TRƯỜNG ĐẠI HỌC DUY TÂN
KHOA – KHOA HỌC TỰ NHIÊN
BỘ MÔN - VẬT LÝ
GIÁO TRÌNH
VẬT LÝ ĐẠI CƯƠNG A1
Dùng cho sinh viên hệ đại học
các nghành kỹ thuật
Gv: Nguyễn Phước Thể
Đà nẵng, năm 2009
Lời giới thiệu
Vật lý là một ngành khoa học cơ bản nhất. Nó gắn liền với vận động và
cấu trúc vật chất. Lĩnh vực vật lý có thể phân thành vật lý cổ điển bao gồm
chuyển động, chất lỏng, nhiệt, âm thanh, ánh sáng, điện trường, từ trường; vật lý
hiện đại bao gồm các phần tương đối tính, cấu trúc nguyên tử, vật liệu đông đặc,
vật lý hạt nhân, những hạt cơ bản, vũ trụ học và vật lý cơ bản - Tuy nhiên sự
phân chia này chỉ mang tính tương đối.
Sự hiểu biết về vật lý là rất quan trọng đối với những ai làm việc trong
khoa học và công nghệ. Nghiên cứu Vật lý cũng giống như các khoa học khác là
luôn cần sự nổ lực sáng tạo, điều này không phải là công việc đơn giản với tất cả
mọi người . Trong nghiên cứu vật lý , vấn đề quan trọng là xây dựng một lý
thuyết để khảo sát đối tượn g quan sát, đây là cơ sở trong việc giải thích các vấn
đề liên quan đến vận động của vật chất trong tự nhiên . Để xây dựng được một lý
thuyết, các nhà khoa học thường phát minh ra các mô hình để phát thảo các hiện
tượng vật lý nhằm nắm bắt được các quy luật vận động cụ thể của các vật . Một
mô hình là một dạng hình ảnh hoặc tương tự mà có thể giúp mô tả hiện tượng
bởi các thành phần của một số vấn đề gì đó chúng ta biết rõ. Một lý thuyết
thường phát triển từ một mô hình , nếu mô hìn h phát thảo là đơn giản thì vấn đề
quan sát được dễ hiểu . Từ các mô hình này ta có thể xây dựng các tiên đề, định
nghĩa, định lý, quy luật vận động tổng quát của nó nhằm mục đích nghiên c ứu
một đối tượng, nhóm đối tượng, giải thích các hiện tượng và ứng dụng khoa học
– kỹ thuật.
Trong phần cơ học ở đây ta sẽ nghiên cứu chuyển động của các vật ở tầm
vĩ mô; đó là sự thay đổi vị trí của các vật trong không gian mà không xét đến cấu
tạo cũng như những chuyển động xảy ra bên trong vật chất. Tiếp theo chúng ta
nghiên cứu những quy luật vận độ ng nhiệt bao gồm một số quá trình xảy ra bên
trong vật, thí dụ vật nóng lên khi ma sát hay nóng chảy và bốc hơi khi bị đốt
nóng,… phần này gọi là nhiệt học. Tuy nhiên, giới hạn nghiên cứ u ở đây là sự
vận động nhiệt của chất khí.
Trong tập tài liệu này chúng ta sẽ lấy một số ví dụ điển hình đ ối với các
tính toán vật lý cơ bản, là cơ sở để hiểu về đối tượng vật lý. Tiếp theo là các ứng
dụng quan trọng mà cụ thể là các vấn đề, bài toán được đưa ra để thảo luận và
giải quyết, những vấn đề này gắn liền với cuộc sống thường ngày và trong khoa
học, kỹ thuật.
Nguyễn Phước Thể
CHƯƠNG 1
ĐỘNG HỌC CHẤT ĐIỂM
Chúng ta bắt đầu nghiên cứu với cơ học, cơ học là một nhánh của Vật lý
học nghiên cứu về sự chuyển động của vật thể trong không gian và thời gian.
Đối tượng nghiên cứu của cơ học là từ các vật vô cùng bé (vi mô) như prôton,
nơtron,electron,... đến các vật vô cùng lớn (vĩ mô) như các thiên thể, các hành
tinh,… Trong cuộc sống thường ngày, ta có thể thấy chuyển động cơ học có ở
khắp mọi nơi: xe chạy, máy bay đang bay, Trái Đất chuyển động quanh Mặt
Trời,...
Chuyển động của các vật – các quả bóng, ô tô, người đi bộ hay thậm chí là
mặt trăng và mặt trời được xảy ra hằng ngày. Các chuyển động này không phải
đến thế kỷ 21 mới biết mà các vấn đề mà chúng ta biết hiện nay đều đã được
chứng minh từ rất sớm. Những đóng góp riêng lẻ của các nhà khoa học , các tập
thể nghiên cứu là rất quan trọng vào sự hiểu biết này đặc biệt là Galileo (1564 1642) và Isaac Newton (1642 - 1727),...
Lĩnh vực nghiên cứu về cơ học liên quan đến chuyển động của các vật
gắn liền với lực và các dạng năng lượng. Bây giờ chúng ta chỉ thảo luận về các
chuyển động mà không có sự quay. Chuyển động như vậy gọi là chuyển động
tịnh tiến. Trong chương này chúng ta sẽ quan tâm tới mô tả một vật mà vật đó
di chuyển dọc theo một đuờng thẳng gọi là chuyển động tịnh tiến một chiều,
hoặc theo các đường cong bất kỳ là hai, ba chiều.
Chúng ta thường sử dụng khái niệm hay mô hình của một chất lý tưởng
gọi là chất điểm hoặc là hạt , là vật có kích thước không gian không đáng kể.
Một chất điểm có chuyển động thì chỉ là chuyển động tịnh tiến. Lấy ví dụ, chúng
ta có thể xét một quả bi da hay sự kiện một con tàu vũ trụ di chuyển vào mặt
trăng như là một chất điểm nhằm mục đích mô tả và khảo sát chuyển động.
§1. MỘT SỐ KHÁI NIỆM MỞ ĐẦU
1.1 Chuyển động cơ học
Trong thực tế ta dễ dàng quan sát thấy chuyển động cơ học có mặt ở khắp
mọi nơi: người đi, xe chạy, sự chuyển động của Trái Đất quanh Mặt Trời... Ở
mỗi thời điểm khác nhau thì vị trí của vật cũng khác nhau, nghĩa là vị trí của vật
luôn thay đổi theo thời gian trong không gian.
Tuy nhiên, xem một vật cụ thể nào đó đứng yên hay chuyển động cũng chỉ
là xét một cách tương đối. Chẳng hạn nếu xem quả đất đứng yên thì sẽ thấy con
người, xe cộ, tên lửa... đều chuyển động đối với quả đất (kể cả Mặt Trời cũng
chuyển động tương đối với quả đất). Ngược lại, nếu xem Mặt Trời đứng yên thì
có thể thấy Trái Đất vừa tự quay xung quanh trục của nó vừa quay xung quanh
Mặt Trời. Vì vậy, trước khi khảo sát chuyển động của một đối tượng ta phải nắm
rõ khái niệm về nó. Chuyển động cơ học gọi tắt là chuyển động là sự thay đổi vị
trí của một vật này đối với một vật khác hoặc của phần này đối với phần khác
xảy ra trong không gian và theo thời gian.
Những phép đo vị trí, khoảng cách hay tốc độ cần xác định phải gắn liền
với hệ quy chiếu hay hệ của vật được chọn làm mốc. Ví dụ, trong khi bạn ở trên
một tàu hỏa với tốc độ 80 km/h cho rằng một người đi bộ ngược chiều với
chuyển động của bạn với tốc độ 5 km/h. 5 km/h này là vận tốc của người đối với
tàu là đứng yên. Với một phép so sánh đối với mặt đất thì người chuyển động
tương đối với vận tốc 80 km/h + 5 km/h = 85 km/h. Như vậy , cũng là người
chuyển động nhưng đối với tàu thì vận tốc là 5 km/h nhưng với mặt đất thì vận
tốc là 85 km/h. Trong các ví dụ trên, tàu và trái đất là các hệ quy chiếu do người
khảo sát đưa ra, như vậy việc chọn lựa hệ quy chiếu có vai trò rất quan trọng khi
tính vận tốc. Trong cuộc sống thường ngày, chúng ta luôn so sánh các sự kiện
trên trái đất mà quên đi tầm quan trọng của nó, thường lấy nó làm hệ quy chiếu.
Khi khảo sát chuyển động của vật ta có thể chọn hệ qui chiếu này hoặc hệ qui
chiếu khác và thường chọn hệ qui chiếu sao cho việc khảo sát chuyển động được
đơn giản nhất.
Tóm lại , hệ quy chiếu là các vật hoặc hệ vật được quy ước là
đứng yên để khảo sát chuyển động của vật khác
Khi nghiên cứu một vật mà ta chỉ quan tâm đến chuyển động mà không
quan tâm đến hình dạng, kích thước của vật thì ta dùng khái niệm chất điểm
hoặc hạt. Chuyển động của chất điểm là chuyển động tịnh tiến. Chất điểm là vật
mà kích thước hình học của nó nhỏ hơn nhiều so với phạm vi mà chúng ta
nghiên cứu, khảo sát. Ví dụ: Khi xét chuyển động bay của một viên đạn trong
không khí ta có thể xem chuyển động đó như là chuyển động của một chất điểm;
còn nếu xét chuyển động xoay của viên đạn quanh trục của nó thì ta không thể
xem chuyến động đó là chuyển động của một chất điểm được. Như ậy
v việc
xem một vật có phải là chất điểm hay không, tùy thuộc vào mục đích ta nghiên
cứu. Tập hợp các chất điểm gọi là hệ chất điểm.
Khi chúng ta khảo sát chuyển động của một chất điểm, điều quan trọng là
phải chỉ rõ không chỉ tốc độ mà còn chiều của chuyển động. Thông thường
chúng ta có thể biểu diễn một chuyển động một chiều bằng cách sử dụng các
O
x
phương qua lại giữa Đông, Tây, Nam và Bắc. Trong Vật lý, chúng ta thường vẽ
một hệ trục tọa độ để biểu diễn một hệ quy chiếu. Chúng ta có thể luôn luôn lấy
gốc O và chiều của trục x hoặc y cho tiện lợi. Các vật định vị phía bên phải so
với gốc O trên trục x có một toạ độ x mà chúng ta thường chọn là dương: ở bên
trái so với vị trí của điểm O là âm. Trong trường hợp hai hoặc ba chiều, một trục
y và/ hoặc z vuông góc với nhau từng đôi được thêm vào và được quy ước tương
tự. Mỗi điểm trong không gian có thể đặc trưng bởi các tọa độ x và y và z.
Đối với chuyển động một chiều, chúng ta thường chọn trục x là đường
thẳng dọc theo chuyển động của nó trong không gian. Do đó vị trí của một vật
tại bất kỳ thời điểm nào được cho bởi tọa độ x của nó. Nếu chuyển động là thẳng
đứng, như chuyển động rơi tự do chúng ta thường dùng trục y.
Chúng ta thường đưa ra
một ký hiệu cho sự thay đổi
giữa hai điểm do một vật
chuyển động là độ dời của vật,
độ dời được định nghĩa là hiệu
của hai tọa độ . Tọa độ của vật là vật xa bao nhiêu tính từ thời gốc toạ độ. Tuy
nhiên chúng ta cần phân biệt độ dời với quãng đường, để nhận biết sự khác biệt
giữa quãng đường đi được và độ dời, chúng ta tưởng tượng rằng một ô tô chạy
được 70 m về phía Bắc và sau đó quay ngược trở lại phía Nam với một khoảng
cách là 30m. Tổng khoảng cách đi được là 100 m, nhưng độ dời chỉ 40 m từ
điểm bắt đầu.
Độ dời là đại lượng mà có cả độ lớn và chiều. Đặc trưng bằng một véctơ
và biểu diễn bằng một mũi tên trên
x2
x1
O
x(m)
đồ thị. (Chúng ta không nhắc lại
10
30
một cách đầy đủ về véctơ vì các
bậc học khác đã nói rõ về nó .) Bây
giờ chúng ta liên hệ với chuyển
động một chiều dọc theo đường thẳng. Trong trường hợp này, vị trí của các
véctơ được đánh dấu bằng điểm, mặc dù các véctơ trong trường hợp 1 chiều có
dấu dương theo độ lớn của nó. Ví dụ, xét chuyển động của một vật trong một
khoảng thời gian xác định. Chú ý rằng tại thời điểm ban đầu t1 vật trên trục x có
tọa độ là x1. Tại thời điểm sau t 2 giả sử vật chuyển động tới vị trí x2. Độ dời của
vật là x2 – x1:
∆x = x 2 − x1 ,
ở đây dầu ∆ nghĩa là “độ biến đổi”. Do đó ∆x nghĩa là độ biến đổi của x hay sự
thay đổi vị trí hay là độ dời. Chú ý rằng độ biến đổi của bất kỳ đại lượng bằng
giá trị cuối của đại lượng trừ cho giá trị đầu của đại lượng.
Thay x1 = 10.0 m và x2 = 30.0 m. Ta được
∆x = x 2 − x1 = 30.0 m − 10.0 m = 20.0 m .
Trường hợp hai hoặc ba chiều , trong vật lý nói chung cũng như trong cơ học nói
riêng người ta thường sử dụng một số hệ tọa độ sau đây:
a) Hệ tọa độ Đề các
Hệ tọa độ này bao gồm 3 trục Ox, Oy và Oz tương ứng vuông góc nhau
từng đôi một tạo thành một tam diện thuận Oxyz, gốc tọa độ là điểm O. Vị trí của
một điểm M bất kỳ hoàn toàn được xác định bởi vectơ bán kính r . Trong hệ tọa
độ Đề các vị trí của điểm M được xác định bởi 3 tọa độ (x, y, z). Trên hình 1-1 ta
thấy P là hình chiếu của M xuống Ox, Q là hình chiếu của M xuống Oy và R là
hình chiếu
của
xuống Oz.
M
Như vậy ta có thể viết:
r = OP + OQ + OM
(1.6)
Nếu gọi i , j , k là ba vectơ đơn vị hướng theo ba trục Ox, Oy, Oz, biểu thức
(1.6) có thể được
viết lại:
(1.7)
r =x.i + y. j + z.k
Độ lớn của véc tơ r là:
r=
x2 + y 2 + z 2
b) Hệ tọa độ trụ
(1.8)
z
Khi một vật chuyển động mà khoảng cách của
M
z
vật so với một trục luôn không đổi thì người ta
thường dùng hệ tọa độ trụ để khảo sát . Trong hệ
r
tọa độ này, vị trí của điểm M bất kỳ được xác định
bởi 3 tọa độ ρ , ϕ và z , trong đó ρ là hình chiếu
của r trên mặt phẳng (xOy), ϕ là góc hợp bởi trục
ϕ
Ox và ρ , còn z là hình chiếu của r trên trục Oz.
x
Nếu biết tọa độ trụ của một điểm ta có thể xác
định được ba tọa độ của điểm đó trong hệ tọa độ
Đề-các theo công thức sau:
x = ρ cos ϕ
z
y = ρ sin ϕ
R
(1.9)
M(x,y
z=z
r
2
2
Ngược lại ta có:
=
ρ
x +y
k
j
O
Q
y
i
y
ϕ = arctg
P
P
x
(1.10)
x
z=z
c) Hệ tọa độ cầu:
y
Trường hợp những vật chuyển động mà khoảng cách giữa vậ t so với một
điểm luôn không đổi người ta thường dùng hệ tọa độ cầu . Ví dụ như chuyển
động của electron quanh hạt nhân . Trong hệ tọa độ cầu, vị trí của một điểm M
được xác định bởi 3 tọa độ r, θ, φ; trong đó r là độ dài bán kính vectơ r , θ là góc
giữa trục Oz và r , φ là góc giữa trục Ox và tia hình chiếu của r trong mặt phẳng
xOy.
Nếu biết ba tọa độ của một điểm ta có thể xác định được ba tọa độ Đê-các của
điểm đó bằng các công thức sau:
x = r sinθ cos ϕ
y = r sinθ sin ϕ
(1.11)
z = r cos θ
Ngược lại ta có:
r=
x2 + y 2 + z 2
z
θ = arccos 2
(1.12)
2
2
x +y +z
y
ϕ = arctg
x
Chú ý: Trong ệh tọa độ cầu thì
0 ≤ θ ≤ 1800 và 0 ≤ ϕ ≤ 3600 .
Nhận xét: Tùy theo tínhấtchcủa
chuyển động, người ta có thể chọn
một hệ tọa độ thích hợp để mô tả
chuyển động. Nếu chất điểm chuyển
động theo một đường thẳng ta chọn
hệ tọa độ Đề-các. Nếu chất điểm
chuyển động quanh một trục ta chọn hệ tọa độ trụ, còn nếu chất điểm chuyển
động quanh một tâm ta chọn hệ tọa độ cầu.
Bài tập 1. Một con kiến bắt đầu tại vị trí x = 20 cm trên một mảnh giấy caro và
đi theo trục x đến vị trí – 20 cm. Sau đó nó quay lại đi ngược trở lại đến vị trí x =
-10 cm. Vị trí con kiến đi được và tổng quãng đường đi được.
1.2. Phương trình chuyển động và phương trình quỹ đạo
Khi chất điểm chuyển động, chúng ta liên hệ vị trí của nó với thời gian bằng
các phương trình gọi là phương trình chuyển động. Trong ệh tọa độ Đề -các,
phương trình chuyển động của một vật là hàm theo thời gian t có dạng:
x = x( t )
M y = y( t )
(1.13a)
z = z( t )
Còn trong hệ tọa độ cầu, tọa độ của điểm M được xác định:
=
r r(=
t ), θ θ =
( t ), ϕ ϕ ( t )
(1.13b)
Một cách tổng quát, phương trình chuyển động của độ của một chất điểm được
r = r( t )
viết ngắn gọn là
(1.14)
Ở mỗi thời điểm t, chất điểm có một vị trí xác định và khi t biến thiên thì vị trí
chất điểm thay đổi một cách liên tục. Do đó hàm tọa độ r( t ) sẽ là một hàm xác
định, đơn trị và liên tục.
Ví dụ: Phương trình chuyển động của chất điểm M trong hệ tọa độ xOy là:
x(t) = 2t (cm); y(t) = 3t2 (cm); z(t) = t2 +1 (cm).
Ở thời điểm t = 2s, ta có:
x(2) = 4cm; y(2) = 12cm; z(2) = 5cm.
Khoảng cách từ gốc tọa độ đến vật được tính bởi công thức:
OM2 = x2 + y2 + z2 = 42 + 122 + 52 = 185cm2.
hay: OM = 13,6cm.
Trong quá trình chuyển động, vị trí của chất điểm ở những thời điểm liên
tiếp nhau sẽ vạch ra trong không gian một đường cong liên tục nào đó gọi là quỹ
đạo chuyển động của chất điểm. Phương trình mô tả quỹ đạo đó gọi là phương
trình quỹ đạo. Trong hệ tọa độ Đề-các, phương trình quỹ đạo có dạng:
f ( x, y, z ) = C
(1.15)
trong đó f là hàm nào đó của tọa độ x, y, z; C là một hằng số.
Nếu biết phương trình chuyển động thì bằng cách khử tham số t ta sẽ tìm
được phương trình quỹ đạo. Ví dụ: Một chuyển động có phương trình
x = 4 sin ωt (cm) và y = 5 cos ωt (cm) thì ta biến đổi :
x2
y2
2
= sin ω t và
= cos 2 ω t
2
2
5
4
Khử tham số t ở 2 phương trình trên ta được phương trình quỹ đạo:
x2
y2
+ 2 =
1
42
5
Phương trình này là một phương tr ình đường elip nên ta nói quỹ đạo chuyển
động của chất điểm là một elip có bán trục lớn là 5cm và bán trục nhỏ là 4cm.
§2. VẬN TỐC VÀ GIA TỐC
Hầu hết các vấn đề quan trọng về
chuyển động của một vật chuyển động là
chuyển động nhanh như thế nào – đó là đó là
chúng ta đang nói ến
đ tốc độ hay vận tốc.
Thành phần tốc độ gắn liền với chuyển động
của một vật xa bao nhiêu trong một khoảng
thời gian, không quan tâm đến chiều. Nếu
một xe ô tô di chuyển 360 km trong 3 giờ
chúng ta nói rằng tốc độ trung bình của nó là 120 km/h hay trong hệ SI tốc độ là
20 m/s. Trong trng hp tng quỏt, tc trung bỡnh ca vt c nh ngha
l tng quóng ng i c chia cho thi gian m vt i ht quóng ng ny.
Quãng đường đi được
Tốc độ trung bình =
Thời gian trôi qua
Cỏc i lng vn tc v tc thng c s dng thay th nhau trong ngụn
ng thụng thng. Nhng trong vt lý chỳng ta cn bit s khỏc bit ca hai i
lng ny. Tc c xỏc nh n gin bi cỏc giỏ tr ụ ln. Vn tc theo
mt dng khỏc c dựng biu din cho c tr ụ ln l ca s chuyn ng
nhanh th no ca vt v chiu m vt chuyn ng. Do ú, vn tc l mt vộct.
2.1. Vn tc
Võn tục la mụt ai lng c trng cho s chuyờn ụng nhanh nh thờ nao
va chiờu cua chuyờn ụng . Viờc xac i nh võn tục ta phõn thanh hai loai la võn
tục trung binh va võn tục tc thi.
Vn tc trung bỡnh c nh ngha theo ụ di cua võt ma khụng phai la quóng
ng i c:
Vận tốc trung bình =
độ dời
vị trí cuối - vị trí đầu
=
thời gian trôi qua
Thời gian trôi qua
Tc trung bỡnh v vn tc trung bỡnh cú cựng ln khi c hai chuyn ng
theo mt chiu. Trong cỏc trng hp, chỳng cú th khỏc: Vi du, bai toan n
gian vờ mụt ngi i ụ tụ qua mụt eo theo hng Bc vao Nam hờt 45 phut va
theo ụng hụ ụ dai o c la 21 km, tuy nhiờn khoang cach gia cac cõn eo
theo hng Bc Nam la 7 km. Khi o,
Tốc độ trung=
bình
Quãng đường đi được 21 km
= = 28 km / h. .
Thời gian trôi qua
0.45 h
độ dời
7,5 km
= = 10 km / h. .
thời gian trôi qua 0.45 h
S khỏc nhau v ln ca tc v vn tc cú th xy ra khi chỳng ta
tớnh toỏn cỏc giỏ tr trung bỡnh cua chung.
Trng hp mụt chiờu . kho sỏt chuyn ng mt chiu ca mt vt trong
trng hp tng quỏt, chỳng ta thng nht v mt thi gian, thi iờm t1, vt
v trớ x1 trờn trc x ca h to v thi im t 2 v trớ ca vt l x 2. Thi gian
trụi qua l t = t2 t1 ; trong khong thi gian ny di ca vt l x = x2 x1 .
Nh vy vn tc trung bỡnh nh ngha l di chia cho thi gian cú th vit l:
Vận tốc trung=
bình
=
v
x2 x1 x
=
,
t
t2 t1
ở đây v biểu diễn cho vận tốc còn dấu gạch ngang trên (
chuẩn nghĩa là trung bình.
) của v là ký hiệu
Ví dụ: Một ôtô chuyển động dọc theo một đường mòn (chúng ta gọi là trục x).
Chúng ta coi ôtô như là một chất điểm. Vị trí của nó như một hàm của thời
2
2
gian được xác định bởi phương trình x = At + B, ở đây A = 2.10 m/s và B
= 2.80 m.
(a) Xác định độ dời của đầu máy trong khoảng thời gian từ 3.00 s đến 5.00 s.
(b) Xác định vận tốc trung bình trong suốt khoảng thừoi gian này.
(c) Xác định độ lớn của vận tốc tức thời tại t = 5.00 s.
Giải: a) Tại thời điểm t = 3.00 s vị trí của ô tô là:
x1 = At12 + B = (2.10 m / s 2 )(3.00 s) 2 + 2.80 m = 21.7 m
Tại thời điểm t = 5.00 s vị trí của ô tô là:
x 2 = At 22 + B = (2.10 m / s 2 )(5.00 s) 2 + 2.80 m = 55.3 m
Độ dời là: ∆x = x2 − x1 = 55.3 m − 21.7 m = 33.6 m.
b) Vận tốc trung bình là:
=
v
∆x x2 − x1 33.6 m
=
=
= 16.8 m / s
∆t t2 − t1
2.00 s
c) Để xác định gia tốc tức thời ta lấy đạo hàm phương trình chuyển động x = At
+ B ta được:
v=
2
dx d
= ( At 2 + B) = 2 At
dt dt
2
Tại thời điểm t = 5.00 s và A = 2.10 m / s . Ta được,
=
v2 2(2.10
=
m / s 2 )(5.00 s ) 21.0 m / s
Bài tập ví dụ Một xe ô tô chạy với một
vận tốc không đổi 50 km/h được 100 km.
Sau đó tăng lên 100 km/h và ạy
ch được
100 km. Tốc độ trung bình của ô tô trong 200 km trên là bao nhiêu ? (a) 67
km/h, (b) 75 km/h, (c) 81 km/h, (d) 50 km/h.
Trường hợp hai hoặc ba chiều. Bây giờ chúng ta có thể mở rộng các định
nghĩa
vận
tốc
theo trường
hợp
hai
hoặc
ba ều.
chi
z
z2
z1
∆r
P1
r1
r2
y1
P2
y2
x1
y
x2
x
,
Giả sử một hạt đi theo một đường trong không gian Oxyz như chỉ ra trong hình
vẽ trên. Tại thời điểm t 1, hạt ở vị trí p 1 và ở thời điểm t 2 hạt ở vị trí p2. Véctơ r1
là véctơ vị trí của hạt ở thời điểm t1 (nó thay cho độ dời của hạt từ điểm gốc
trong hệ tọa độ). Và r2 là véctơ vị trí ở thời điểm t2.
Trong trường hợp một chiều, chúng ta định nghĩa độ dời như là sự thay đổi
vị trí của vật. Trong trường hợp tổng quá t là hai hoặc ba chiều, véctơ độ dời
được định nghĩa như véctơ thay thế sự thay đổi vị trí. Chúng ta gọi nó là ∆r , ở
đây ∆r = r2 − r1 thay cho độ dời trong suốt khoảng thời gian từ ∆t = t2 − t1 .
Trong ký hiệu véctơ đơn vị, chúng ta viết, r1 =x1i + y1 j + z1k ,
ở
đây
x1 , y1 vµ z1
là
các
ọa
t độ
của
điểm
p
1.Tương
ự, t
r2 =x2 i + y2 j + z2 k . Do đó , ∆r = ( x2 − x1 )i + ( y2 − y1 ) j + ( z2 − z1 )k .
0 , z2 − z1 =
0 và độ
Nếu chuyển động chỉ dọc theo trục x thì y2 − y1 =
lớn của độ dời là ∆r = x2 − x1 , điều này phù hợp với phương trình 1 chiều đơn
giản. Véctơ vận tốc trung bình qua một khoảng thời gian ∆t = t2 − t1 được định
nghĩa như sau
∆r
vËn tèc trung b×nh =
.
∆t
Bây giờ chúng ta xét một khoảng thời gian rất ngắn, như vậy chúng ta đặt ∆t
xấp xỉ 0 do đó khoảng cách giữa hai điểm p1 và p2 cũng xấp xỉ 0. Chúng ta định
nghĩa véctơ vận tốc tức thời như là giới hạn của vận tốc trung bình khi ∆t
xấp xỉ 0:
Phương của
v
∆ r dr
= .
v = lim
∆t →0 ∆t
dt
tại điểm bất kỳ dọc theo tiếp tuyến với quỹ đạo tại điểm đó.
Vận tốc tức thời được xác định bằng đạo hàm của véctơ vị trí theo thời gian có
thể viết dưới dạng sau:
dr dx dy dz
v=
j + k = v x i + v y j + vz k .
= i+
dt dt
dt
dt
Ở đây vx = dx/dt, vy = dy/dt và vz = dz/dt là vận tốc theo các thành phần x, y và
Độ lớn vận tốc được tính theo công thức:
v=
dx
dt
v + v + v =
2
x
2
y
2
z
2
dy
+
dt
2
dz
+
dt
2
(1.23)
2.2. Gia tốc
Vận tốc của một vật đang thay đổi ta nói rằng vật có gia tốc. Lấy ví dụ một
xe ô tô có vận tốc tăng giá trị từ 0 đến 80 km/h là có gia t ốc. Gia tốc đặc trưng
cho vận tốc của vật thay đổi nhanh như thế nào. Để đặc trưng cho sự thay đổi
của vận tốc theo thời gian, người ta đưa ra một đại lượng vật lý là gia tốc. Trong
quá trình chuyển động, vận tốc của chất điểm có thể thay đổ i cả về độ lớn lẫn
phương chiều, vì vậy gia tốc là một véctơ.
Gia tốc trung bình
Gia tốc trung bình được định nghĩa là sự thay đổi vận tốc chia cho thời gian
xảy ra sự thay đổi này. Giả sử tại thời điểm t, chất điểm ở vị trí M có vectơ vận
tốc v , tại thời điểm t' = t + ∆t chất điểm ở vị trí M' và có vectơ vận tốc
v' = v + ∆v . Như vậy trong khoảng thời gian ∆t , vận tốc của chất điểm biến
thiên một lượng:
∆v = v' − v
chiều. Ký hiệu gia tốc trung bình a theo
Trường hợp một
∆
t
=
t
−
t
khoảng thời gian
mà trong khoảng thời gian này vận tốc thay
2
1
∆
v
=
v
−
v
.
đổi là
2
1
Gia tốc trung bình được xác định là,
a
=
v2 − v1 ∆v
=
t2 − t1 ∆t
2
đơn vị của gia tốc trong hệ SI là m/s .
Gia tốc tức thời trong trường hợp này được định nghĩa là giới hạn của g
tốc trung bình trong khoảng thời gian xấp xỉ 0.
ia
∆v
dv d 2 x
=
a
lim = =
.
∆t →0 ∆t
dt dt 2
Câu hỏi:(a) Nếu vận tốc của một vật bằng 0 có phải điều đó có nghĩa là gia t ốc
bằng 0 hay không ? (b) Gia tốc của một vật bằng 0 có phải là vận tốc của vật
cũng như vậy không? Cho một số ví dụ.
Bài tập ví dụ 1. Một chiếc ô tô chuyển động dọc theo trục x. Dấu của gia tốc
của ô tô là gì nếu nó chuyển động theo chiều dương của x với (a) tốc độ tăng
dần, (b) tốc độ giảm dần ? Dấu của gia tốc là gì nếu nó chuyển động theo chiều
âm của trục x với (c) tốc độ tăng dần hay (d) tốc độ giảm dần?
Bài tập ví dụ
2. Chuyển động của một vật được cho là:
=
x (2.00 m/s3 )t 3 + (2.50 m/s )t .
2
2
Gia tốc của vật tại t = 2.00 s là bao nhiêu ? (a) 13.0 m/s , (b) 22.5 m/s , (c) 24.0
2
2
m/s , (d) 2.00 m/s .
Trường hợp hai hoặc ba chiều . Người ta định nghĩa đ ộ biến thiên của vectơ
vận tốc trong một đơn vị thời gian được gọi là gia tốc trung bình của chuyển
động trong thời gian ∆t :
∆v
Gia tốc trung bình =
∆t
Gia tốc tức thời được định nghĩa là giới hạn của gia tốc trung bình khi khoảng
thời gian khi ∆t xấp xỉ 0.
∆v
dv d 2 r
=
a
lim = =
.
∆t →0 ∆t
dt dt 2
a theo các thành phần tọ
Chúng ta có thể viết
dv y
=
dt
=
ay
d2y
và=
az
dt
dvz
=
dt
a độ ,=
ax
dvx
=
dt
d 2x
;
dt
d 2z
như sau:
dt
a = ax i + ay j + az k
Độ lớn gia tốc tính theo công thức:
2
2
2
d 2x
d2y
d 2z
a + a + a =
+
+
2
2
2
dt
dt
dt
Ví dụ : Vị trí của một hạt như một hàm của thời gian được
cho bởi phương trình
2 2
3 3
như sau, r [(5.0 m/s)t+(6.0 m/s )t ] i + [(7.0 m)-(3.0 m/s )t ] j,
ở đây r là mét và t là
=
giây. Xác định (a) Độ dời của hạt trong khoảng t1 = 2.0 s và t2 = 3.0 s? (b) Xác
định vận tốc tức thời và gia tốc như một hàm của thời gian. (c) Xác định
vận tốc tức thời và gia tốc tức thời lúc t = 3.0 s.
Giải (a) Tại t = 2.0 s,
a=
2
x
2
y
2
z
[(5.0 m/s)(2.0 s)+(6.0 m/s2 )(2.0 s)2 ] i + [(7.0 m)-(3.0 m/s3 )(2.0s)3 ] j
= (34 m) i − (17 m) j.
r1
=
+
=
−
r
(15m+54
m)
i
(7.0
m-81m)
j
(69
m
)
i
(74
m
)
j.
Tại t = 3.0 s,
2
Do đó, ∆r = r2 − r1 = (69 m-34 m) i + (-74 m+17 m) j = (35 m) i − (57 m) j.
=
∆r
Suy ra,=
∆x 35 m, vµ ∆y=57 m và
(35 m)2 − (57 m)2 ≈ 45 m.
dr
v = [5.0 m/s+(12.0 m/s2 )t] i + [(0-(9.0 m/s3 )t 2 ]j.
(b) Vận tốc theo thời gian: =
dt
dv
Gia tốc theo thời gian:
=
a = (12.0 m/s2 )i − (18 m/s3 )tj.
dt
(c) Vận tốc và gia tốc ở thời điểm t = 3.0 s.
=
v (5.0
=
m/s+36 m/s )i -(81m/s)j (41m/s )i -(81m/s)j
a = (12 m/s2 )i -(54 m/s2 )j.
2.2.2 Độ cong và bán kính cong
Xét một chất điểm chuyển động có quỹ đạo
là một cung
τ
là một đường cong (C). Giả sử MN
rất bé của đường cong. Lấy một điểm P bất kỳ
M P
nằm giữa M và N (P thuộc MN ); qua ba điểm
ds N
M, P và N ta có thể vẽ một đường tròn. Cho N
R
tiến đến M và qua ba điểm mới ta lại có thể vẽ
được một đường tròn mới. Khi điểm N tiến đến
dφ
giới hạn tại M thì đường tròn trên cũng sẽ tiến
O
đến một đường tròn giới hạn gọi là đường tròn
mật tiếp với đường cong (C) tại điểm M. Nếu
gọi R là bán kính cong của đường tròn mật tiếp
đó thì:
(1.29)
ds = Rdϕ
Độ cong K của đường cong (C) tại M được
tính bằng nghịch đảo của bán kính cong R:
1
dϕ
=
K
=
R
ds
K đặc trưng cho độ cong của quỹ đạo và phụ thuộc vào bán kính cong R của
đường tròn mật tiếp. Khi R càng lớn thì K càng nhỏ; R → ∞ thì K → 0 nghĩa là
chuyển động của chất điểm trên quỹ đạo cong sẽ dần tới chuyển động trên
đường thẳng.
Lưu ý:
+ Nếu vật chuyển động thẳng đều thì vận tốc trung bình bằng vận tốc tức thời.
+ Chuyển động thẳng biến đổi đều thì gia tốc trung bình bằng gia tốc tức thời.
2.2.3 Gia tốc tiếp tuyến và gia tốc pháp tuyến
Ta đã biết vectơ gia tốc đặc trưng cho sự biến thiên về phương, chiều và độ
lớn của vectơ vận tốc. Tuy nhiên ta có thể phân tích vectơ gia tốc ra thành hai
thành phần, mỗi thành phần đặc trưng cho sự biến thiên của vectơ vận tốc riêng
về một mặt nào đó.
Nếu gọi τ là vectơ đơn vị dọc theo phương tiếp tuyến của quỹ đạo chuyển động
thì vectơ vận tốc được viết lại:
ds
=
=
τ
vτ
v .τ
dt
Theo định nghĩa gia tốc, ta có:
=
a
dvτ
=
dt
d( v.τ )
=
dt
dv
dτ
τ + v
dt
dt
dv
Ta thấy rằng số hạng đầu tiên ở vế phải của biểu thức (1.32)
τ hướng theo
dt
phương tiếp tuyến và được gọi là vectơ gia tốc tiếp tuyến at . Vectơ gia tốc tiếp
tuyến này có:
- Phương trùng với tiếp tuyến của quỹ đạo tại chất điểm chuyển động.
- Chiều là cùng chiều chuyển động khi v tăng và ngược chiều chuyển động khi v
giảm.
- Độ lớn bằng đạo hàm độ lớn vận tốc đối với thời gian:
dv
(1.33)
at =
dt
Tóm lại, vectơ gia tốc tiếp tuyến đặc trưng cho sự biến thiên của vectơ vận tốc
về giá trị.
dτ
ở số hạng thứ hai trong (1.32).
Bây giờ ta hãy tính
dt
Trong giải tích toán học người ta chứng minh được rằng đạo hàm theo thời gian
của vectơ đơn vị có phương tiếp tuyến với cungtại một điểm bằng vận tốc góc
của điểm đó trên cung nhân với vectơ đơn vị n theo phương pháp tuyến với
cung tại điểm đó, nghĩa là:
dτ
dϕ
(1.34)
= ω
=
.n
n
dt
dt
với ω là vận tốc góc của điểm đó trên cung, trong đó dϕ là góc giữa OM và
ON (N là điểm mà M chuyển đến sau thời gian dτ ).
Theo tính chất hàm số hợp, kết hợp với (1.18) và (1.30), (1.34) được viết lại:
dτ
dϕ ds
v
= =
n
n
dt
ds dt
R
Như vậy, số hạng thứ hai ở vế phải của biểu
thức (1.32):
dτ
v
v2
=
=
v
v.
n
n
dt
R
R
at
v
τ
M
a
n
Số hạng này được gọi là gia tốc pháp tuyến
hay gia tốc hướng tâm; nó đặc trưng cho sự
an
thay đổi về phương của vectơ vận tốc.
v 2
an = n
R
Vectơ này có các đặc điểm:
- Có phương trùng với phương pháp tuyến của quỹ đạo tại điểm đang khảo sát.
- Có chiều hướng về phía lõm của quỹ đạo.
v2
- Có độ lớn: an =
R
Biểu thức (1.32) được viết lại như sau:
dv
v2
=
a
τ +
n
dt
R
Kết luận: Gia tốc a của một chất điểm chuyển động trên quỹ đạo cong là sự
tổng hợp của hai thành phần gia tốc: gia tốc tiếp tuyến at và gia tốc pháp tuyến
an .
a = at + an = atτ + an n
dv
at =
trong đó:
là độ lớn của vectơ gia tốc tiếp tuyến.
dt
v2
an =
là độ lớn của vectơ gia tốc pháp tuyến.
R
Độ lớn của vectơ gia tốc a :
2
v2
dv
(1.39)
a=
a + a =
+
dt
R
Vectơ gia tốc tiếp tuyến đặc trưng cho sự biến thiên của vectơ vận tốc về độ lớn;
Vectơ gia ốc
t pháp tuyến dặc trưng cho sự biến thiên của vectơ vận tốc về
phương.
2
2
t
2
n
Để làm rõ ý nghĩa của gia tốc tiếp tuyến và gia tốc pháp tuyến, ta xét hia trường
hợp đặc biệt sau:
- Trường hợp chất điểm chuyển động thẳng thì bán kính của quỹ đạo R = ∞ nên
gia tốc pháp tuyến an = 0 và vectơ gia tốc chỉ có một thành phần là gia tốc tiếp
tuyến at hướng dọc theo phương của chuyển động thẳng; nghĩa là vận tốc của
chất điểm chỉ thay đổi về độ lớn mà không thay đổi về phương.
- Trường hợp chất điểm chuyển động đều trên quỹ đạo tròn có bán kính R, vận
tốc chất điểm không đổi nên gia tốc tiếp tuyến bằng 0. Nếu bán kính R càng nhỏ
(tức gia tốc pháp tuyến càng lớn) thì quỹ đạo càng cong nhiều, kết quả phương
của vectơ vận tốc thay đổi nhiều.
2.3. Vận tốc góc và gia tốc góc
M
Trong chuyển động tròn, người ta còn dùng các đại
lượng vận tốc góc và gia tốc góc để đặc trưng cho
chuyển động này.
s
R
O
φ
M'
2.3.1 Vận tốc góc
Giả thiết quỹ đạo chuyển động của chất điểm
M là vòng tròn tâm O bán kính R. (hình 1-8).
Trong khoảng thời gian dt bán kính OM = R quét
được một góc dφ. Khi đó:
dϕ
ω =
dt
được gọi là vận tốc góc của chất điểm M.
Vậy: vận tốc góc có giá trị bằng đạo hàm của góc quay đối với thời gian.
Vận tốc góc được đo bằng đơn vị radian trên giây, kí hiệu là rad/s.
2.3.2 Gia tốc góc
Tương tự như chuyển
động thẳng, trong chuyển động tròn người ta cũng
định nghĩa gia tốc góc β là đại lượng đặc trưng cho sự thay đổi của vận tốc góc
ω theo thời gian:
dω
d 2ϕ
(1.40)
=
=
β
dt
dt 2
Vậy: Gia tốc góc có giá trị bằng đạo hàm của vận tốc góc đối với thời gian và
bằng đạo hàm bậc hai của góc quay đối với thời gian.
Gia tốc góc đo bằng radian trên giây bình phương (rad/s2).
- β > 0 , ω tăng, chuyển động tròn nhanh dần;
- β < 0 , ω giảm, chuyển động tròn chậm dần;
- β = 0 , ω không đổi, chuyển động tròn đều.
Tóm lại trong chuyển động tròn của chất điểm ta cũng có hệ thức giữa các đại
lượng:
=
ω
β t + ω0
1
(1.41)
=
θ
ω0t + β t 2
2
ω 2 − ω02 =
2 βθ
ω
2.3.3 Mối liên hệ của vận tốc, gia tốc và tọa độ
a) Mối liên hệ giữa vận tốc dài và vận tốc góc:
Ta có:
ϕ
dϕ
dϕ dS
1 dS
v
R
= =
dt
dS dt
R dt
Khi ∆t → 0 thì dS ≈ dr , suy ra:
dϕ
1 dr
1
=
=
v ≡ ω
dt
R dt
R
(1.42)
hay:
v = ω .R
Nếu biểu diễn bằng các vectơ v , R nằm trong mặt phẳng vuông góc với ω (hình
1-9), khi đó:
=
ω ×R
v
(1.43)
b) Mối liên hệ giữa gia tốc dài và gia tốc góc:
Theo công thức (1.37), ta có:
=
a
dv
v2
τ +
n
dt
R
với R là bán kính đường tròn.
Ta có:
v 2 = R 2ω 2
Suy ra:
=
a
R
dω
τ + ω 2 R.n
dt
Vậy:
=
a
Rβτ + ω 2 R.n
Trong đó: - Thành phần gia tốc tiếp tuyến at = Rβ .
an
- Thành phần gia tốc pháp tuyến=
v2
ω R ≡
R
2
§3. MỘT SỐ DẠNG CHUYỂN ĐỘNG CƠ ĐẶC BIỆT
3.1. Chuyển động thẳng thay đổi đều
Xét một vật chuyển động thẳng thay đổi đều với gia tốc không đổi:
a = const
Vì là chuyển động thẳng nên an = 0, do đó:
dv
=
a
a=
= const
t
dt
Sau những khoảng thời gian bằng nhau, vận tốc vật thay đổi những lượng bằng
nhau. Nếu trong khoảng thời gian từ 0 đến t, vận tốc biến thiên từ v0 đến v thì
theo định nghĩa gia tốc, ta có:
vt − v0
(1.44)
=
a
=
const
t
Từ (1.44) suy ra:
=
vt
v0 + at
(1.45)
(1.45) có thể viết lại:
ds
=
vt
= v0 + at
dt
=
ds
( v0 + at )dt
do đó:
(1.46)
Giả thiết trong khoảng thời gian từ 0 đến t, chất điểm đi được quãng đường s,
tích phân hai vế phương trình (1.46) ta được:
s
∫
=
ds
0
t
∫( v
0
+ at )dt
0
1 2
at
2
Khử t trong (1.45) và (1.47) ta được hệ thức:
vt2 − v02 =
2as
Hay:
s = s0 + v0t +
(1.47)
(1.48)
3.2. Chuyển động với gia tốc không đổi
Xét chuyển động của một chất điểm xuất phát từ một điểm O trên mặt đất
với vectơ vận
tốc ban đầu ở thời
điểm t = 0 là v0 hợp với phương
nằm ngang một góc α (hình 1-10)
(bài toán chuy
ển động củ a đạn
pháo).
Chọn hệ trục tọa độ xOy như hình
vẽ. Viên đạn chuyển động trong
trường trọng lực và do lực hướng
theo phương Oy nên theo phương
Ox ta có thể xem chuyển động của
đạn là chuyển động đều. Còn theo
phương Oy
viên đạn chuyển động chậm dần với gia tốc rơi tự do g. Do đó, thành
phần của a trên hai trục là:
dvx
a
0
=
=
x
dt
(1.49)
a
dv
y
a =
= −g
y
dt
Lấy nguyên hàm hai vế theo t, ta được:
vx = C1
v
v y =− gt + C2
với điều kiện đầu:
Do đó:
Mặt khác:
vx = vx(t=0) = v0x = v0cosα = C1
vy = vy(t=0) = v0y = v0sinα = C2
vx = v0 cos α
v
v y =− gt + v0 sin α
(1.50)
dx
vx
=
= v0 cos α
dt
v
v =dy =− gt + v sin α
0
y
dt
Lấy nguyên hàm hai vế theo t, ta được:
=
v0t cos α + C3
x
A( x, y )
1
− gt 2 + v0 sin α + C4
y =
2
=
x=
0
C3
( t =0 )
với điều kiện:
=
y=
0
C4
( t =0 )
Vậy phương trình chuyển động của viên đạn:
x = v0t cos α
(1.51)
1 2
y
gt
v
sin
α
=
−
+
0
2
Khử t trong hai phương trình trên, ta được phương trình quỹ đạo:
1 gx 2
(1.52)
− 2
+ x.tgα
y =
2 v0 cos 2 α
Phương trình (1.52) cho thấy quỹ đạo của viên đạn là một parabol với phần lõm
quay về phía dưới.
Để tìm tọa độ đỉnh và vị trí cao nhất của viên đạn, từ (1.50) ta suy ra:
v2 =
vx2 + v y2 =
v02 cos 2 α + ( − gt + v0 sin α )2
1
=v02 − 2 g( − gt 2 + v0t sin α )
2
2
= v0 − 2 gy
(1.53)
v yA = 0
; kết hợp với (1.53) ta
Tại đỉnh A vectơ vận tốc nằm ngang nên
α
v
=
v
cos
0
xA
được:
v02 cos 2 =
α
v02 − 2 gy A
v02 sin 2 α
⇔ yA =
(1.54)
2g
Viên đạn đạt độ cao cực đại vào thời điểm t ứng với vy = 0:
v=
v0 sin α − gt=
0
y
A
v sin α
⇔
(1.55)
tA = 0
g
Khi đó, hoành độ của đỉnh A là:
v02 sin α .cos α
v02 sin 2α
=
=
xA
v=
(1.56)
0t A cos α
g
2g
Tầm xa của viên đạn:
v02 sin 2α
x=
xA
2=
(1.57)
max
g
Ta cũng có thể tìm độ cong cực đại của quỹ đạo viên đạn bằng cách tìm gia tốc
của chuyển động tại đỉnh quỹ đạo. Vì tại đỉnh, vy = 0, vx = v0cosα nên thành
phần gia tốc tiếp tuyến at = 0 và gia tốc pháp tuyến an = g.
v02 cos 2 α
=
g
a=
n
R
Từ đó tính được độ cong của quỹ đạo:
1
g
(1.58)
K
=
=
2
R
v0 cos 2 α
III. BÀI TẬP
1. Một ô tô chuyển động thẳng nhanh dần đều, đi qua hai điểm A, B cách nhau
20m trong thời gian t = 2giây. Vận tốc của ô tô khi qua điểm B là 12m/s.
Tìm:
a. Gia tốc của chuyển động và vận tốc của ô tô khi qua điểm A.
b. Quảng đường mà ô tô đã đi được từ điểm khởi hành đến điểm A.
2. Một vật chuyển động trên đoạn thẳng AB = 300m khởi hành không vận tốc
đầu tại A với chuyển động nhanh dần đều, gia tốc a1 = 2m/s2, tiếp theo là
chuyển động chậm dần đều với gia tốc |a2| = 1m/s2 để đến B với vận tốc triệt
tiêu.
a. Xác định vị trí C tại đó chuyển động trở thành chậm dần đều.
b. Xác định thời gian đi hết đoạn AB.
8.
Một người đứng tại M cách một con đường
H
thẳng với một khoảng h = 50m để chờ ô tô. Khi A
thấy ô tô cách mình một đoạn a = 200m thì ngư ời
h
a
ấy bắt đầy chạy ra đường để gặp ô tô (hình vẽ).
Biết ô tô chạy với vận tốc v1 = 36km/h. Hỏi:
M
a. Người ấy phải chạy theo hướng nào để gặp đúng
ô tô? Biết rằng người chạy với vận tốc v2 =
10,8km/h.
b. Người phải chạy với vận tốc nhỏ nhất bằng bao nhiêu để có thể gặp được ô
tô?
9.
Từ một đỉnh tháp cao h = 25m người ta ném một hòn đá theo phương nằm
ngang với vận tốc v0 = 15m/s. Xác định:
a. Quỹ đạo của hòn đá.
b. Thời gian chuyển động của hòn đá (từ lúc ném đến lúc chạm đất).
c. Khoảng cách từ chân tháp đến điểm hòn đá chạm đất (tầm xa).
d. Vận tốc, gia tốc toàn phần, gia tốc tiếp tuyến và gia tốc pháp tuyến của
hòn đá tại điểm nó chạm đất.
e. Bán kính cong của quỹ đạo tại điểm bắt đầu ném và điểm chạm đất. Bỏ
qua sức cản không khí.
16. Từ một đỉnh tháp cao H = 25m người ta ném một hòn đá lên phía trên với
vận tốc vo = 15m/s theo phương hợp với mặt phẳng nằm ngang một góc = 30o.
Xác định:
a. Thời gian chuyển động của hòn đá.
b. Khoảng cách từ chân tháp đến chỗ rơi của hòn đá.
c. Vận tốc của hòn đá lúc chạm đất.
17. Từ một đỉnh tháp cao H = 30m người ta ném một hòn đá xu ống đất với
vận tốc vo = 10m/s theo phương hợp với mặt phẳng nằm ngang một góc = 30o.
Xác định:
a. Thời gian để hòn đá rơi tới mặt đất kể từ cú ném?
b. Khoảng cách từ chân tháp đến chỗ rơi của hòn đá?
c. Dạng quỹ đạo của hòn đá.
18. Một vô-lăng đang quay với vận tốc 300 vòng/phút thì bị hãm lại. Sau một
phút hãm, vận tốc của vô-lăng còn lại 180 vòng/phút. Tính:
a. Gia tốc góc của vô-lăng khi bị hãm.
b. Số vòng mà vô-lăng đã quay được trong thời gian 1 phút hãm đó.
Coi vô-lăng chuyển động chậm dần đều trong suốt thời gian hãm.
19. Một bánh xe có bán kính R = 10cm lúc đầu đứng yên, sau đó quay xung
quanh trục của nó với gia tốc góc bằng 3,14rad/s2. Hỏi, sau giây thứ nhất:
a. Vận tốc góc và vận tốc dài của một điểm trên vành bánh ?
b. Gia tốc pháp tuyến, gia tốc tiếp tuyến và gia tốc toàn phần của một điểm trên
vành bánh ?
c. Góc giữa gia tốc toàn phần và bán kính của bánh xe (ứng với cùng một điểm
trên vành bánh) ?
20. Một đoàn tàu bắt đầu chạy vào một đoạn đường tròn, bán kính 1km, dài
600m với vận tốc 54km/h. Đoàn tàu chạy hết quãng đường đó trong 30giây.
Tìm vận tốc dài, gia tốc tiếp tuyến, gia tốc pháp tuyến, gia tốc toàn phần và gia
tốc góc của đoàn tàu ở cuối quãng đư ờng đó. Coi chuyển động của đoàn tàu là
nhanh dần đều.
B
C
21. Một người muốn chèo thuyền qua sông có dòng
nước chảy. Nếu người ấy chèo thuyền theo hướng từ vị trí
A sang vị trí B (AB vuông góc với dòng nước) thì sau thời
gian t1 = 10phút thuyền sẽ tới vị trí C, cách B một khoảng
S = 120m về phía xuôi dòng (hình vẽ). Nếu người ấy
A
hướng thuyền chếch một góc so với phương AB về phía
ngược dòng, thì sau thời gian t2 = 12,5phút, thuyền sẽ tới
đúng vị trí B.
Coi vận tốc của thuyền đối với dòng nước là không đổi. Tính:
a. Bề rộng của dòng sông.
b. Vận tốc v của thuyền đối với dòng nước.
c. Vận tốc V của dòng nước đối với bờ.
d. Góc lệch .
22. Một máy bay, bay từ vị trí A tới vị trí B. AB nằm theo hướng Tây Đông
và cách nhau một khoảng 300m. Xác định thời gian bay nếu:
a. Không có gió.
b. Gió thổi theo hướng Nam Bắc.
c. Gió thổi theo hướng Tây Đông.
Cho biết vận tốc gió bằng v1 = 20m/s. Vận tốc máy bay đối với không khí v2 =
600km/h.
CHƯƠNG 2
ĐỘNG LỰC HỌC CHẤT ĐIỂM
Trong chương động học chất điểm, với một chuyển động chúng ta đã biết
cách làm thế nào xác định vị trí, vận tốc và gia tốc của nó. Tuy nhiên ta chưa liên
hệ với các câu hỏi: Tại sao vật chuyển động được? cái gì đã làm cho vật từ trạng
thái đứng yên đến chuyển động? nguyên nhân làm cho vật tăng tốc hay giảm tốc
gì làm? cái gì là m một vật chuyển động trên một đường cong?
Chúng ta có thể trả lời các trư ờng hợp trên là do lực là đủ. Ví dụ đoàn tàu bắt
đầu chuyển bánh khi bánh xe của đầu máy tác dụng vào đường ray; Trái đất và
các hành tinh chuyển động quay quanh Mặt trời theo sự chi phối bởi lực hấp dẫn
của Mặt trời... Vậy lực là gì ? Khi quan sát chuyển động của các vật thể, ta nhận
thấy các vật chỉ bắt đầu chuyển động cũng như chỉ thay đổi chuyển động khi
chịu tác dụng của các vật khác. Mọi người đều hiểu khái niệm cơ bản của lực từ
các trải nghiệm thường ngày . Khi bạn đ ẩy một cái hộp rỗng trượt trên một mặt
bàn theo nghĩa là bạn đã truyền một lực lên nó . Đơn giản hơn , bạn truyền một
lực lên quả bóng khi bạn ném hoặc lăn nó . Trong các ví dụ này , từ lực liên hệ
với các tác dụng mạnh và làm cho thay đổi một lượng vận tốc của vật
. Tuy
nhiên, không phải lực luôn luôn gây ra chuyển động . Ví dụ, giả sử bạn đặt một
cuốn sách trên bàn , lực trọng trường tác dụng lên cuốn sách nhưng cuốn sách
vẫn nằm yên . Như vậy, giữa lực và các chuyển động có tuân theo các quy luật
nhất định. Mối liên hệ động – lực nêu lên quan hệ giữa lực tác dụng lên vật và
chuyển động của vật. Người có công tổng quát mối liên hệ đó là
trong công trình nguyên lý cơ bản (xuất bản năm 1687), trong công trình đó ông
nêu ra ba định luât vĩ đại về chuyển động.
I. MỤC ĐÍCH – YÊU CẨU
1. Nắm và vận dụng các định luật Newton để khảo sát chuyển động của chất
điểm.
2. Nắm được khái niệm động lượng, mômen động lượng, các định lý động
lượng.
II. NỘI DUNG
§1. CÁC ĐỊNH LUẬT NEWTON
Mối liên hệ giữa lực và chuyển động là gì ? Aristole (384-322 BC) quan niệm
rằng cần có lực để làm cho một vật chuyển động dọc theo một mặt phẳng ngang.
Đối với Aristole trạng thái tự nhiên của một vật là đứng yên và cần thiết phải có
một lực để làm cho một vật chuyển động. Thêm vào đó, Aristole biện luận rằng
tác dụng một lực lớn lên vật thì tốc độ của vật là lớn hơn. Khoảng 2000 năm sau