Tải bản đầy đủ (.pdf) (10 trang)

sl d0 20x20 b001 ccccccccccccccccc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (515.41 KB, 10 trang )

Slitherlink #1

1

2

3

3

Easy Slitherlink Puzzles from Krazydad, Book 1

3

2

2

1
1

2
1

2

3

2

0



3

2

2

3

3

2

3

3

2

0

2

3

3

2

2


2
3

2

2
2

3

3

2

1

3

2

0

3

3

1
1


3

2

2
1

1

2

2

3

3

2

3

2

1

3

1

2


1

2

2

3

2

1

1

0

3

3

2

1

2

1
3


2

3

1

2

2
2

2

2

1

2

2

2

2

2

3

0


3
2

2

1

3

2
3

2

2

1

2

3

2

2
3
0

3


2

3

2

3

2

3

2

3

1

3

2
2

3

2

1


2

2

2

There is one unique solution, and you should be able to find it without guessing. You
may find it helpful to make small x's between dots that cannot be connected.

2

3

3
3
3

2

3

3

1

2

3

2


2

2

1

1

1

2

3

2

2
2

1

2

2
2

In a Slitherlink Puzzle, you connect horizontally or vertically adjacent dots to form a
meandering path that forms a single loop, without crossing itself, or branching. The
numbers indicate how many lines surround each cell. Empty cells may be surrounded by

any number of lines (from 0 to 3).

Need some solving help? Visit krazydad.com/slitherlink

2

2

1

3
1

2

3

1

3
1

1

2

2
3

3


2

2
2

2

3

2

2

1

1

3

2

2

2

1

2


3

1

2

2

2

3

3
2
1


Slitherlink #2

2

2

Easy Slitherlink Puzzles from Krazydad, Book 1

2

2

3


2

2

2

2

2

2

3

3

2

1

2

2

2

3

3


3

2

1

1

2

2

3

2

2

1

2

2

3

3

2

2

2

3

1

2

2

2

1

3

2

1

1

2

3

3
2


2

1

2

3
2

3

2

3

2

3

3

2

1

3

2


1

3

2

2

2

3

2

1

2

2

2

1

2

2

2


2

1

1

1

3

3

3

2

3

2

3

2

1

2

3


2

2

2

3

2

3

1

3

2

3

1
2

2

1
2

2


2

2
2

3

3
3

2

2

2

0

2

2

2

3

0

2


2

2

2

There is one unique solution, and you should be able to find it without guessing. You
may find it helpful to make small x's between dots that cannot be connected.

2

2

1

2

2

2

2

1

3

3

2


2

1

2

2

2

3

3

2

2

1

3

2

In a Slitherlink Puzzle, you connect horizontally or vertically adjacent dots to form a
meandering path that forms a single loop, without crossing itself, or branching. The
numbers indicate how many lines surround each cell. Empty cells may be surrounded by
any number of lines (from 0 to 3).


Need some solving help? Visit krazydad.com/slitherlink

2

3

2

3
3

1

2

1
2

3
0

2

2

3
3

2


3

2

1

3

3

2

3

1

1

3

1

1

3

1

2


3

2
2

2

2

2

3

2

1

3
3
1

2

3


Slitherlink #3

Easy Slitherlink Puzzles from Krazydad, Book 1


2

2

2

2

2

1

2

2

1

2

3

1

2

2

2


1

2

2

2

2

2

3

3

2

1
2
2

2

2

3

1


1

3

2

2
3

3

3

2

2

2

2

2

1

3

3

1


2

3

2

2

2

3
1

2

2

3

3

2

1

2

3


3

2

2

2

2

2

3

2

2

3

2

3

2

1

2


2

3

2

1

3

3

2

1

2

1

2

2

2

2

2


2

3

3

3

1

2

2

2

1

3

3

2

2

1

1


2

2

1

2

3

2

In a Slitherlink Puzzle, you connect horizontally or vertically adjacent dots to form a
meandering path that forms a single loop, without crossing itself, or branching. The
numbers indicate how many lines surround each cell. Empty cells may be surrounded by
any number of lines (from 0 to 3).
There is one unique solution, and you should be able to find it without guessing. You
may find it helpful to make small x's between dots that cannot be connected.

3

2

1
2

2

2
3


1

1

1

2

Need some solving help? Visit krazydad.com/slitherlink

3

2

2

1

2

1

2

2

2

3


2

2

2

3

3

3

2

2

3

1

2

2

3

3

2


2

2

1

2

2

1

2

2

2

2

1
1

3

2

2


2

2

2

1
2

2

2

2

3

3
2

3

1

1

2

3


2

3
2

2
3

1

2

3

2

3
2

1

2

1

2
0

1


3

3

2

2

2
1
2

1
3

2

3

3


Slitherlink #4

Easy Slitherlink Puzzles from Krazydad, Book 1

3
2

2

2

2

2

2
2

3

3

3
2

0

2

3

2

0

2

2


2

2

3

3
2

3

0

2

2
1

2

2

2

3
3

2

2


2

3

2

2

3

2

0

2

1

3

1

2

3

0
2
3


3

1

2

2

2

2

3

2

1

1

2

2
2

2

2


3

2

3

2

3

2

3

3
2

2

2

2

3

3

2

3


2

1

3

2
2

3
2

2

2

2

0

2
2

2

2

1


3

2

2

3

2

1

2

2

2

1

2

2

3

3

2


2

2

2

2

2

1

2

2

2

2

2

2

2

2

2


2

2

3

2

2

2

1

2

2

1
3

2

2
1

1

3


3

1

2

2

2

3

3

1

1

3

1

3

2

2

3
2


0
2

2

1

2

2

2

2

3

2

1

2

2

1

2


2

3

2

3

2

3

3

2

2

3

1
2

3

1

1

3


2

2

2

3

2

1

2

In a Slitherlink Puzzle, you connect horizontally or vertically adjacent dots to form a
meandering path that forms a single loop, without crossing itself, or branching. The
numbers indicate how many lines surround each cell. Empty cells may be surrounded by
any number of lines (from 0 to 3).
There is one unique solution, and you should be able to find it without guessing. You
may find it helpful to make small x's between dots that cannot be connected.
Need some solving help? Visit krazydad.com/slitherlink

3

2


Slitherlink #5


1

2

3

Easy Slitherlink Puzzles from Krazydad, Book 1

2

2
1

1

2
2

2

2

2

1

1

2


3

1

2

3

2

2

3

2

2

3

2

2

2

1

2


2

3

1

2

2

1

0

2

3

1

2

3

2

2

3
1


3

1

2

2

3

1

2

3

2

2

2

3

3

2

2


0

3

1
1

2

2

1

3

2

2

2

2

1
2

0

0


2

2

3

2

1

3

3

0

1

2
3

1

2

2

2


2

2

3

2

2

2

2

3

0

2

1

1

3

2

3


2

3

2

1

3

2
1

3

1

In a Slitherlink Puzzle, you connect horizontally or vertically adjacent dots to form a
meandering path that forms a single loop, without crossing itself, or branching. The
numbers indicate how many lines surround each cell. Empty cells may be surrounded by
any number of lines (from 0 to 3).
There is one unique solution, and you should be able to find it without guessing. You
may find it helpful to make small x's between dots that cannot be connected.

2

1

2


3

1
1

3

2

2

0

2

2

2
1

2

3

2

2
2

3


3

2

2

3

1

2
2

3

2

2

1

2

0

3

2


1

3

1

Need some solving help? Visit krazydad.com/slitherlink

3

2

2

1

2

3

2

2

2

3

1


3

2

3

2

2

3

0

1
2

2

2

2

2
2

1

2


2
1

1
2

2

3
3

2

3

2

1

2

3

2
1

1

2



Slitherlink #6

Easy Slitherlink Puzzles from Krazydad, Book 1

2
3

1

3

2

2

2

2
2

3

2

3
2

1


1

3

1

3

2

2

2

1

3

2

2

2

3

1

2


2

3
3

2

2

2

2

2

2

3

1

2

2

1

2

2


2

3

3

3

1

1

1

1
2

1

2

2

2

3

2


2

0

3

3

2

3

3

1

3

1

2

2

2

3

1
2

2

2

2

1
2

2

2
2

3

3

1

3

2

3
2

3

1

3

3

3

1

2

2

2
3

2

2
1

2

2
2

1

2

3


0

3

2

3
2

2

3

2

2

3

2

1

2

3

2


2

2

2

1

2

2

2

2

2

1

1
3

3

2
3

2


3

2

3

2

2

1

1

2

1
2

2

2
0

2

In a Slitherlink Puzzle, you connect horizontally or vertically adjacent dots to form a
meandering path that forms a single loop, without crossing itself, or branching. The
numbers indicate how many lines surround each cell. Empty cells may be surrounded by
any number of lines (from 0 to 3).

There is one unique solution, and you should be able to find it without guessing. You
may find it helpful to make small x's between dots that cannot be connected.
Need some solving help? Visit krazydad.com/slitherlink

2

2

2

2

3

2

2

1

2
2

3

1

3

2

2

1

2

2

2

3

2

2

2

2

3

2

0

2

2


3

3

1

3

3

3

1

3

2

1

2

3

3


Slitherlink #7

1

1

2

2

2

2

3

Easy Slitherlink Puzzles from Krazydad, Book 1

1

3

2

2

3

0

3

2


1

2

2
2

1

3

3

2

2

0

2
2

2

2

3

2


2

2

2

1

3

2

1

1

2

3

3
3
2

3
2

2
2


1
2

3

3

3

2

2

3

1

3

1

1

2

3

1

3


2

3

2

3

2
3
2

3

1

2

3

2

3

1

2

2


2

3

0

1

2
3

3

2

1

2
2

2

3

2

2

3


1

2

2

2

In a Slitherlink Puzzle, you connect horizontally or vertically adjacent dots to form a
meandering path that forms a single loop, without crossing itself, or branching. The
numbers indicate how many lines surround each cell. Empty cells may be surrounded by
any number of lines (from 0 to 3).
There is one unique solution, and you should be able to find it without guessing. You
may find it helpful to make small x's between dots that cannot be connected.

2

1

3

3

1

2

2


3

2

2

2

2

2

3

2

3

2

2
1

2

3

2

2


2

1

1

0

2

1

1

2

1

3

2

3

Need some solving help? Visit krazydad.com/slitherlink

2

2


2

1

1
3

3

0

3

2

2

3

1
2

3

2

3

1

2

2

1

3

2
3

3

2

3

2

2

2

2

0

2

2


1
3

3

1

2

2
3

3

3

0

3

2

2

1

2

3

2

2


Slitherlink #8

2

1

Easy Slitherlink Puzzles from Krazydad, Book 1

3

2

3

2

2

2

2

2

0


2

2

2

2

0

3

2

2

3

3

2

2

0

2

3

2

2

3

3

3

0

2

1

3

3

2

2

2

2

3


2
2

0

2

1

2

1

3

2

2

1

2

1

3

2

1


3

2

1

3

0

2

2

3

2

3

2

3

2

2

2


2

2

2

3

1
3

3

2

2
2

2

3

2

2

2

2


2

3

2

2

2

3

2

2

3

1

2

3
2

0

2


2

2

2

1

There is one unique solution, and you should be able to find it without guessing. You
may find it helpful to make small x's between dots that cannot be connected.

2
3

2

2

2

1

2

0

2

2


1

1

2

2

In a Slitherlink Puzzle, you connect horizontally or vertically adjacent dots to form a
meandering path that forms a single loop, without crossing itself, or branching. The
numbers indicate how many lines surround each cell. Empty cells may be surrounded by
any number of lines (from 0 to 3).

Need some solving help? Visit krazydad.com/slitherlink

1

2

2

2

2

3

3

2


1

1

2

2

2

2

1
2

0
3

2

3

2
2

2

1


2

3

2

3

2

1

2

2

0

1

2

1

2
2

3

2


3
2

3

1

2

2

3

2

2

2

2

3

3

2

2


2

2

3

2

2

2

1

3

3

2

3

2

1

2

2


2

2

3

2

2

1


Answers #1-6

Easy Slitherlink Puzzles from Krazydad, Book 1

#1
1

#2
2

3

3

3

2


2

1
1

2
1

2

3

2

0

3

2

2

3

3

2

3


3

2

0

2

3

3

2

2

2
3

2

2
2

3

3

2


1

3

2

3

3

2

2
1

1

2

3

2

3

2

3


2

1

3

1

2

2

3

2

1

2

3

2

2

1

0


3

3

2

1

2

1
3

2

3

1

2
2

2

2

1

2


3

1

3
2

2

2

2

3

0

3

2

2

2

2
2

2


3

2

2

2

3

2

3

1

3

2

2

2

2

2

1


2

2

1

2

3
2

3

2

2

3

3

3

2

3

1

2


2

2

1

2

2

2

2

3

3

2

2
2

2

2

2


1

1

3

2

3

3

2

2

1

2

2

2

2

2

1


2

2

3

1

2

3

2
2

1
3

3

3

2

3
2

3

1

1

2

3

3

2

2

2

3

2

2

3

2

3

2

3


3

2

1

3

2

1

2

3

2

2

1

2

2

2

2


2

2

2

1

1

1

3

3

3

2

3

2

3

2

1


2

1

3

3

2

2

2

3
1

1

3

2

2

3

1

3


2

2
1
2

3

2

2

1
2

2

2

2
2

3

3

1

3


2
2

3

2

2

2

2

3

3
2

2

3

3
2

2

2


1

3

0

2

2

2

3

2

2

2

2

0

2

2

2


3

0

2

2

2

2

2

3

2

3
2

2

1

1

2

3

1

2

3
3

2

3

1

2

1

3

3

1

2

1

1
3


2

3

2

3

2

1

2

2

3

2

1

1

2
3

3

3


3

2

2

2

2

1

2

3

1

2

3

2

2

2

3

1
2

3

1

2

2

2

2

2

3

2

2

2

3

2

2


2

2

3

3

2

1

2

3

3

3

1

2

2

2

2


2

2

3

2

2

3

2

3

2

1

2

2

3

2

1


3

3

2

1

2

2

2

1

2

1

2

2

2

2

2


2

3

3

3

1

2

2

2

1

3

3

2

2

1

1


2

2

2

3

3

2

2

2

2

2

3
2

2

0

2


3

2

0

2
3

3

2

2

3

0

2

2
1

2

2

1


0

1

3

3

3
3

2

3

2

2

3

#5

2

3

1

3

3
1

2

3

3

2

2

3

2

0

2
3

1

2

2

1


3

2

2

2

3

2

1

1

1

3

3

3

2

3

2


3

2

2

2

2

3

3

2

3

2

1

3

3

2
2

3

2

2
2

2

2
2

2

2

1

3

2

2

3

2

1

2


0

2

2

1

2

2

2

2

1

2

2

2

2

2

2


2

2

2

3

1

2

2
2

2

2

2

2

1

2

1

2


2

3

3

2

1
2

1

1

1

2

2

2

2

3

2


3

3

2

0
2

2

0

3

2

2

3

1

2

2

2

2


3

2

1

2

1

1

2
3

2

3

3

2

2

2

2


2

3

1

3

2

1
2

2

3

2

2

2
1

1

2

3


2
2

2

2

1
3

3

1

2
1

2
2

3

2

2
3

1

1


1

2
1

1

3

2

2

2

2

1

2

2

2

3

2


2

2

2

3

2

2

3

1

3

2

3

2

2

2

2


1

3

2

3

1

3

3

3

1

2
2

1

2

3

2

2


3

3

3

1

2

1

3

3

3

2

2

2

2
2
2

2


#6

1

2

3

2

2
1

1

2
2

2

2

1

1

2

3


1

2

3

2

2

2

2

2

3

2

2

2

1

2

2


3

1

2

3

1

0

2

3

1
3

3

1

2

2

1


1

2

2

3

2

2

2

3

3

2

2

0

3

1
2

2


1

3

2

2

2

2

2

0

0

2

2

3

2

1

3


3
1
3

2

2

2

2

2

3

3

2

2

2

2

3

0


2

1

1

3

2

3

2

3

2

1

2
1

2

3

3


2

2

2

1

3

2

3

0

3

3

2

3

3
2

1

2


1

3

1

3

2

2

2

1

3

2

2

2

1

3

3


2

1

2

3

2

2

1

2

3

2
2

2

1

2

2


2

2

2

2

3

2

2

1

2

2

3

3

3

1

1


1

1

2

2

1
2

2

3
1

2

2

2

3

0

3

3


2

3

3

1

3

1

2

2

2

1
2
2

2

1
2

2

3


3

3

3
2

3

3

3

3

1

2

2

2
3

2
1

2


1
2

2

2

2
1

2

2
2

1

1
3
2

3

2

3

2

2


2

1

2

1

1

2
2

3

1

3

2

2

3

2

2


2

2
3

2

2

1

2

3

0

2

2

2

2
2

3

2
1


2

3

2

2
3

3

2

1
1

2
2

3

2

1

2

2


1

2

1

3

0

3

2

3

2

2

1

1

2

3

2


2

2

3

3

1

0

3

1

2

2

3

2

2

3
1

0


1
2

2

2

2

2
2

3

2

2

1

2

1

3
3

2
2


3

2

1

2

3

2
1

1

1

2

3

2

1

1

3


1

2

3

2

3
2

3

2

2

2

2

2

1

2

2

2


1

1

1

1

2

3

3

2

2

#4
2

2

3

2

2


3

2

2
2

1

1

2

2

2

2
2

2

3

2

3

2


2

3

1

2

3

2

2

3
1

2

3

#3

2

2

2

1


3
1

1

0

2
3

3

2

2
2

2

1

3

3

2

1


1

3

2

2

2

1
1

2

2

1
0

2

3

1

2

2


2

3

0

3

2

3
2

2

3

2

2

3

2

1

2

3


2

2

2

2

2

2

2

2

2

0

3
2

2

3

2


2

2

1

2

2

1
2

2
3

3
1

1

1
3

2

3

2
2


3


Answers #7-8

Easy Slitherlink Puzzles from Krazydad, Book 1

#7

#8

1

1

3

2

3

0

3

2

1


2

2

2

2

1

2

3

2

2
2

1

3

3

2

2

0


2

2

2

3

2

2

2

2

1

3

2

1

3

3
2


3
2

2
2

1

2

3

3

2

2

3

1

3

1

2

3
1


2

3

1

3

2

3

2

3

2
3

2

2
2

1

3

1


2
3

3

2

1

2

3

2

2

3

1

3

2

1

2
1

2

2

2

1

3

3

2

2

3

2

2

2

2

2

2


3

3

2

3

2

2

2

2

2

3

0

2

2

2

2


0

3

2

2

3

2
2

2

3

3

2
1

3

3

2

2


0

2

2

2

0

2

2

2
2

2

3

2

1

1

3

3


2

1
2

1

3

2

1

2

3

2

0

3

2

3

2


0

2

2

3

3

2

2

3

2

2

2

2

1

2

1


2

2
1

2

2

1

3

3

3

2

2
2

2

3

2

2


2

2

2
3

2

2

3

2

2

2

3

2

2

3

1

2


3
2

0
2

2

2

2

2

1

2

1

1

0

2

2

1


2

2

2
2

2

2

2

2

1
2

2

2

3
1

3

2


1

0

1

2

2

3

2

1
1

3

1

2

3
2

3

2


2

2

2

2

2
2

3

2

2

2

2

3

3

3
2

2


2

3
2

2

2

3

2

3

2

2

1

1

2

2

0

1


2

2

0

1

2
0

2

3

3

1

2

3

2

2

1


2

1

1

3

2

2

3

2

3

1

1
3

0

3

2

3


3

3

2

3

1

2

2
2

3

2

1
2

2

3

1

2

3

3

2

3

2

1

3

0

2
3

2

2

2

1

2

2


2

1
3

3

1

2

2
3

3

3
2
0

3

2

2

3

2


3

2

1

2

2

2

2

3

2

2

1



×