa dse dii i din
E = J

e of
ur

R=O


,e
s
esuc
sh
kn
n sr u ai i c dd nk i e lc u e h
t e h 2ai ic k n ln ec s l sh , e
os r a r l ol ois wi n ao nnc c eh

r = I
f ip i c 1i en a n c t y g7, = W
=e, C
t a i s d ni i dc u e hC.A:
s

)

CONE

CONICAL SECTION

PD
‘=2 Cos CY(SE+ O.4P)
d

p=

2bsEfCos CY
a

D –0.8t

1 T h a
a a h apnn g gl re.t el e3 of eaxh
t,
e0a t
2 W
i hg
rt e 3e snah p.a0t a ne eai rasc r°e l i qny au , s

(
A C p 1po e- dn 5 d ( e i ex )
)

@L

E

A

F sL
A MD
N
GI H EN
ES D H
E
( T O R I S P HHE R I EC A L A
W

h = 1e


0.885PL
2=SE + 0.8P

f

W

n 6 L

P=

Lh

T

2/

r

ED
D
/

SEt
0.885L– O.8t

ee1

h


6 sn

a2

s

.
i

PL M
f= 2SE+P(M– O.2)’

2SEt
‘= ML –t(ikf-O.2)

VALUES OF FACTOR M


/
1.

1
M

1

1.

2

1. 0

2 .r2

4 .0 0
3 .0
6 .5 0
3. 5 0
5. 50
3. 2 5
4 .7 5
2. 7 5
5. 2 5
6 .0 5
. 00
.0 0
16
0

2.

% ‘
7
: L-t = D



.

2



25

E

X

3ESIGN DATA:
P = IOOpsidesignpressure
S = 17500psistressvalueof
SA 515-70plate@650°F
E = 0.85,efficiency
ofspot-examinedjoints
E = 1.00,jointefficiencyofseamlessheads
R = 48inchesoutsideradius

D = 96inchesoutside
dimeter
~ = 3@onehalfoftheapexmgle
L = 96inchesoutsideradiusofdish
t = Requiredwallthickness,
inches
C.A = 0.125inchescomosionallowmce

SEE DESIGN DATAABOVE

SEE DESIGN DATAABOVE

:0s 30° = 0.866

Determine the required thickness, t
of a cone
00 96
‘=2 x0.866X(l\50; X0.85+Oc4X100) =
=0.372 in.

Determine the maximum allowable
working pressure, P for 0.500 in. thick
cone.

+-CA.

~= 2X 17500X
C).85X
().5()()X().866= 134psi
96- (0.8xO.500xO.866)

0.125in.
0.497in.

Use:0.500in.thickplate
SEE DESIGN DATAABOVE

SEE DESIGN DATAABOVE

L/r = 16$
Determine the required thickness, t of a
seamless ASME flanged and dished
head.


Determine the maximum allowable
working pressure, P for 0.625 in. thick
seamless head, when the vessel is in
corroded condition.

0,885x 100x96
=0.483 in.
‘= 17500x1.0+0.8x 100
+C.A.
U

0

0.125in.
0.608in.
in.min.thickhead
s.
6e
2 :

17500x 1.0xO.625
P= 0.885

SEE DESIGN DATAABOVE

%

~ =1
Knuckle radius r= 6 i M
M 1.75 from table.

Determine the required thickness t of a
seamless ASME flanged and dished
head.
100X96X1.75
t=
=0.478 in.
2x 17500x1.0x 100(1.75-0.2)
+-CA.

0.125in.
0.603in.

5

SEE DESIGN DATAABOVE
K
r
p= 6 in. L/r= ~

=16

~= 1.75 from table.
Determine the maximum allowable
working pressure, P for a 0.478 in. thick
seamless head when the vessel is in
corroded condition.
2X17500x1.OX().478
.
‘= 1.75X96-0478(1.75-0.2)=100ps*


Use0.625in.min.thickhead
t r h o La i ehg t r t n i/e 1 ea, h(o nt f ore a6c ns or -n sC nt tor u:vd c et aoi o hnl )
NOTE: W
Mm

ca a

l y bc t u fbl

oa

etA
r eh%
md +u~

l ly ae ( :

=

3

)


&u

Y

I


E

P

F
NOTATION
E=joint efficiency
P = Internal or external design pressure psi
d =Inside diameter ofshell, in.
S =Maximumaflowable stiessvalue ofmaterial, psi
t = Minimum required thickness of head, exclusive of corrosion allowance, in.
t~ = Actual thickness of head exclusive of corrosion allowance, in.
tr = Minimumrequired thicknessof seamless shell for pressure, in.
t~ = Actual thickness of shell, exclusive of corrosion allowance, in.


×