Tải bản đầy đủ (.pdf) (29 trang)

Báo cáo thực hành kinh tế lượng nhóm ACDNPP

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.17 MB, 29 trang )

Báo cáo thực hành Kinh tế lượng

BÁO CÁO THỰC HÀNH KINH TẾ LƯỢNG

Lớp tín chỉ: C5032.1LT1
Họ tên các thành viên trong nhóm:
1. Vũ Thị Thúy Phương
2. Phạm Thị Thanh Nga
3. Đậu Thị Hà Phương
4. Đỗ Thị Kim Anh
5. Phạm Hải Chung
6. Nguyễn Thái Dương

Nhóm ACDNPP- Lớp CQ5032.1LT1- Khoa QTKD

Page 1


Báo cáo thực hành Kinh tế lượng

MỤC LỤC
1. Nêu giả thuyết về vẫn đề kinh tế
1.1. Lí do chọn vấn đề
1.2. Cơ sở lý thuyết
2. Xây dựng mô hình toán kinh tế tương ứng để mô tả giả thuyết đã được xác định
3. Thu thập số liệu thống kê.
3.1. Nguồn số liệu
3.2. Bảng số liệu.
4. Xây dựng mô hình kinh tế lượng tương ứng.
4.1. Nhập số liệu vào Eviews 5.1 ta có bảng.
4.2. Lựa chọn mô hình hồi quy


5. Ước lượng mô hình hồi quy sử dụng phần mềm Eviews :
6.Kiểm định các khuyết tật của mô hình.
6.1. Đa cộng tuyến.
6.2. Phương sai sai số thay đổi.
6.3. Tự tương quan.
6.4. Kiểm định về chỉ định mô hình.
6.5. Kiểm định tính phân phối chuẩn của sai số ngẫu nhiên.
7. Phân tích và đánh giá mô hình.
7.1. Kiểm định sự phù hợp của mô hình hồi quy và các hệ số hồi quy.
7.2. Khi biến độc lập thay đổi thì biến phụ thuộc thay đổi như thế nào?
7.3. Khi giá trị của biến độc lập tăng lên 1 đơn vị thì biến phụ thuộc thay đổi tối
đa bao nhiêu?
7.4 Nếu giá trị của biến độc lập tăng lên 1 đơn vị thì biến phụ thuộc thay đổi tối
thiểu bao nhiêu?
7.5. Sự biến động của biến phụ thuộc đo bằng phương sai do các yếu tố ngẫu
nhiên gây ra là bao nhiêu?
8.Dự báo về mô hình:
8.1 Dự báo giá trị trung bình của tỷ lệ thất nghiệp.
8.2 So sánh số liệu thực tế của Y với số liệu dự báo YF
8.3 Dự báo tỷ lệ thất nghiệp đến năm 2015
9.Kiến nghị về vấn đề nghiên cứu

Nhóm ACDNPP- Lớp CQ5032.1LT1- Khoa QTKD

Page 2


Báo cáo thực hành Kinh tế lượng

1. Nêu giả thuyết và vấn đề kinh tế.

1.1. Lí do chọn vấn đề:
Lạm phát, thất nghiệp và tốc độ tăng trưởng kinh tế là 3 vấn đề cơ bản lớn
của nền kinh tế vĩ mô.chúng cũng được xem như là các chỉ tiêu để đánh giá mức
độ thành công của một nền kinh tế.Vì vậy nghiên cứu về 3 vấn đề này luôn là một
vấn đề quan trọng và cần thiết.Hiểu rõ được vấn đề trên sẽ giúp chúng ta trong việc
đưa ra những biện pháp giúp phát triển nền kinh tế một cách tốt nhất.
Trong tình hình kinh tế thế giới đầy biến động, những cuộc khủng hoảng kinh
tế toàn cầu làm giảm tỷ lệ tăng trưởng kinh tế và khiến cho lạm phát, thất nghiệp ở
nhiều quốc gia tăng cao, trong đó có cả Việt Nam.Một yêu cầu được đặt ra là phải
nghiên cứu một cách sâu sắc về sự tác động qua lại giữa 3 vấn đề này.
♦ Mối quan hệ giữa lạm phát và thất nghiệp:
-Mối quan hệ giữa lạm phát và thất nghiệp trong dài hạn như sau: Không có
sự đánh đổi giữa lạm phát và thất nghiệp .Tỷ lệ thất nghiệp sẽ trở về với thất
nghiệp tự nhiên cho dù lạm phát có tăng bao nhiêu đi chăng nữa.Trong dài hạn lạm
phát tăng hay giảm đều không ảnh hưởng đến nền kinh tế do có sự điều chỉnh về
tiền lương.Tiền lương sẽ giảm cho đến khi thị trường lao động cân bằng.
-Trong ngắn hạn khi cầu lao động tăng thì thất nghiệp tăng , còn trong dài
hạn ban đầu thất nghiệp tăng nhưng do tiền lương điều chỉnh làm cho thất nghiệp
giảm và thị trường lao động cân bằng.Trong dài hạn do áp lực của cung thừa, tiền
lương của mỗi người sẽ giảm xuống để duy trì mức thất nghiệp tự nhiên nghĩa là
không có thất nghiệp tự nguyện.Khi nền kinh tế suy giảm, cầu về lao động
giảm.Giai đoạn đầu tiên sẽ có thất nghiệp vì tiền lương chưa kịp điều chỉnh theo
mức sản lượng cân bằng mới.Nhưng trong dài hạn tiền lương sẽ giảm đến mức thất
nghiệp tự nhiên và lúc đó thất nghiệp do thiếu cầu mới bị triệt tiêu.
♦ Mối quan hệ giữa tổng sản phẩm quốc nội(GDP) đến thất nghiệp:
Theo thống kê năm 2010, hệ số co giãn việc làm của Việt Nam chỉ đạt mức
trung bình 0.28 trong khi đó tổng sản phẩm quốc nội liên tục tăng, tức khi GDP
tăng 1% thì việc làm chỉ tăng 0.28%.Thấy rằng hệ số co giãn việc làm thấp, tăng
trưởng cao nhưng chưa tạo ra nhiều việc làm đem lại lợi ích cho người lao động.
1.2. Cơ sở lý thuyết để lựa chọn mô hình

♦Về mối quan hệ giữa tăng trưởng và thất nghiệp:
Theo Robert J.Gordon, mối quan hệ giữa tăng trưởng và thất nghiệp theo định
luật Okun được mô tả bằng 1 phương trình dạng tuyến tính như sau:
u = u* - h .(100.(Y/Y*)-100)
trong đó: u: là tỷ lệ thất nghiệp thực tế (%)
u*: là tỷ lệ thất nghiệp tự nhiên (%)
Y: là GNP thực tế
Nhóm ACDNPP- Lớp CQ5032.1LT1- Khoa QTKD

Page 3


Báo cáo thực hành Kinh tế lượng

Y* : là GNP tiềm năng.
h : là tham số phản ánh độ nhạy cảm của sự thay đổi giữa thất
nghiệp và sản lượng.
Còn theo Paul A.Samuelson và William D.Nordhaus, định luật Okun được
hiểu : "Khi sản lượng thực tế thấp hơn sản lượng tiềm năng 2% thì thất nghiệp sẽ
tăng thêm 1%’’
♦Về mối quan hệ giữa thất nghiệp và lạm phát :
Giáo sư A.W.Phillips nghiên cứu về ˝Mối quan hệ giữa thất nghiệp và nhịp độ
thay đổi tiền lương ở Liên hiệp Anh trong giai đoạn 1861-1957˝ đã đưa ra đường
Phillips ngắn hạn, mà theo đó, khi mức % của tiền lương danh nghĩa bằng mức lạm
phát (gp) thì ta có :
gp= -β.(u-u*)
Phương trình này gợi ý rằng, có thể đánh đổi lạm phát nhiều hơn để có được
một tỷ lệ thất nghiệp ít hơn và ngược lại.
2. Xây dựng mô hình toán kinh tế tương ứng để mô tả giả thuyết đã được xác
định

Với giả thuyết về mối quan hệ giữa GDP, lạm phát và thất nghiệp của nền kinh
tế như các phân tích ở trên, có thể thể hiện dưới dạng hàm số đơn giản như sau:
Yi = β1 + β2*X2i + β3*X3i
Trong đó:
 Yi (tỷ lệ thất nghiệp) (%): là biến phụ thuộc
 X2i (GDP) (nghìn tỷ USD); X3i (tỷ lệ lạm phát) (%): là các biến độc
lập
 β1: là hệ số chặn
 β2, β3: là hệ số góc của mô hình hồi quy tổng thể
 Ui : là yếu tố ngẫu nhiên.
3. Quan sát và thu thập số liệu thống kê
3.1. Nguồn số liệu

Nhóm ACDNPP- Lớp CQ5032.1LT1- Khoa QTKD

Page 4


Báo cáo thực hành Kinh tế lượng

/>ears.jpg
/> /> /> /> /> /> />3.2. Bảng số liệu:

NĂM
1993
1994
1995
1996
1997
1998

1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009

TỶ LỆ THẤT
NGHIỆP (Y) (%)
10.5
7.03
6.08
5.7
6.01
6.85
6.74
6.42
6.8
6.01
6.1
5.6
5.3
4.82
4.2
2.38

2.90

GDP (NGHÌN TỶ
USD) (X2)
13.180954
16.286434
20.736163
24.657470
26.843701
27.209601
28.683658
31.172517
32.685199
35.058216
39.552513
45.427854
52.917269
60.913515
71.015592
91.094051
97.180304

Nhóm ACDNPP- Lớp CQ5032.1LT1- Khoa QTKD

TỶ LỆ LẠM
PHÁT (X3) (%)
8.4
9.5
16.9
5.6

3.1
8.1
4.1
-1.8
-0.3
4.1
3.3
7.9
8.4
7.5
8.3
23.1
6.9
Page 5


Báo cáo thực hành Kinh tế lượng

2010
2011
2012
2013

2.88
2.22
1.99
2.37

106.426845
123.600141

129.817228
136.853322

11.8
18.58
6.81
6.04

4. Xây dựng mô hình kinh tế lượng tương ứng.
4.1. Nhập số liệu vào Eviews 5.1 ta có bảng sau:
obs
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

2012
2013

X2
13.180954
16.286434
20.736163
24.65747
26.843701
27.209601
28.683658
31.172517
32.685199
35.058216
39.552513
45.427854
52.917269
60.913515
71.015592
91.094051
97.180304
106.426845
123.600141
129.817228
136.853322

X3
8.4
9.5
16.9

5.6
3.1
8.1
4.1
-1.8
-0.3
4.1
3.3
7.9
8.4
7.5
8.3
23.1
6.9
11.8
18.58
6.81
6.04

Y
10.5
7.03
6.08
5.7
6.01
6.85
6.74
6.42
6.8
6.01

6.1
5.6
5.3
4.82
4.2
2.38
2.9
2.88
2.22
1.99
2.37

Sử dụng ứng dụng đồ thị trong Eviews 5.1 để xem mối tương quan giữa các
biến, từ đó có cái nhìn trực quan sinh động trong việc lựa chọn mô hình hồi quy.

Nhóm ACDNPP- Lớp CQ5032.1LT1- Khoa QTKD

Page 6


Báo cáo thực hành Kinh tế lượng

140
120
100
80
60
40
20
0

-20
94

96

98

00

02

X2

04

06

X3

08

10

12

10

12

Y


140
120
100
80
60
40
20
0
94

96

98

00

02

04

X2

Nhóm ACDNPP- Lớp CQ5032.1LT1- Khoa QTKD

06

08

Y


Page 7


Báo cáo thực hành Kinh tế lượng

25
20
15
10
5
0
-5
94

96

98

00

02

04

X3

06

08


10

12

Y

Y vs. X3
12
10

Y

8
6
4
2
0
-5

0

5

10

15

20


25

X3

Nhóm ACDNPP- Lớp CQ5032.1LT1- Khoa QTKD

Page 8


Báo cáo thực hành Kinh tế lượng

Y vs. X2
12
10

Y

8
6
4
2
0
0

20

40

60


80

100 120 140

X2

4.2. Lựa chọn mô hình hồi quy
Thông qua 4 biểu đồ trên ta có thể nhận thấy, với mỗi một dạng hàm khác
nhau sẽ cho ta mối quan hệ giữa các biến khác nhau. Tuy nhiên ta dễ dàng nhận
thấy so với đồ thị 3, thì đồ thị 4 biểu diễn mối quan hệ giữa các biến chặt chẽ hơn,
chính xác hơn. Do vậy, ta lựa chọn mô hình hồi quy tổng thể như sau:
PRM:

LOG(Yi) = β1 + β2*X2i + β3*X3i + Ui

Trong đó:
 Yi (tỷ lệ thất nghiệp) (%): là biến phụ thuộc
 X2i (GDP) (nghìn tỷ USD), X3i (tỷ lệ lạm phát) (%): là các biến độc
lập
 β1: là hệ số chặn
 β2, β3: là hệ số góc của mô hình hồi quy tổng thể
 Ui : là yếu tố ngẫu nhiên.
Nhóm ACDNPP- Lớp CQ5032.1LT1- Khoa QTKD

Page 9


Báo cáo thực hành Kinh tế lượng

Với mẫu điều tra hiện có, ta sử dụng mô hình hồi quy mẫu như sau :

SRM:

LOG(Yi) =

1

+

2*X2i

+ 3*X3i + ei

Trong đó:


là các hệ số hồi quy ước lượng (thực chất là ước lượng
điểm của các hệ số hồi quy β1, β2, β3.
 ei: là phần dư ( là sai lệch giữa giá trị cá biệt của biến phụ thuộc so với
ước lượng giá trị trung bình của chúng trong mẫu).
1,

2,

3:

5. Ước lượng mô hình hồi quy sử dụng phần mềm Eviews.
Với mô hình như trên, ta nhập lệnh LS LOG(Y) X2 X3 C, ta được báo cáo kết quả ước
lượng sử dụng phần mềm Eviews 5.1 như sau:
Báo cáo 1: Kết quả ước lượng mô hình tỉ lệ thất nghiệp theo GDP và tỉ lệ lạm phát


Dependent Variable: LOG(Y)
Method: Least Squares
Date: 03/12/14 Time: 12:38
Sample: 1993 2013
Included observations: 21
Variable

Coefficient

Std. Error

t-Statistic

Prob.

X2

-0.010626

0.000714

-14.88668

0.0000

X3
C

-0.010858
2.250686


0.004881
0.052369

-2.224498
42.97746

0.0391
0.0000

R-squared
Adjusted R-squared

0.940836
0.934262

Mean dependent var
S.D. dependent var

1.551776
0.467450

S.E. of regression

0.119851

Akaike info criterion

-1.273569


Nhóm ACDNPP- Lớp CQ5032.1LT1- Khoa QTKD

Page 10


Báo cáo thực hành Kinh tế lượng

Sum squared resid

0.258557

Schwarz criterion

-1.124351

Log likelihood

16.37247

F-statistic

143.1198

Durbin-Watson stat

1.412987

Prob(F-statistic)

0.000000


♦Với kết quả như trên, ta có mô hình hồi quy mẫu :
Log (Y) = 2,250686 – 0,010626 * X2 – 0,010858 * X3 + eᵢ
♦Ý nghĩa của các hệ số hồi quy :


= 2,250686>0 : cho biết khi GDP bằng 0 và không có lạm phát
thì tỷ lệ thất nghiệp trung bình là 2.250686.
 2=-0,010846< 0 : cho biết khi GDP tăng 1 nghìn tỷ USD thì tỷ lệ
thất nghiệp trung bình giảm 0.010846%, trong điểu kiện tỷ lệ lạm
phát không thay đổi. Điều này hoàn toàn phù hợp với lý thuyết kinh
tế đã đề cập ở trên.
 3 = -0,010046< 0: cho biết khi tỷ lệ lạm phát tăng 1% thì tỷ lệ thất
nghiệp trung bình giảm 0.010046 %, trong điều kiện GDP không
thay đổi . Điểu này hoàn toàn phù hợp với lý thuyết kinh tế đã nêu
trên.
1

6.Kiểm định các khuyết tật của mô hình.
6.1. Đa cộng tuyến.

Sử dụng mô hình hồi quy phụ: Hồi quy phụ là phương pháp kiểm định dựa
vào định nghĩa đa cộng tuyến, tức là hồi quy một biến giải thích với các biến giải
thích còn lại để xem xét có mối quan hệ tuyến tính giữa từng biến giải thích với
các biến giải thích khác của mô hình ban đầu hay không. Ở mô hình trên, ta sử
dụng hồi quy phụ để xét mối quan hệ tuyến tính giữa biến X2 và X3. Tacó:

Báo cáo 2: Kiểm định hồi quy phụ X2 theo X3
Dependent Variable: X2
Method: Least Squares

Date: 03/15/14 Time: 16:38
Sample: 1993 2013
Included observations: 21
Nhóm ACDNPP- Lớp CQ5032.1LT1- Khoa QTKD

Page 11


Báo cáo thực hành Kinh tế lượng

Variable

Coefficient

Std. Error

t-Statistic

Prob.

X3
C

2.429913
38.43548

1.466408
14.33743

1.657051

2.680779

0.1139
0.0148

R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat

0.126269
0.080283
38.52138
28194.04
-105.4223
0.204072

Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)

57.68155
40.16750
10.23070
10.33018

2.745818
0.113930

- Mô hình hồi quy phụ: X2i =  1 +  2 X3i + Vi ; thu được R12 .
- Kiểm định cặp giả thuyết sau:
o H0: Mô hình gốc không có đa cộng tuyến
o H1: Mô hình gốc có đa cộng tuyến
R12 * (n  k  1)
- Tiêu chuẩn kiểm định: F 
~ F(1,19)
(1  R12 ) * (k  2)

- Miền bác bỏ: W = {F: F> F0.05

( 1,19)

}

- Từ bảng báo cáo ta có : Fqs=(0.126269*19) / (1-0.126269) = 2,745818
Với mức ý nghĩa  =0.05 tra bảng thống kê ta có: F0.05(1,19) =4,38 ;
Nhận thấy : Fqs= 2,745818 < F0.05 ( 1,19) = 4,38
 Fqs không thuộc Wα
 Chưa đủ cơ sở để bác bỏ giả thuyết H0
Kết luận: Vậy với mức ý nghĩa  =0.05 thì mô hình gốc không có đa cộng
tuyến.

Nhóm ACDNPP- Lớp CQ5032.1LT1- Khoa QTKD

Page 12



Báo cáo thực hành Kinh tế lượng

6.2. Phương sai sai số thay đổi.
Ta sử dụng kiểm định White như sau.
Báo cáo 3 : Kiểm định White với mô hình White có tích nhân chéo

White Heteroskedasticity Test:
F-statistic
Obs*R-squared

0.882190
4.772044

Probability(5, 15)
Probability(5)

0.516591
0.444329

Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 03/15/14 Time: 07:33
Sample: 1993 2013
Included observations: 21
Variable

Coefficient


Std. Error

t-Statistic

Prob.

C
X2
X2^2
X2*X3
X3
X3^2

0.050031
-0.001590
8.71E-06
1.93E-05
0.000975
-6.75E-05

0.026226
0.000844
4.81E-06
3.56E-05
0.002701
0.000153

1.907726
-1.883715
1.811419

0.541825
0.360969
-0.442222

0.0758
0.0791
0.0901
0.5959
0.7232
0.6646

R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat

0.227240
-0.030346
0.024762
0.009197
51.40279
1.643729

Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic

Prob(F-statistic)

0.012312
0.024394
-4.324075
-4.025640
0.882190
0.516591

- Kiểm định cặp giả thuyết:
Nhóm ACDNPP- Lớp CQ5032.1LT1- Khoa QTKD

Page 13


Báo cáo thực hành Kinh tế lượng

H0: Phương sai sai số không thay đổi
H1: Phương sai sai số thay đổi
- Mức ý nghĩa 5%
- Sử dụng tiêu chuẩn kiểm định:  2  nR 2 ~  2( m )
- Miền bác bỏ giả thuyết H0: W    2 /  2   2( m) 
- Theo báo cáo 3, ta có:  qs2  nR 2  21* 0,227204  4,772044
- Tra bảng được:  02,(055)  11,0705   qs2   02,(055)   qs2 W 
=> Chưa có cơ sở để bác bỏ giả thuyết H0 nên ta tạm thời chấp nhận H0
Kết luận: Mô hình không có phương sai sai số thay đổi.
6.3. Tự tương quan.
Dùng kiểm định BG bậc tự do là 2 như sau:
Báo cáo 4: Kiểm định BG với bậc tự do bằng 2.
Breusch-Godfrey Serial Correlation LM Test:

F-statistic
Obs*R-squared

0.223758
0.571383

Probability
Probability

0.801969
0.751494

Test Equation:
Dependent Variable: RESID
Method: Least Squares
Date: 03/15/14 Time: 08:01
Presample missing value lagged residuals set to zero.
Variable

Coefficient

Std. Error

t-Statistic

Prob.

X2
X3
C

RESID(-1)
RESID(-2)

3.52E-06
0.000339
-0.002663
0.064959
-0.170842

0.000764
0.005433
0.055298
0.269081
0.268500

0.004598
0.062356
-0.048160
0.241410
-0.636281

0.9964
0.9511
0.9622
0.8123
0.5336

R-squared
Adjusted R-squared


0.027209
-0.215989

Mean dependent var
S.D. dependent var

Nhóm ACDNPP- Lớp CQ5032.1LT1- Khoa QTKD

-1.72E-16
0.113701
Page 14


Báo cáo thực hành Kinh tế lượng

S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat

0.125380
0.251522
16.66212
1.533089

Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)


-1.110678
-0.861982
0.111879
0.976533

- Kiểm định cặp giả thuyết:
H0: Mô hình ban đầu không có tự tương quan bậc 2
H1: Mô hình ban đầu có tự tương quan bậc 2
- Mức ý nghĩa 5%
- Sử dụng tiêu chuẩn kiểm định:  2  (n  2) R 2 ~  2 (2)
- Miền bác bỏ giả thuyết H0, với mức ý nghĩa   0,05 là:

W







  2 /  2   2 (2)

- Theo báo cáo 4 ta có:  qs2  (n  2) R 2  0,571383
2
- Mà  02,(052)  5,9915 =>  qs   0, 05 =>  qs W 
=> Chưa có cơ sở bác bỏ giả thuyết H0, nên tạm thời chấp nhận Ho

2

2( 2)


Kết luận: Mô hình không có tự tương quan bậc 2
6.4. Kiểm định về chỉ định mô hình.
Ta dùng kiểm định Ramsey bỏ sót 1 biến để kiểm định.
Báo cáo 5: Kiểm định Ramsey bỏ sót 1 biến.
Ramsey RESET Test:
F-statistic
Log likelihood ratio

0.369149
0.451128

Probability
Probability

0.551499
0.501800

Test Equation:
Dependent Variable: LOG(Y)
Method: Least Squares
Date: 03/15/14 Time: 08:08
Sample: 1993 2013
Nhóm ACDNPP- Lớp CQ5032.1LT1- Khoa QTKD

Page 15


Báo cáo thực hành Kinh tế lượng


Included observations: 21
Variable

Coefficient

Std. Error

t-Statistic

Prob.

X2
X3
C
FITTED^2

-0.006956
-0.006747
1.679392
0.125615

0.006083
0.008394
0.941794
0.206747

-1.143545
-0.803811
1.783184
0.607577


0.2687
0.4326
0.0924
0.5515

R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat

0.942094
0.931875
0.122008
0.253062
16.59803
1.445781

Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)

1.551776
0.467450
-1.199813

-1.000856
92.19226
0.000000

- Kiểm định cặp giả thuyết:
H0: Mô hình không bỏ sót 1 biến
H1: Mô hình bỏ sót 1 biến
- Mức ý nghĩa

0,05

- Sử dụng tiêu chuẩn kiểm định:

R



 R12 /( p  1)
F
~ F (( p  1), n  k  p  1)
1  R /(n  k  p  1)



2
2
2
2




(với n=21, k=3, p=2)
- Miền bác bỏ:
- Theo báo cáo 5 ta có :
- Mà

= 0,369149

4,45 ta thấy

=> Chưa có cơ sở để bác bỏ giả thuyết H0 ,chấp nhận giả thuyết H0.
Kết luận: Vậy với mức ý nghĩa 0,05 mô hình chỉ định không bỏ sót biến
6.5. Kiểm định tính phân phối chuẩn của sai số ngẫu nhiên.
Dùng kiểm định JB như sau:
Báo cáo 6: Phân bố xác suất của phần dư.
Nhóm ACDNPP- Lớp CQ5032.1LT1- Khoa QTKD

Page 16


Báo cáo thực hành Kinh tế lượng

6
Series: Residuals
Sample 1993 2013
Observations 21

5
4
3

2
1
0
-0.2

-0.1

-0.0

0.1

0.2

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis

-1.72e-16
0.010285
0.331952
-0.187412
0.113701
0.835081
4.738655

Jarque-Bera

Probability

5.085816
0.078637

0.3

- Kiểm định cặp giả thuyết:
H0: Ui có phân phối chuẩn
H1: Ui không có phân phối chuẩn
- Mức ý nghĩa 5%
- Sử dụng tiêu chuẩn kiểm định: JB = n*(S2/6 +(K-3)2/24 ) ~ χ2(2) ;
Với K là hệ số nhọn, S là hệ số bất đối xứng
- Theo báo cáo trên ta có JBqs= 5,085816
2( 2)
ta có  0, 05  5,9915

=> JBqs <  02,(052)
 chưa có cơ sở bác bỏ Ho, nên ta tạm thời chấp nhận H0
Kết luận: Với mức ý nghĩa 5%, mô hình đã cho có sai số ngẫu nhiên U có phân
phối chuẩn.
7. Phân tích và đánh giá mô hình.
Qua các kiểm định trên ta thấy mô hình không mắc khuyết tật nào. Do đó ta có
thể tạm thời coi đó là mô hình hoàn hảo.
Mô hình hồi quy mẫu:
Log (Y) = 2,250686 – 0,010626 * X2 – 0,010858 * X3 + eᵢ

Nhóm ACDNPP- Lớp CQ5032.1LT1- Khoa QTKD

Page 17



Báo cáo thực hành Kinh tế lượng

7.1. Kiểm định sự phù hợp của mô hình hồi quy và các hệ số hồi quy.

♦Kiểm định sự phù hợp của hàm hồi quy
Có ý kiến cho rằng hàm hồi quy trên không phù hợp, để kiểm tra ý kiến đó đúng
không ta đi kiểm định:
- Kiểm định giả thuyết Hₒ: Mô hình không phù hợp (R²=0)
đối thuyết H1: Mô hình phù hợp (R2>0)
Mức ý nghĩa   0,05
- Sử dụng tiêu chuẩn kiểm định: F 

R2 / 2
~ F 2, n  3
1  R 2 /( n  3)





- Miền bác bỏ giả thuyết Ho với mức ý nghĩa 5%: W  F : F  F 2, n  3
- Theo kết quả trên báo cáo Eview 1 thì:
=0,940836; n=21 Fqs=143,1195321
. Ta thấy



 Fqs  Wα


Bác bỏ giả thuyết H0, chấp nhận đối thuyết H1.
Kết luận: Sau khi kiểm định, với mức ý nghĩa 5% ta có thể khẳng định rằng mô
hình hồi quy trên hoàn toàn phù hợp.
♦Kiểm định β1:
- Kiểm định giả thuyết Hₒ: β1=0
đối thuyết H1: β1 ≠ 0
mức ý nghĩa   0,05



 
T  1  1 ~ T (n  3)
Se1 

-Sử dụng tiêu chuẩn kiểm định:

-Miền bác bỏ giả thuyết H0 mức ý nghĩa   0,05 là:

W  t : t  tn/23 

-Theo báo cáo Eview 1 ở trên ta có tqs = 42,97746



 tqs

>

2,101




Bác bỏ giả thuyết H0, chấp nhận đối thuyết H1. Nghĩa là β1 có ý nghĩa kinh tế.

Nhóm ACDNPP- Lớp CQ5032.1LT1- Khoa QTKD

Page 18


Báo cáo thực hành Kinh tế lượng

Kết luận:Với mức ý nghĩa 5% có thể cho rằng hệ số chặn có ý nghĩa thống kê
trong thực tế.
♦ Kiểm định β2:
Có ý kiến cho rằng GDP không có ảnh hưởng tới tỉ lệ thất nghiệp, để biết
điều đó có chính xác không ta tiến hành kiểm định:
- Kiểm định giả thuyết Hₒ: β2=0
đối thuyết H1: β2 ≠ 0
mức ý nghĩa   0,05



  2
T 2
~ T n  3
Se 2 

-Sử dụng tiêu chuẩn kiểm định:
-Miền


bác

bỏ



giả

thuyết H0
 n 3 

W  t : t  t / 2



với

mức

ý

nghĩa

  0,05 là:

-Theo báo cáo Eview 1 ta có: tqs=





>

2,101

 tqs Wα
 Bác bỏ giả thuyết H0, chấp nhận đối thuyết H1.
Kết luận: Với mức ý nghĩa 5% như trên cho ta thấy tỉ lệ thất nghiệp ở Việt Nam
chịu ảnh hưởng của GDP
♦ Kiểm định β3:
Để kiểm tra xem tỉ lệ lạm phát có ảnh hưởng tới tỉ lệ thất nghiệp của Việt
Nam hay không ta đi kiểm định:
- Kiểm định giả thuyết Hₒ: β3=0
đối thuyết H1: β3 ≠ 0
mức ý nghĩa   0,05



3  3
~ T n  3
-Sử dụng tiêu chuẩn kiểm định: T 
Se 3 
-Miền bác bỏ giả thuyết H0 với mức ý nghĩa   0,05 là:
Nhóm ACDNPP- Lớp CQ5032.1LT1- Khoa QTKD

Page 19


Báo cáo thực hành Kinh tế lượng




W  t : t  tn/23



-Theo báo cáo Eview 1 ở trên ta có: tqs= -2,224498
>



>

2,101

 tqs Wα
 Bác bỏ giả thuyết H0, chấp nhận đối thuyết H1.
Kết luận: Với mức ý nghĩa 5% như trên cho ta thấy tỉ lệ thất nghiệp ở Việt Nam
chịu ảnh hưởng của tỉ lệ lạm phát.
7.2. Khi biến độc lập thay đổi thì biến phụ thuộc thay đổi như thế nào?
Để trả lời câu hỏi này ta xác định khoảng tin cậy 2 phía của 2, 3
Khoảng tin cậy 2 phía của 2:
ˆ 2 – Se( ˆ 2).

≤ 2 ≤ ˆ 2 + Se( ˆ 2).

Tra bảng giá trị tới hạn của phân phối Student ta có:
=> -0,012126 ≤ 2 ≤ -0,009126
Vậy với mức ý nghĩa α= 0.05 thì khi GDP tăng 1% thì tỷ lệ thất nghiệp giảm
trong khoảng từ 0,009126% đến 0,012126%.

♦ Khoảng tin cậy 2 phía của 3:
ˆ 3 – Se( ˆ 3).tα/2(n-3) ≤ 3 ≤ ˆ 3 + Se( ˆ 3).tα/2(n-3)

Tra bảng giá trị tới hạn của phân phối Student ta có:
=> - 0,021113 ≤ 3 ≤ - 0,00603
Vậy với mức ý nghĩa α= 0.05 thì khi tỷ lệ lạm phát tăng 1% thì tỷ lệ thất nghiệp
giảm trong khoảng từ 0.00603% đến 0,021113%

Nhóm ACDNPP- Lớp CQ5032.1LT1- Khoa QTKD

Page 20


Báo cáo thực hành Kinh tế lượng

7.3. Khi giá trị của biến độc lập tăng lên 1 đơn vị thì biến phụ thuộc thay
đổi tối đa bao nhiêu?
Để trả lời câu hỏi này ta xác định khoảng tin cậy bên phải của các j (do
j< 0)
♦Khoảng tin cậy bên phải của 2:
ˆ 2 - Se( ˆ 2).

≤ 2

Tra bảng giá trị tới hạn của phân phối Student ta có:
=> β2

=

= 1,734


- 0,011864

Kết luận: Vậy, với mức ý nghĩa α = 0.05, khi GDP tăng lên 1% thì tỷ lệ thất
nghiệp giảm tối đa 0,011864%.
♦Khoảng tin cậy bên trái của 3:
ˆ 3 – Se( ˆ 3).tα(n-3) ≤ 3
Tra bảng giá trị tới hạn của phân phối Student ta có:

=

= 1,734

=> 3 -0,019322
Như vậy với mức ý nghĩa α = 0.05 ta thấy khi tỷ lệ lạm phát tăng 1% thì tỷ lệ
thất nghiệp giảm tối đa 0,019322%.
7.4 Nếu giá trị của biến độc lập tăng lên 1 đơn vị thì biến phụ thuộc thay
đổi tối thiểu bao nhiêu.
Để trả lời câu hỏi này ta xác đinh khoảng tin cậy bên trái của các hệ số j:
♦Khoảng tin cậy bên trái của 2:
ˆ 2 ≤ 2 + Se( ˆ 2).tα(n-3)

Tra bảng giá trị tới hạn của phân phối Student ta có: :

=

= 1,734

=>2 ≤ - 0,009388
Kết luận: Vậy, với mức ý nghĩa α = 0.05, khi GDP tăng lên 1% thì tỷ lệ thất

nghiệp giảm tối thiểu 0,009388 %.
♦Khoảng tin cậy bên trái của 3:

Nhóm ACDNPP- Lớp CQ5032.1LT1- Khoa QTKD

Page 21


Báo cáo thực hành Kinh tế lượng

3 ≤ ˆ 3 + Se( ˆ 3).tα(n-3)
Tra bảng giá trị tới hạn của phân phối Student ta có:
=>3 ≤ - 0,002394

=

= 1,734

Như vậy với mức ý nghĩa α = 0.05 ta thấy khi tỷ lệ lạm phát tăng lên 1% thì tỷ
lệ thất nghiệp giảm tối thiểu 0,002394%
7.5. Sự biến động của biến phụ thuộc đo bằng phương sai do các yếu tố ngẫu
nhiên gây ra là bao nhiêu?
Ta xác định khoảng tin cậy 2 phía do phương sai do các yếu tố ngẫu nhiên gây
ra (σ2):

2

(n  3)  




2 ( n 3)

2 

2


2

(n  3)  

12(n3)
2

Tra bảng giá trị tới hạn của phân phối khi bình phương ta có:


18)
 02,(025
= 31,5264



18)
 02,(975
= 8,2307

=> 0,008201 ≤ σ² ≤ 0,031414
Vậy với mức ý nghĩa 0.05 thì sự biến động của biến phụ thuộc đo bằng phương sai

do các yếu tố ngẫu nhiên gây ra nằm trong khoảng (0,008201; 0,031414)
8.Dự báo về mô hình:
8.1 Dự báo giá trị trung bình của tỷ lệ thất nghiệp.

Nhóm ACDNPP- Lớp CQ5032.1LT1- Khoa QTKD

Page 22


Báo cáo thực hành Kinh tế lượng

10
Forecast: YF
Actual: Y
Forecast sample: 1993 2013
Included observations: 21

9
8
7

Root Mean Squared Error
Mean Absolute Error
Mean Abs. Percent Error
Theil Inequality Coefficient
Bias Proportion
Variance Proportion
Covariance Proportion

6

5
4
3

0.762878
0.439306
8.180472
0.068963
0.003046
0.071872
0.925082

2
1
94

96

98

00

02

04

06

08


10

12

YF

8.2 So sánh số liệu thực tế của Y với số liệu dự báo YF:
Obs
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013


YF
7.533979
7.202885
6.339834
6.874904
6.901864
6.511794
6.695147
6.951777
6.730418
6.25667
6.01694
5.37739
4.93915
4.581373
4.079482
2.806466
3.136633
2.6958
2.086733
2.219615
2.077011

Y
10.5
7.03
6.08
5.7
6.01
6.85

6.74
6.42
6.8
6.01
6.1
5.6
5.3
4.82
4.2
2.38
2.9
2.88
2.22
1.99
2.37

Nhóm ACDNPP- Lớp CQ5032.1LT1- Khoa QTKD

Page 23


Báo cáo thực hành Kinh tế lượng

Nhận xét:Qua so sánh số liệu thực tế với số liệu dự báo, ta thấy số liệu dự báo
khá gần với số liệu thực tế.
Dù trong giai đoạn 2008 đến 2011, khủng hoảng kinh tế tài chính toàn cầu
ảnh hướng lớn đến nước ta, dẫn đến GDP tăng trưởng chậm hơn so với những năm
trước, tỷ lệ lạm phát cũng có nhiều đột biến khi chạm mức 2 con số dẫn đến tỷ lệ
thất nghiệp có nhiều biến động.
Trong 2 năm 2012, 2013 thì tỷ lệ lạm phát đã được kiểm soát giảm đáng kể so

với những năm trước nhưng GDP vẫn tăng trưởng rất chậm dẫn đến tỉ lệ thất
nghiệp tăng giảm khó lường. Tuy nhiên, các giá trị dự báo đều khá sát với giá trị
thực tế đã thu thập được. Vì vậy, ta có thể sử dụng mô hình trên để dự báo cho tỷ
lệ thất nghiệp trong năm 2014,2015.
8.3 Dự báo tỷ lệ thất nghiệp đến năm 2015
/> />Số liệu dự báo về GDP và tỷ lệ lạm phát năm 2014 và 2015
(Dự báo của Ủy Ban Giám Sát Tài Chính Quốc Gia và Bộ Kế Hoạch Đầu Tư)
Obs

X2

X3

1993

13.180954

8.4

1994

16.286434

9.5

1995

20.736163

16.9


1996

24.65747

5.6

1997

26.843701

3.1

1998

27.209601

8.1

1999

28.683658

4.1

2000

31.172517

-1.8


2001

32.685199

-0.3

2002

35.058216

4.1

2003

39.552513

3.3

2004

45.427854

7.9

Nhóm ACDNPP- Lớp CQ5032.1LT1- Khoa QTKD

Page 24



Báo cáo thực hành Kinh tế lượng
2005

52.917269

8.4

2006

60.913515

7.5

2007

71.015592

8.3

2008

91.094051

23.1

2009

97.180304

6.9


2010

106.426845

11.8

2011

123.600141

18.58

2012

129.817228

6.81

2013

136.853322

6.04

2014

144.653961

7


2015

153.477853

6.5

Dùng Eviews 5.1 dự báo kết quả ta có :
Obs
1993
1994
1995
1996
1997
1998
1999
2000
2001

Y
10.5
7.03
6.08
5.7
6.01
6.85
6.74
6.42
6.8


YF
7.533979
7.202885
6.339834
6.874904
6.901864
6.511794
6.695147
6.951777
6.730418

2002
2003

6.01
6.1

6.25667
6.01694

2004
2005
2006
2007
2008
2009
2010
2011
2012
2013


5.6
5.3
4.82
4.2
2.38
2.9
2.88
2.22
1.99
2.37

5.37739
4.93915
4.581373
4.079482
2.806466
3.136633
2.6958
2.086733
2.219615
2.077011

Nhóm ACDNPP- Lớp CQ5032.1LT1- Khoa QTKD

Page 25


×