Tải bản đầy đủ (.pdf) (205 trang)

Chuyên đề về quang học

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (3.67 MB, 205 trang )

TẬP BÀI GIẢNG VỀ

QUANG HỌC
Nguồn:
Người dịch: hiepkhachquay

Tài liệu download tại:
hoặc

Kiên Giang, tháng 7/2007
© hiepkhachquay

Tập bài giảng về Quang học | Trang 1/205


NỘI DUNG
Trang
Bản chất của bức xạ điện từ..................................................................................1
Lưỡng tính sóng hạt của ánh sáng .....................................................................14
Nguồn phát ánh sáng khả kiến ...........................................................................22
Tốc độ ánh sáng .................................................................................................30
Kĩ thuật hiển vi huỳnh quang .............................................................................41
Sự phản xạ ánh sáng ..........................................................................................46
Sự khúc xạ ánh sáng ..........................................................................................54
Sự giao thoa ánh sáng ........................................................................................64
Sự nhiễu xạ ánh sáng .........................................................................................74
Sự phân cực ánh sáng ........................................................................................81
Thấu kính và quang hình học .............................................................................93
Các loại gương ................................................................................................101
Lăng kính và bộ tách chùm tia .........................................................................112
Sự nhìn và cảm giác về màu sắc........................................................................123


Các màu cơ bản ...............................................................................................137
Quang sai ở hệ thấu kính .................................................................................142
Hiện tượng lưỡng chiết ....................................................................................148
Ánh sáng và Năng lượng ..................................................................................159
Tổng quan về laser ...........................................................................................175
Kĩ thuật an toàn laser .......................................................................................190

© hiepkhachquay

Tập bài giảng về Quang học | Trang 2/205


BẢN CHẤT CỦA BỨC XẠ ĐIỆN TỪ
Ánh sáng khả kiến là một hiện tượng phức tạp được giải thích kinh điển bằng
một mô hình đơn giản dựa trên các tia truyền và mặt đầu sóng, khái niệm được nêu
ra lần đầu tiên vào cuối những năm 1600 bởi nhà vật lí người Hà Lan Christiaan
Huygens. Bức xạ điện từ, một gia đình rộng lớn hơn của những hiện tượng giống
sóng mà ánh sáng khả kiến thuộc về nó (cũng còn gọi là năng lượng bức xạ), là
phương tiện truyền năng lượng chủ yếu trong vũ trụ mênh mông. Cơ chế mà ánh
sáng khả kiến được phát ra hoặc bị hấp thụ bởi các chất, và cách thức nó tác động
lại dưới những điều kiện khác nhau khi truyền trong không gian và trong khí quyển,
hình thành nên cơ sở cho sự tồn tại của màu sắc trong vũ trụ.

Hình 1. Phổ bức xạ điện từ

Thuật ngữ bức xạ điện từ, do James Clerk Maxwell đặt ra, xuất phát từ
những tính chất điện và từ đặc trưng chung cho tất cả các dạng của loại năng lượng
giống sóng này, như được biểu lộ bởi sự phát sinh cả trường dao động điện và từ
khi sóng truyền trong không gian. Ánh sáng khả kiến chỉ đại diện cho một phần nhỏ
của phổ bức xạ điện từ (như đã phân loại trong hình 1), trải ra từ các tia vũ trụ cao

tần và tia gamma, qua tia X, ánh sáng cực tím, bức xạ hồng ngoại, và vi ba, cho tới
các sóng vô tuyến bước sóng dài, tần số rất thấp.
Mối liên hệ giữa ánh sáng, điện và từ không rõ ràng ngay trước mắt những
nhà khoa học buổi đầu làm thí nghiệm với những tính chất cơ bản của ánh sáng và
vật chất. Ánh sáng hồng ngoại, có bước sóng dài hơn bước sóng ánh sáng đỏ khả
kiến, là dạng “vô hình” đầu tiên của bức xạ điện từ được phát hiện. Nhà khoa học
và thiên văn học người Anh William Herschel đã nghiên cứu sự liên đới giữa nhiệt
và ánh sáng bằng một nhiệt kế và một lăng kính khi ông nhận thấy nhiệt độ đạt tới
cao nhất trong vùng nằm ngoài phần đỏ của phổ ánh sáng khả kiến. Herschel cho
rằng phải có một loại ánh sáng khác trong vùng này mà mắt người không nhìn thấy
được.
Bức xạ cực tím, nằm ở phía bên kia của phổ khả kiến, được phát hiện bởi
Wilhelm Ritter, một trong những nhà khoa học đầu tiên nghiên cứu năng lượng liên
quan đến ánh sáng khả kiến. Bằng cách quan sát tốc độ mà các ánh sáng có màu
© hiepkhachquay

Tập bài giảng về Quang học | Trang 3/205


khác nhau làm kích thích sự sẫm màu của một tờ giấy bạc thấm đẫm dung dịch bạc
nitrat, Ritter phát hiện thấy một dạng vô hình khác của ánh sáng, nằm ngoài đầu
xanh của quang phổ, có tốc độ này cao nhất.
Điện và từ được liên hệ với nhau lần đầu tiên vào năm 1820, khi nhà vật lí
người Đan Mạch Hans Christian Oersted phát hiện thấy dòng điện chạy qua một
dây dẫn có thể tạo ra sự lệch hướng của kim nam châm. Cũng vào cuối năm đó, nhà
khoa học người Pháp Andrie Ampère, chứng minh được hai dây dẫn mang dòng
điện có thể hút hoặc đẩy lẫn nhau theo kiểu giống như tương tác của các cực từ.
Trong vài thập niên sau đó, các nghiên cứu khác theo hướng này không ngừng tạo
ra những bằng chứng cho thấy điện và từ có quan hệ gần gũi với nhau.
Cuối cùng, vào năm 1865, nhà khoa học người Scotland, James Clerk

Maxwell đã mở rộng thuyết động học chất khí của ông về mặt toán học để giải thích
mối liên hệ giữa điện và từ. Maxwell cho rằng hai hiện tượng quan hệ gần gũi đó
thường xuất hiện cùng nhau dưới dạng điện từ, và ông phát hiện thấy dòng điện
biến thiên sẽ tạo ra các sóng gồm hai thực thể truyền vào không gian với tốc độ ánh
sáng. Từ những quan sát này, ông kết luận ánh sáng khả kiến là một dạng của bức
xạ điện từ.
Sóng điện từ di chuyển hay truyền theo hướng vuông góc với hướng dao
động của cả vectơ điện trường (E) và từ trường (B), mang năng lượng từ nguồn bức
xạ đến đích ở xa vô hạn. Hai trường năng lượng dao động vuông góc với nhau (như
minh họa trên hình 2) và dao động cùng pha theo dạng sóng sin toán học. Các vectơ
điện trường và từ trường không chỉ vuông góc với nhau mà còn vuông góc với
phương truyền sóng. Để đơn giản hóa minh họa, người ta thường quy ước bỏ qua
các vectơ biểu diễn điện trường và từ trường dao động, mặc dù chúng vẫn tồn tại.

Hình 2. Sóng điện từ

Dù là tín hiệu truyền radio phát đi từ một đài phát thanh, nhiệt phát ra từ một
lò lửa, tia X của nha sĩ dùng để chụp hình răng, hay ánh sáng khả kiến và cực tím
phát ra từ Mặt Trời, các dạng khác nhau này của bức xạ điện từ đều có những tính
chất sóng cơ bản và đồng nhất. Mỗi loại bức xạ điện từ, kể cả ánh sáng khả kiến,
đều dao động theo kiểu tuần hoàn với những chỗ lồi và lõm, và biểu lộ một biên độ,
bước sóng, và tần số đặc trưng, cùng với việc định rõ hướng truyền, năng lượng và
cường độ của bức xạ.
Biểu đồ giản lược theo lối cổ điển của sóng điện từ được biểu diễn trên hình
2, minh họa tính chất sin của các thành phần vectơ dao động điện và từ khi chúng
truyền trong không gian. Để cho tiện, đa số các minh họa biểu diễn bức xạ điện từ
thường cố ý bỏ qua thành phần từ, chỉ biểu diễn vectơ điện trường là một sóng sin
© hiepkhachquay

Tập bài giảng về Quang học | Trang 4/205



trong hệ tọa độ hai chiều x và y xác định. Người ta quy ước thành phần y của sóng
sin biểu diễn biên độ của điện trường, còn thành phần x biểu diễn thời gian, khoảng
cách truyền, hay mối quan hệ pha với một sóng sin khác.
Một số đo chuẩn của mọi bức xạ điện từ là độ lớn của bước sóng (trong chân
không), thường dùng ở đơn vị nano mét (một phần ngàn của micromet) đối với
phần ánh sáng khả kiến của quang phổ. Bước sóng được định nghĩa là khoảng cách
giữa hai đỉnh (hay hai lõm) sóng liên tiếp của dạng sóng (xem hình 2). Tần số tương
ứng của một sóng phát ra, là số chu kì sin (số dao động, hay số bước sóng) đi qua
một điểm cho trước trong một giây, tỉ lệ với nghịch đảo của bước sóng. Như vậy,
bước sóng càng dài ứng với bức xạ tần số càng thấp, và bước sóng càng ngắn ứng
với bức xạ tần số càng cao. Tần số thường được biểu diễn bằng đơn vị hertz (Hz),
hoặc chu kì/giây (cps).
Hertz được chọn làm đơn vị chuẩn của tần số bức xạ điện từ để ghi nhận kết
quả nghiên cứu của nhà vật lí người Đức Heinrich Hertz, người đã thành công trong
việc tự tạo ra và thực hiện thành công thí nghiệm với sóng điện từ vào năm 1887,
tám năm sau khi Maxwell qua đời. Hertz đã tạo ra, thu nhận được, và còn đo được
bước sóng (gần 1m) của bức xạ, ngày nay được phân vào nhóm tần số vô tuyến.
David Hughes, một nhà khoa học sinh quán London, người là giáo sư âm nhạc
trong buổi đầu sự nghiệp của mình, có lẽ mới thực sự là nhà nghiên cứu đầu tiên
thành công trong việc truyền sóng vô tuyến (năm 1879), nhưng sau khi thuyết phục
Hội Hoàng gia không thành, ông quyết định không công bố nghiên cứu của mình,
và cũng không ai biết đến mãi cho tới nhiều năm sau này.
Các dạng phong phú của bức xạ điện từ có bước sóng và tần số khác nhau,
nhưng về cơ bản giống nhau ở chỗ chúng truyền đi với vận tốc như nhau, khoảng
chừng 186.000 dặm một giây (hoặc xấp xỉ 300.000 km một giây), một vận tốc
thường được biết đến là tốc độ của ánh sáng (và được kí hiệu là c). Bức xạ điện từ
(bao gồm cả ánh sáng khả kiến) truyền đi 149 triệu km (93 triệu dặm) từ Mặt Trời
tới Trái Đất mất khoảng 8 phút. Trái lại, một ô tô chạy với tốc độ 100 km/h (60

dặm/h) cần đến 177 năm mới đi hết quãng đường trên. Chỉ trong một giây, ánh sáng
có thể đi vòng quanh Trái Đất 7 lần.
Bước sóng của ánh sáng, và tất cả dạng khác của bức xạ điện từ, liên hệ với
tần số bằng một phương trình tương đối đơn giản:
ν = c/λ
λ
trong đó c là tốc độ ánh sáng (m/s), ν là tần số ánh sáng (Hz), λ là bước sóng
ánh sáng (m). Từ mối liên hệ này, người ta có thể kết luận bước sóng ánh sáng tỉ lệ
nghịch với tần số của nó. Một sự gia tăng tần số tạo ra sự giảm tương ứng bước
sóng ánh sáng, với một độ tăng tương ứng dưới dạng năng lượng của các photon có
trong ánh sáng. Khi đi vào một môi trường mới (như từ không khí đi vào thủy tinh
hoặc nước), tốc độ và bước sóng ánh sáng giảm xuống, mặc dù tần số vẫn không
thay đổi.
Dưới những điều kiện bình thường, khi truyền trong một môi trường đồng
tính, như không khí hoặc chân không, ánh sáng truyền theo đường thẳng cho đến
khi nó tương tác với môi trường hoặc vật liệu khác khiến nó đổi hướng, qua sự khúc
xạ (bẻ cong) hoặc phản xạ. Cường độ ánh sáng cũng giảm do sự hấp thụ bởi môi
© hiepkhachquay

Tập bài giảng về Quang học | Trang 5/205


trường. Nếu sóng ánh sáng truyền qua một khe hẹp hoặc lỗ nhỏ, thì chúng có thể bị
nhiễu xạ hoặc phân tán (tán xạ) tạo nên hình ảnh nhiễu xạ đặc trưng. Phù hợp với
định luật nghịch đảo bình phương nổi tiếng, cường độ (hay độ chói) của bức xạ điện
từ tỉ lệ nghịch với bình phương khoảng cách mà chúng truyền đi. Như vậy, sau khi
ánh sáng truyền đi hai lần một khoảng cách cho trước, thì cường độ của nó giảm đi
bốn lần.

Hình 3. Sự hấp thụ và phát bức xạ


Ánh sáng khả kiến biểu hiện những tính chất sóng kinh điển, nhưng đồng
thời cũng bộc lộ những tính chất có xu hướng hạt, thể hiện rõ ràng qua những thực
thể có năng lượng và xung lượng (nhưng không có khối lượng), và được gọi là
photon. Nguyên tử là nguồn phát ra mọi bức xạ điện từ, dù là loại nhìn thấy hay
không nhìn thấy. Các dạng bức xạ năng lượng cao, như sóng gamma và tia X, sinh
ra do những sự kiện xảy ra làm phá vỡ trạng thái cân bằng hạt nhân của nguyên tử.
Bức xạ có năng lượng thấp, như ánh sáng cực tím, khả kiến và hồng ngoại, cũng
như sóng vô tuyến và vi ba, phát ra từ những đám mây electron bao quanh hạt nhân
hoặc do tương tác của một nguyên tử với nguyên tử khác. Những dạng bức xạ này
xảy ra do thực tế các electron chuyển động trong những quỹ đạo xung quanh hạt
nhân nguyên tử sắp xếp vào những mức năng lượng khác nhau trong hàm phân bố
xác suất của chúng. Nhiều electron có thể hấp thụ thêm năng lượng từ nguồn bức xạ
điện từ bên ngoài (xem hình 3), kết quả là chúng nhảy lên mức năng lượng cao hơn
vốn dĩ không bền.
Cuối cùng, electron “bị kích thích” giải phóng năng lượng thừa bằng cách
phát ra bức xạ điện từ có năng lượng thấp hơn, và đồng thời rơi trở lại mức năng
lượng bền trước đó của nó. Năng lượng của bức xạ phát ra bằng với năng lượng ban
đầu electron hấp thụ trừ đi lượng nhỏ năng lượng bị thất thoát qua một số quá trình
thứ cấp.
Các mức năng lượng bức xạ điện từ có thể thay đổi đáng kể phụ thuộc vào
năng lượng của nguồn electron hoặc hạt nhân. Ví dụ, các sóng vô tuyến có năng
lượng thấp hơn nhiều so với sóng vi ba, tia hồng ngoại, hoặc ánh sáng khả kiến, và
tất cả các sóng này lại chứa ít năng lượng hơn ánh sáng tử ngoại, tia X và sóng
gamma. Như một quy luật, các năng lượng bức xạ điện từ cao liên quan đến các
bước sóng ngắn nhiều hơn các dạng bức xạ có năng lượng thấp. Mối liên hệ giữa
năng lượng của một sóng điện từ và tần số của nó được cho bởi phương trình:
E = hν
ν = hc/λ
λ


© hiepkhachquay

Tập bài giảng về Quang học | Trang 6/205


trong đó E là năng lượng (kJ/mol), h là hằng số Planck, và các biến khác đã
được định nghĩa ở phần trên. Theo phương trình này, năng lượng của sóng điện từ tỉ
lệ trực tiếp với tần số của nó và tỉ lệ nghịch với bước sóng. Như vậy, khi tần số tăng
(với sự giảm bước sóng tương ứng), thì năng lượng sóng điện từ tăng, và ngược lại.
Các đặc trưng chọn lọc của các loại bức xạ điện từ khác nhau, như được định rõ bởi
bước sóng, tần số và các mức năng lượng của nó, sẽ lần lượt được trình bày trong
phần sau đây.
Mặc dù bức xạ điện từ thường được mô tả bằng bước sóng và tần số của
dạng sóng, nhưng những tính chất đặc trưng khác cũng quan trọng khi xem xét cách
thức sóng truyền trong không gian. Hình 4 biểu diễn các dạng sóng khác nhau tiêu
biểu cho các trạng thái phổ biến thường được dùng để mô tả mức độ đồng đều của
bức xạ điện từ. Do ánh sáng khả kiến là loại bức xạ được nói tới nhiều nhất, nên các
ví dụ minh họa trong hình 4 miêu tả các bước sóng trong vùng phổ này. Ví dụ, ánh
sáng đơn sắc gồm các sóng có cùng bước sóng và tần số, hay ở cấp độ vĩ mô, có
cùng màu trong ánh sáng khả kiến. Trái lại, ánh sáng khả kiến đa sắc thường xuất
hiện dưới dạng ánh sáng trắng do sự đóng góp của hỗn hợp tất cả hay đa số các
bước sóng nằm trong vùng phổ từ 400 đến 700 nanomet.

Hình 4. Dạng sóng của các trạng thái bức xạ điện từ

Khi ánh sáng không phân cực (hình 4), các vectơ điện trường dao động trong
mọi mặt phẳng nằm vuông góc với hướng truyền sóng. Ánh sáng phản xạ từ một bề
mặt phẳng tại góc tới hạn, hoặc truyền qua các bộ lọc phân cực, sẽ định hướng theo
mặt phẳng phân cực, với tất cả các vectơ điện trường dao động trong một mặt phẳng

vuông góc với hướng truyền sóng. Ánh sáng phát ra từ Mặt Trời, và đa số các
nguồn phát ánh sáng khả kiến phổ biến như bóng đèn nóng sáng hoặc huỳnh quang,
là không phân cực, còn ánh sáng nhìn qua các thấu kính phân cực của kính râm bị
phân cực theo chiều đứng. Trong một số trường hợp, ánh sáng có thể bị phân cực
elip hoặc phân cực tròn khi truyền qua những chất có nhiều hơn một chiết suất (các
chất khúc xạ kép).
Đa số các nguồn sáng tự nhiên và nhân tạo phát ra ánh sáng không kết hợp,
thể hiện nhiều mối quan hệ pha giữa các bước sóng có mặt trong quang phổ (hình
4). Trong trường hợp này, các đỉnh và lõm của các trạng thái dao động trong từng
sóng không đồng bộ với nhau trong không gian hoặc thời gian. Ánh sáng kết hợp
gồm các bước sóng đồng pha với nhau, và hành xử theo kiểu rất khác với ánh sáng
không kết hợp đối với các tính chất quang học và tương tác với vật chất. Mặt đầu
© hiepkhachquay

Tập bài giảng về Quang học | Trang 7/205


sóng do ánh sáng kết hợp tạo ra có các dao động đỉện và từ cùng pha, có góc phân
kì thấp, và thường gồm ánh sáng đơn sắc hoặc các bước sóng có độ phân bố hẹp.
Laser là nguồn phổ biến phát ra ánh sáng kết hợp.
Những sóng ánh sáng có đường đi đồng trục, tương đối không phân kì khi
truyền trong không gian được gọi là chuẩn trực. Dạng có tổ chức này của ánh sáng
không trải ra, hay không phân kì, một mức độ đáng kể trên những khoảng cách
tương đối xa. Ánh sáng chuẩn trực tạo ra chùm tia rất sít sao, nhưng không cần thiết
phải có dải bước sóng hẹp (không cần phải đơn sắc), một mối quan hệ pha chung,
hoặc một trạng thái phân cực đã được định rõ. Mặt đầu sóng của ánh sáng chuẩn
trực là mặt phẳng và vuông góc với trục truyền. Trái lại, ánh sáng phân kì, hay
không chuẩn trực, lại trải ra một mức độ rộng khi truyền trong không gian, và phải
cho đi qua một thấu kính hoặc một lỗ nhỏ mới làm cho nó chuẩn trực, hoặc hội tụ.
Tia gamma – Là bức xạ năng lượng cao có tần số cao nhất (và bước sóng

ngắn nhất), tia gamma được phát ra do sự chuyển trạng thái bên trong hạt nhân
nguyên tử, bao gồm hạt nhân của những chất phóng xạ (tự nhiên và nhân tạo) nhất
định. Sóng gamma cũng phát ra từ các vụ nổ hạt nhân và các nguồn đa dạng khác
trong không gian vũ trụ. Những tia uy mãnh này có khả năng đâm xuyên khủng
khiếp và được báo cáo là có thể truyền qua 3 mét bêtông ! Mỗi photon tia gamma
giàu năng lượng đến mức chúng dễ dàng được nhận ra, nhưng bước sóng cực kì nhỏ
của chúng đã hạn chế các quan sát thực nghiệm về những tính chất sóng. Tia
gamma phát ra từ những vùng nóng nhất của vũ trụ, bao gồm các vụ nổ sao siêu
mới, sao neutron, pulsar và lỗ đen, truyền qua khoảng cách bao la trong không gian
để đến Trái Đất. Dạng bức xạ năng lượng cao này có bước sóng ngắn hơn một phần
trăm của nanomet (10 picomet), năng lượng photon lớn hơn 500 kiloelectron-volt
(keV) và tần số mở rộng tới 300 exahertz (EHz).

Hình 5. Ảnh chụp tia X của các vì sao

Việc phơi ra trước tia gamma có thể gây ra các đột biến, các sai lạc nhiễm
sắc thể, và còn hủy hoại tế bào, như thường quan sát thấy ở một số dạng bức xạ gây
nhiễm độc khác. Tuy nhiên, bằng việc điều khiển sự phát tia gamma, các chuyên gia
tia X có thể làm chủ các mức năng lượng cao để chiến đấu với bệnh tật và giúp điều
trị một số dạng ung thư. Thiên văn học tia X là một ngành tương đối mới có nhiệm
vụ thu thập các sóng năng lượng cao này để lập bản đồ vũ trụ như minh họa trên
hình 5. Kĩ thuật này cho các nhà khoa học cơ hội quan sát các hiện tượng thiên thể ở
xa trong cuộc tìm kiếm những khái niệm vật lí mới, và kiểm tra những lí thuyết
không thể thử thách bằng những thí nghiệm thực hiện trên Trái Đất này.
Tia X – Bức xạ điện từ có tần số cao hơn vùng tử ngoại (nhưng thấp hơn tia
gamma) được phân loại là tia X, và đủ uy mãnh để xuyên qua nhiều vật liệu, như
© hiepkhachquay

Tập bài giảng về Quang học | Trang 8/205



các mô mềm của động vật. Tính đâm xuyên cao của các sóng uy mãnh này, cùng
với khả năng phơi sáng nhũ tương nhiếp ảnh của chúng, đã đưa đến việc ứng dụng
rộng rãi tia X trong y học, để nghiên cứu cấu trúc cơ thể người, và trong một số
trường hợp khác, là phương tiện để chữa bệnh hoặc phẫu thuật. Giống như với tia
gamma năng lượng cao, việc phơi ra không có điều khiển trước tia X có thể dẫn tới
đột biến, sai lệch nhiễm sắc thể, và một số dạng hủy hoại tế bào khác. Phương pháp
chụp ảnh vô tuyến truyền thống về cơ bản không gì hơn là thu lấy cái bóng của vật
liệu đặc, chứ không phải chụp chi tiết hình ảnh. Tuy nhiên, những tiến bộ gần đây
trong kĩ thuật hội tụ tia X bằng gương đã mang lại những hình ảnh chi tiết hơn
nhiều của các đối tượng đa dạng bằng việc sử dụng kính thiên văn tia X, kính hiển
vi tia X và giao thoa kế tia X.
Các chất khí khí nóng trong không gian vũ trụ phát ra phổ tia X rất mạnh,
chúng được các nhà thiên văn học sử dụng để thu thập thông tin về nguồn gốc và
đặc trưng của các vùng nằm giữa các vì sao của vũ trụ. Nhiều thiên thể cực kì nóng,
như Mặt Trời, lỗ đen, pulsar, chủ yếu phát ra trong vùng phổ tia X và là đối tượng
nghiên cứu của thiên văn học tia X. Phổ tần số của tia X kéo dài ra một vùng rất
rộng, với bước sóng ngắn nhất đạt tới đường kính của nguyên tử. Tuy nhiên, toàn
bộ vùng phổ tia X nằm trên thang độ dài giữa gần 10 nanomét và 10 picomét. Vùng
bước sóng này khiến cho bức xạ tia X là công cụ quan trọng đối với các nhà địa
chất và hóa học trong việc mô tả tính chất của các chất kết tinh, chúng có đặc điểm
cấu trúc tuần hoàn trên cỡ độ dài tương đương với bước sóng tia X.
Ánh sáng tử ngoại – Thường được viết tắt (uv - ultraviolet), bức xạ tử ngoại
truyền đi ở tần số chỉ trên tần số của ánh sáng tím trong phổ ánh sáng khả kiến. Mặc
dù đầu năng lượng thấp của vùng phổ này liền kề với ánh sáng khả kiến, nhưng các
tia tử ngoại ở đầu tần số cao trong ngưỡng tần số của chúng có đủ năng lượng để
giết chết tế bào, và tạo ra sự phá hủy mô nghiêm trọng. Mặt Trời là một nguồn phát
bức xạ tử ngoại không đổi, nhưng bầu khí quyển của Trái Đất (chủ yếu là các phân
tử ozon) đã ngăn chặn có hiệu quả phần lớn các bước sóng ngắn của dòng bức xạ có
khả năng gây chết chóc này, do đó tạo được môi trường sống thích hợp cho cây cối

và động vật. Năng lượng photon trong tia tử ngoại đủ để làm ion hóa các nguyên tử
từ một số phân tử khí trong khí quyển, và đây là quá trình mà tầng điện li được tạo
ra và duy trì liên tục. Mặc dù một liều nhỏ ánh sáng có năng lượng tương đối cao
này có thể xúc tiến việc tổng hợp vitamin D trong cơ thể, và ít làm sạm da, nhưng
quá nhiều bức xạ tử ngoại có thể dẫn tới sự cháy sạm da nghiêm trọng, làm hỏng
võng mạc vĩnh viễn, và gây ra ung thư da.
Ánh sáng tử ngoại được sử dụng rộng rãi trong các thiết bị khoa học để khảo
sát tính chất của những hệ hóa học và sinh học phong phú, và nó cũng quan trọng
trong các quan trắc thiên văn về hệ Mặt Trời, thiên hà, và các phần khác của vũ trụ.
Các vì sao và những thiên thể nóng khác là những nguồn phát mạnh ra bức xạ tử
ngoại. Phổ bước sóng tử ngoại trải từ khoảng 10 đến xấp xỉ 400 nanomét, có năng
lượng photon từ 3,2 đến 100 eV. Loại bức xạ này có ứng dụng trong việc xử lí nước
và thực phẩm, là tác nhân diệt khuẩn, là xúc tác quang học giữ các hợp chất, và
được dùng trong điều trị y khoa. Hoạt động sát trùng của ánh sáng tử ngoại xảy ra ở
những bước sóng dưới 290 nanomét. Việc ngăn chặn và lọc các hợp chất dùng trong
các mỹ phẩm dành cho da, kính mát, và cửa sổ đổi màu, là điều khiển sự phơi sáng
trước ánh sáng tử ngoại đến từ Mặt Trời.
© hiepkhachquay

Tập bài giảng về Quang học | Trang 9/205


Một số côn trùng (nhất là ong mật) và chim chóc có thị giác đủ nhạy trong
vùng tử ngoại để phản ứng lại những bước sóng dài, và có thể dựa vào khả năng này
để điều hướng. Con người bị giới hạn thị giác với bức xạ tử ngoại, do giác mạc hấp
thụ các bước sóng ngắn, và thủy tinh thể của mắt hấp thụ mạnh các bước sóng dài
hơn 300 nanomét.

Hình 6. Phổ hấp thụ tử ngoại – khả kiến


Ánh sáng khả kiến – Các màu cầu vồng liên quan đến phổ ánh sáng khả
kiến chỉ đại diện cho khoảng 2,5% của toàn bộ phổ điện từ, và gồm các photon có
năng lượng từ xấp xỉ 1,6 đến 3,2 eV. Màu sắc tự nó không phải là tính chất của ánh
sáng, mà nhận thức về màu sắc xảy ra qua phản ứng kết hợp của hệ cảm giác dây
thần kinh não – mắt người. Vùng nhìn thấy của phổ điện từ nằm trong một dải tần
số hẹp, từ xấp xỉ 384 đến 769 terahertz (THz) và được nhận biết dưới dạng màu từ
màu đỏ đậm (bước sóng 780nm) đến màu tím đậm (400nm).
Màu đỏ năng lượng thấp, bước sóng dài (622 – 780nm) theo sau trong chuỗi
màu là màu cam (597 – 622nm), vàng (577 – 597nm), lục (492 – 577nm), lam (455
– 492nm), và cuối cùng là màu tím năng lượng tương đối cao, bước sóng ngắn (từ
455nm trở xuống). Một cách giúp ghi nhớ thứ tự (theo chiều tăng tần số) của các
màu trong phổ ánh sáng khả kiến là ghi nhớ câu “đỏ, cam, vàng, lục, lam, chàm,
tím” [ở những nước sử dụng tiếng Anh, họ dùng các từ viết tắt ROY G BIV (Red,
Orange, Yellow, Green, Blue, Indigo, Violet)], như người ta đã dạy cho hàng triệu
học sinh trong các nhà trường trong một thế kỉ qua (mặc dù một số nhà khoa học
không còn coi màu chàm là một màu cơ bản nữa).
Việc phân chia phổ ánh sáng khả kiến thành các vùng màu dựa trên tính chất
vật lí là dễ hiểu, nhưng cách mà màu sắc được cảm nhận thì không rõ ràng được
như vậy. Nhận thức về màu sắc là kết quả của sự phản ứng mang tính chủ quan của
hệ cảm giác của con người với những vùng tần số phong phú của phổ khả kiến, và
những kết hợp đa dạng của các tần số ánh sáng có thể tạo ra cùng một phản ứng thị
giác “nhìn thấy” một màu cụ thể nào đó. Ví dụ, con người có thể cảm nhận được
màu lục, khi phản ứng với sự kết hợp của ánh sáng có vài màu sắc khác nhau,
nhưng trong đó không nhất thiết phải có chứa bước sóng “lục”.
Ánh sáng khả kiến là cơ sở cho mọi sự sống trên Trái Đất, và nó được bắt
bởi những nhà máy nguyên thủy hay các sinh vật tự dưỡng, như cây xanh chẳng
hạn. Những thành viên cơ sở này của chuỗi thức ăn sinh vật khai thác ánh sáng Mặt
© hiepkhachquay

Tập bài giảng về Quang học | Trang 10/205



Trời như một nguồn năng lượng dùng cho việc sản xuất thức ăn riêng và những viên
gạch cấu trúc sinh hóa của chúng. Đáp lại, các sinh vật tự dưỡng giải phóng sản
phẩm là khí oxi, thứ chất khí mà mọi động vật đều cần đến.
Vào năm 1672, ngài Isaac Newton đã nghiên cứu tương tác của ánh sáng khả
kiến với lăng kính thủy tinh và lần đầu tiên nhận thấy ánh sáng trắng thật ra là hỗn
hợp của các ánh sáng khác nhau đại diện cho toàn bộ phổ ánh sáng khả kiến. Ánh
sáng phát ra từ các nguồn nóng sáng tự nhiên và nhân tạo phong phú như Mặt Trời,
các phản ứng hóa học (như lửa), và các dây tóc volfram nóng sáng. Phổ phát xạ
rộng của các nguồn thuộc loại này thường được gọi là bức xạ nhiệt. Các nguồn phát
ánh sáng khả kiến khác, như ống phóng điện khí, có khả năng phát ra ánh sáng
trong ngưỡng tần số hẹp, hoàn toàn xác định (tương ứng với một màu) phụ thuộc
vào sự chuyển mức năng lượng đặc biệt trong các nguyên tử chất nguồn. Sự cảm
nhận mạnh mẽ về một màu nào đó cũng là do sự hấp thụ, phản xạ hoặc sự truyền
đặc trưng của chất và vật được rọi sáng bằng ánh sáng trắng. Phổ hấp thụ ánh sáng
khả kiến – tử ngoại của một loại thuốc nhuộm tổng hợp phổ biến, Iris Blue B, được
minh họa trong hình 6. Dung dịch phân tử hữu cơ có màu sắc rực rỡ này hấp thụ
ánh sáng trong cả vùng khả kiến và tử ngoại của quang phổ, và xuất hiện trước đa
số mọi người dưới màu xanh vừa phải.
Bức xạ hồng ngoại – Thường được viết tắt là IR (Infrared Radiation), dải
bước sóng hồng ngoại trải rộng từ phần ngoài vùng đỏ của phổ ánh sáng khả kiến
(khoảng 700 – 780nm) đến bước sóng khoảng 1mm. Với năng lượng photon từ xấp
xỉ 1,2 milielectron-volt (meV) đến dưới 1,7 eV một chút. Sóng hồng ngoại có tần số
tương ứng từ 300 gigahertz (GHz) đến xấp xỉ 400 terahertz (THz). Loại bức xạ này
liên quan đến vùng nhiệt, nơi ánh sáng khả kiến không nhất thiết phải có mặt. Ví dụ,
cơ thể người không phát ra ánh sáng khả kiến, mà phát ra các bức xạ hồng ngoại
yếu, có thể được cảm nhận và ghi lại dưới dạng nhiệt. Phổ phát xạ bắt đầu tại
khoảng 3000 nanomét và trải ra ngoài vùng hồng ngoại xa, đạt cực đại tại xấp xỉ
10.000 nanomét.

Phân tử của tất cả các đối tượng tồn tại trên không độ tuyệt đối (- 273 độ
Celsius) đều phát ra tia hồng ngoại, và lượng phát xạ nói chung là tăng theo nhiệt
độ. Khoảng chừng phân nửa năng lượng điện từ của Mặt Trời được phát ra trong
vùng hồng ngoại, và các thiết bị trong nhà như bếp lò và bóng đèn cũng phát ra
lượng lớn tia hồng ngoại. Bóng đèn dây tóc volfram nóng sáng là thiết bị phát sáng
không hiệu quả lắm, thực ra chúng phát nhiều sóng hồng ngoại hơn sóng khả kiến.

Hình 7. Ảnh chụp hồng ngoại từ vệ tinh

Dụng cụ phổ biến dựa trên việc dò bức xạ hồng ngoại là các kính nhìn đêm,
các máy dò điện tử, các bộ cảm biến trên vệ tinh và trên máy bay, và những thiết bị
thiên văn. Cái gọi là tên lửa tầm nhiệt do quân đội sử dụng được dẫn đường bằng
© hiepkhachquay

Tập bài giảng về Quang học | Trang 11/205


máy dò hồng ngoại. Trong vũ trụ, các bước sóng bức xạ hồng ngoại lập nên bản đồ
đám bụi thiên thể giữa các sao, như được chứng minh bằng mảng tối lớn nhìn thấy
từ Trái Đất khi quan sát Dải Ngân hà. Trong gia đình, bức xạ hồng ngoại giữ vai trò
quen thuộc khi sẩy khô quần áo, cũng như cho phép điều khiển từ xa hoạt động của
những cánh cửa đóng mở tự động và những đồ giải trí trong nhà.
Việc chụp ảnh hồng ngoại khai thác trong vùng phổ hồng ngoại gần, ghi hình
trên những tấm phim đặc biệt, có ích trong ngành pháp lí, cảm biến từ xa (khảo sát
rừng chẳng hạn), phục hồi tranh vẽ, chụp ảnh qua vệ tinh, và các ứng dụng theo dõi
quân sự. Thật kì lạ, hình chụp hồng ngoại của kính mát và những bề mặt quang học
khác có phủ chất lọc ánh sáng tử ngoại và khả kiến hiện ra trong suốt, và để lộ đôi
mắt phía sau thấu kính có vẻ mờ đục. Phim chụp ảnh hồng ngoại không ghi lại sự
phân bố bức xạ nhiệt do nó không đủ nhạy với những bức xạ có bước sóng dài
(hồng ngoại xa). Trên hình 7 là một vài hình chụp qua vệ tinh cảm biến hồng ngoại

của hai thành phố ở Mĩ và ngọn núi Vesuvius ở Italia.
Sóng vi ba – Hiện nay là cơ sở cho một công nghệ phổ biến dùng trong hàng
triệu hộ gia đình để đun nấu thức ăn, phổ bước sóng vi ba trải từ xấp xỉ 1mm đến
30cm. Sự hấp dẫn của việc sử dụng vi sóng đun nấu thức ăn là do trường hợp ngẫu
nhiên mà các phân tử nước có mặt trong đa số loại thực phẩm có tần số cộng hưởng
quay nằm trong vùng vi sóng. Ở tần số 2,45 GHz (bước sóng 12,2cm), các phân tử
nước hấp thụ hiệu quả năng lượng vi sóng và rồi bức xạ phung phí dưới dạng nhiệt
(hồng ngoại). Nếu sử dụng bình làm từ vật liệu không chứa nước để đựng thức ăn
trong lò vi sóng, thì chúng vẫn có xu hướng vẫn mát lạnh, đó là một tiện lợi đáng kể
của việc nấu nướng bằng vi sóng.
Sóng vi ba được tạo thành từ các sóng vô tuyến tần số cao nhất, được phát ra
bởi Trái Đất, các tòa nhà, xe cộ, máy bay và những đối tượng kích thước lớn khác.
Ngoài ra, bức xạ vi ba mức thấp tràn ngập không gian, nó được xem là giải phỏng
bởi Big Bang khi khai sinh ra vũ trụ. Các sóng vi ba tần số cao là cơ sở cho kĩ thuật
radar, viết tắt của cụm từ RAdio Detecting And Ranging (Dò và tầm vô tuyến), kĩ
thuật phát và thu nhận dùng theo dõi những đối tượng kích thước lớn và tính toán
vận tốc và khoảng cách của chúng. Các nhà thiên văn sử dụng bức xạ vi ba ngoài
Trái Đất để nghiên cứu Dải Ngân hà và những thiên hà lân cận khác. Một lượng
đáng kể thông tin thiên văn có nguồn gốc từ việc nghiên cứu một bước sóng phát xạ
đặc biệt (21cm, hoặc 1420 MHz) của các nguyên tử hydrogen không tích điện,
chúng phân bố rộng khắp trong không gian.
Sóng vi ba cũng được dùng trong truyền phát thông tin từ Trái Đất lên vệ
tinh nhân tạo trong các mạng viễn thông rộng lớn, chuyển tiếp thông tin từ các trạm
phát mặt đất đi những khoảng cách xa, và lập bản đồ địa hình. Thật ngạc nhiên, một
số thí nghiệm điện từ đầu tiên sắp đặt bởi Heinrich Hertz, Jagadis Chandra Bosevà
Guglielmo Marconi (cha đẻ của kĩ thuật vô tuyến hiện đại) được thực hiện bằng bức
xạ nằm trong hoặc gần vùng vi sóng. Những ứng dụng quân sự ban đầu sử dụng
một băng thông hẹp và tăng cường điều biến băng thông bằng các vi sóng có khả
năng hội tụ, chúng khó bị ngăn chặn và chứa một lượng thông tin tương đối lớn. Có
một số tranh cãi trong cộng đồng khoa học về khả năng gây hại cho sức khỏe, như

gây ung thư, phá hủy mô, liên quan tới bức xạ vi sóng liên tục và lũy tích lâu ngày
phát ra từ các tháp điện thoại, rò rĩ lò vi sóng, và hành động đặt điện thoại di động ở
vị trí gần não trong lúc sử dụng.
© hiepkhachquay

Tập bài giảng về Quang học | Trang 12/205


Hình 8. Điều biến tần số sóng vô tuyến

Sóng vô tuyến – Phần tần số vô tuyến có xu hướng mở rộng của phổ điện từ
gồm các bước sóng từ khoảng 30cm đến hàng nghìn kilomét. Bức xạ trong vùng
này chứa rất ít năng lượng, và giới hạn trên về tần số (khoảng 1GHz) xảy ra tại cuối
dải tần, nơi phát chương trình vô tuyến và truyền hình bị hạn chế. Tại những tần số
thấp như vậy, photon (hạt) đặc trưng của bức xạ không biểu kiến, và sóng có vẻ
truyền năng lượng theo kiểu êm ả, liên tục. Không có giới hạn trên về mặt lí thuyết
cho bước sóng của bức xạ tần số vô tuyến. Ví dụ, dòng điện biến thiên tần số thấp
(60Hz) mang bởi dây dẫn có bước sóng khoảng 5 triệu mét (hay tương đương 3000
dặm). Sóng vô tuyến dùng trong truyền thông được điều biến theo một trong hai
kiểu kĩ thuật phát: điều biến biên độ (AM) làm thay đổi biên độ sóng, và điều biến
tần số (FM, xem hình 8) làm thay đổi tần số sóng. Sóng vô tuyến đóng vai trò quan
trọng trong công nghiệp, truyền thông, y khoa, và chụp ảnh cộng hưởng từ (MRI).
Phần âm thanh và hình ảnh động của truyền hình truyền đi qua bầu khí quyển
bằng các sóng vô tuyến ngắn có bước sóng dưới 1m, được điều biến giống hệt như
phát thanh FM. Sóng vô tuyến cũng được tạo ra bởi các ngôi sao trong những thiên
hà xa xôi, và các nhà thiên văn có thể dò ra chúng bằng những chiếc kính thiên văn
vô tuyến chuyên dụng. Những sóng dài, bước sóng vài triệu dặm, được phát hiện
đang phát về phía Trái Đất từ không gian sâu thẳm. Do tín hiệu quá yếu, nên các
kính thiên văn vô tuyến thường được sắp thành dãy song song gồm nhiều ănten thu
khổng lồ.

Bản chất của mối liên hệ giữa tần số (số dao động trong một đơn vị thời
gian) và bước sóng (chiều dài của mỗi dao động) của ánh sáng trở nên rõ ràng khi
nghiên cứu phạm vi rộng phổ bức xạ điện từ. Các bức xạ điện từ tần số rất cao, như
tia gamma, tia X, và ánh sáng tử ngoại, có bước sóng rất ngắn và lượng năng lượng
khổng lồ. Mặt khác, các bức xạ tần số thấp, như ánh sáng khả kiến, hồng ngoại,
sóng vi ba và sóng vô tuyến có bước sóng tương ứng dài hơn và năng lượng thấp
hơn. Mặc dù phổ điện từ thường được mô tả trải ra trên 24 bậc độ lớn tần số và
bước sóng, nhưng thực sự không có giới hạn trên hay giới hạn dưới nào đối với
bước sóng và tần số của sự phân bố liên tục này của bức xạ.
Tác giả: Mortimer Abramowitz, Thomas J. Fellers và Michael W. Davidson
()
hiepkhachquay dịch

© hiepkhachquay

Tập bài giảng về Quang học | Trang 13/205


LƯỠNG TÍNH SÓNG-HẠT CỦA ÁNH SÁNG
Bản chất đích thực của ánh sáng khả kiến là một bí ẩn làm lúng túng loài
người trong nhiều thế kỉ. Các nhà khoa học Hy Lạp thuộc trường phái Pythagore cổ
đại cho rằng mỗi một vật khả kiến phát ra một dòng hạt đều đặn, còn Aristotle kết
luận rằng ánh sáng truyền đi theo kiểu giống như sóng trên đại dương. Mặc dù
những ý tưởng này đã trải qua hàng loạt cải tiến và thu được tiến bộ đáng kể trong
thế kỉ 20 vừa qua, nhưng điều cốt lõi của cuộc tranh luận do các nhà triết học Hy
Lạp đặt ra vẫn kéo dài cho tới ngày nay.

Hình 1. Ánh sáng là sóng và là hạt

Một quan điểm nhìn nhận ánh sáng giống như sóng trong tự nhiên, chúng tạo

ra năng lượng và truyền trong không gian theo kiểu tương tự như các gợn sóng lan
dần ra trên bề mặt của một ao nước phẳng lặng sau khi bị một hòn đá rơi xuống làm
nhiễu động. Quan điểm đối lập cho rằng ánh sáng gồm dòng các hạt đều đặn, rất
giống với những giọt nước nhỏ xíu phun ra từ một vòi tưới vườn. Trong vài thế kỉ
qua, mỗi quan điểm chỉ được nhất trí trong một khoảng thời gian nào đó, rồi lại bị
lật đổ bởi bằng chứng cho quan điểm kia. Chỉ trong thập kỉ đầu tiên của thế kỉ 20
cũng là bằng chứng đủ sức thuyết phục mang tới câu trả lời toàn diện, và trước sự
ngạc nhiên của nhiều người, hóa ra cả hai lí thuyết đều chính xác, ít nhất là trong
từng bộ phận.
Vào đầu thế kỉ 19, chủ đề về bản chất ánh sáng đã đẩy cộng đồng khoa học
tới chỗ chia phe dựng trại chiến đấu kịch liệt bảo vệ cho giá trị của những lí thuyết
ưa chuộng của họ. Một nhóm nhà khoa học, những người tán thành thuyết sóng, tập
trung bàn luận về những khám phá của nhà khoa học người Hà Lan Christiaan
Huygens. Còn trại bên kia thì trích dẫn thí nghiệm lăng kính của ngài Isaac Newton,
xem là bằng chứng cho thấy ánh sáng truyền đi dưới dạng một trận mưa hạt, mỗi
hạt đi theo đường thẳng cho tới khi nó bị khúc xạ, hấp thụ, phản xạ, nhiễu xạ theo
một số kiểu khác. Mặc dù chính Newton hình như cũng có một số nghi ngờ với
thuyết tiểu thể của ông về bản chất ánh sáng, nhưng uy tín của ông trong cộng đồng
khoa học có sức nặng quá lớn nên những kẻ ủng hộ ông đã bỏ qua tất cả những
bằng chứng khác trong cuộc chiến đấu khốc liệt của mình.
Lí thuyết khúc xạ ánh sáng của Huygens, dựa trên khái niệm bản chất giống
như sóng của ánh sáng, cho rằng vận tốc ánh sáng trong một chất bất kì tỉ lệ nghịch
với chiết suất của nó. Nói cách khác, Huygens cho rằng ánh sáng càng bị bẻ cong,
hay khúc xạ, khi đi vào một chất, thì nó càng chậm khi truyền qua chất đó. Những
người ủng hộ ông kết luận rằng nếu ánh sáng là một dòng hạt, thì sẽ xảy ra kết quả
ngược lại, vì ánh sáng đi vào môi trường đậm đặc hơn sẽ bị các phân tử môi trường
© hiepkhachquay

Tập bài giảng về Quang học | Trang 14/205



đó hút và vận tốc sẽ tăng lên, chứ không giảm xuống. Mặc dù lời hòa giải cho cuộc
cãi vã này là đo vận tốc ánh sáng trong các chất khác nhau, không khí và thủy tinh
chẳng hạn, nhưng trong thời kì đó, dụng cụ dùng để làm việc này chưa ra đời. Thêm
nữa, ánh sáng hình như chuyển động với cùng một vận tốc, bất chấp môi trường mà
nó đi qua. Phải hơn 150 năm sau, vận tốc của ánh sáng mới được đo với độ chính
xác cao để chứng minh thuyết Huygens là đúng.

Hình 2. Những nhà tiên phong trong ngành vật lí nghiên cứu ánh sáng khả kiến

Bất chấp danh cao vọng trọng của ngài Isaac Newton, số nhà khoa học có
danh tiếng vào đầu những năm 1700 không tán thành thuyết tiểu thể của ông. Một
số người tranh luận rằng nếu ánh sáng là các hạt, thì khi hai chùm sáng cắt ngang
nhau, một số hạt sẽ va chạm lên nhau gây ra sự chệch hướng trong chùm sáng. Rõ
ràng điều này không xảy ra, nên họ kết luận ánh sáng không thể là tập hợp những
hạt rời rạc được.
Huygens, với trực giác của mình, đề xuất trong chuyên luận năm 1690 của
ông rằng, sóng ánh sáng truyền trong không gian qua trung gian ête, một chất bí ẩn
không trọng lượng, tồn tại như một thực thể vô hình trong không khí và không gian.
Công cuộc săn lùng ête ngốn một lượng đáng kể tài nguyên trong thế kỉ 19 trước
khi cuối cùng phải dừng lại. Thuyết ête tồn tại ít nhất là cho tới cuối những năm
1800, bằng chứng là mô hình do Charles Wheatstone đề xuất, chứng minh ête mang
sóng ánh sáng bằng cách dao động theo hướng vuông góc với hướng truyền sóng,
và mô hình chi tiết của James Clerk Maxwell mô tả việc xây dựng chất vô hình này.
Huygens tin rằng ête dao động cùng hướng với ánh sáng, và tự hình thành một sóng
như thể là nó mang sóng ánh sáng. Trong tập sách xuất bản sau, nguyên lí Huygens,
ông đã mô tả tài tính cách mà mỗi điểm trên sóng có thể tạo ra mặt sóng riêng của
nó, và rồi hợp lại thành đầu sóng. Huygens dùng ý tưởng này sáng tạo ra một lí
thuyết chi tiết cho hiện tượng khúc xạ, và cũng giải thích tại sao các tia sáng không
phá hủy nhau khi đường truyền của chúng cắt nhau.

Khi một chùm ánh sáng truyền giữa hai môi trường có chiết suất khác nhau
thì chùm tia bị khúc xạ và đổi hướng khi truyền từ môi trường thứ nhất vào môi
trường thứ hai. Để xác định xem chùm tia sáng là hạt hay sóng, người ta phải nghĩ
ra mỗi mô hình cho mỗi trường phái để giải thích hiện tượng (hình 3). Theo thuyết
sóng của Huygens, một phần nhỏ của mỗi đầu sóng góc phải chạm đến môi trường
thứ hai trước khi phần còn lại của đầu sóng tiến đến mặt phân giới. Phần này sẽ bắt
đầu đi qua môi trường thứ hai trong khi phần còn lại của sóng vẫn còn truyền trong
môi trường thứ nhất, nhưng sẽ chuyển động chậm hơn do chiết suất của môi trường
© hiepkhachquay

Tập bài giảng về Quang học | Trang 15/205


thứ hai cao hơn. Do mặt sóng lúc này truyền ở hai tốc độ khác nhau, nên nó sẽ uốn
cong vào môi trường thứ hai, do đó làm thay đổi hướng truyền. Trái lại, thuyết hạt
có lúc hơi khó giải thích tại sao các hạt ánh sáng phải đổi hướng khi chúng truyền
từ môi trường này sang môi trường khác. Những người đề xướng thuyết hạt cho
rằng một lực đặc biệt, hướng vuông góc với mặt phân giới, tác động đến sự thay đổi
vận tốc của các hạt khi chúng đi vào môi trường thứ hai. Bản chất đích thực của lực
này không được nghiên cứu và không có bằng chứng nào được thu thập để chứng
minh cho lí thuyết.

Hình 3. Sự khúc xạ của hạt và sóng

Một so sánh thú vị khác của hai lí thuyết liên quan tới những khác biệt xảy ra
khi ánh sáng bị phản xạ từ một bề mặt nhẵn, lung linh, như mặt gương chẳng hạn.
Thuyết sóng xem nguồn sáng phát ra các sóng ánh sáng trải ra theo mọi hướng. Khi
chạm lên gương, các sóng bị phản xạ theo góc tới, nhưng với mỗi sóng phản hồi trở
lại tạo ra một ảnh đảo ngược (hình 4). Hình dạng của sóng tới phụ thuộc nhiều vào
khoảng cách từ nguồn sáng tới gương. Ánh sáng phát ra từ một nguồn ở gần vẫn giữ

được mặt sóng hình cầu, có độ cong cao, còn ánh sáng phát ra từ một nguồn ở xa sẽ
trải rộng hơn và các mặt sóng gần như là phẳng.

Hình 4. Hạt và sóng phản xạ bởi gương

Trường hợp bản chất hạt của ánh sáng đối với hiện tượng phản xạ có sức
thuyết phục hơn nhiều so với hiện tượng khúc xạ. Ánh sáng phát ra từ một nguồn,
dù ở gần hay ở xa, đi tới bề mặt gương dưới dạng một dòng hạt, chúng bị nảy lên,
hay là bị phản xạ bởi bề mặt nhẵn mịn. Do các hạt rất nhỏ, và có một lượng rất lớn
hạt trong chùm ánh sáng lan truyền, nên chúng sẽ chuyển động sát cánh với nhau.
Khi chạm lên mặt gương, các hạt bị nảy lên từ những điểm khác nhau, nên trật tự
của chúng trong chùm sáng bị đảo ngược lại tạo ra một hình đảo ngược, như được
minh họa trên hình 4. Cả thuyết hạt và thuyết sóng đều giải thích thỏa đáng sự phản
xạ bởi một bề mặt phẳng. Tuy nhiên, thuyết hạt cũng cho rằng nếu bề mặt quá gồ
© hiepkhachquay

Tập bài giảng về Quang học | Trang 16/205


ghề, thì các hạt bị nảy lên ở nhiều góc khác nhau, kết quả là làm tán xạ ánh sáng.
Thuyết này rất phù hợp với những quan sát thực nghiệm.
Hạt và sóng cũng sẽ hành xử khác nhau khi chúng chạm phải rìa của một vật
và tạo nên bóng đổ (hình 5). Newton sớm chỉ ra trong cuốn Opticks xuất bản năm
1704 của ông rằng: “Ánh sáng không bao giờ truyền đi theo đường cong hay bị bẻ
cong thành bóng đổ”. Khái niệm này phù hợp với thuyết hạt cho rằng ánh sáng luôn
luôn truyền đi theo đường thẳng. Nếu các hạt chạm phải rìa của một rào chắn thì
chúng sẽ không tạo ra bóng đổ vì các hạt không bị rào chắn ngăn cản tiếp tục
chuyển động theo đường thẳng và không trải qua phía sau rìa chắn. Ở phạm vi vĩ
mô, quan sát này hầu như là chính xác, nhưng nó không phù hợp với kết quả của thí
nghiệm nhiễu xạ ánh sáng xảy ra ở kích thước nhỏ hơn nhiều.


Hình 5. Nhiễu xạ của hạt và sóng

Khi ánh sáng truyền qua một khe hẹp, chùm tia trải ra và trở nên rộng hơn
mong đợi. Quan sát quan trọng có tính cơ sở này mang lại nhiều tin cậy cho thuyết
sóng ánh sáng. Giống như sóng nước, sóng ánh sáng chạm phải rìa của một vật thì
uốn cong quanh rìa đó và đi vào vùng bóng hình học của nó, là vùng không được
rọi sáng trực tiếp bằng chùm tia sáng. Hành trạng này tương tự như sóng nước cuốn
quanh phần cuối của bè nổi, thay vì phản xạ ra xa.
Gần 100 năm sau khi Newton và Huygens đề xuất lí thuyết của họ, một nhà
vật lí người Anh tên là Thomas Young đã thực hiện một thí nghiệm củng cố mạnh
mẽ bản chất giống sóng của ánh sáng. Vì ông tin rằng ánh sáng là gồm các sóng,
Young giải thích được một số loại tương tác xảy ra khi hai sóng ánh sáng gặp nhau.
Để kiểm tra giả thuyết này, ông dùng một màn chứa một khe hẹp để tạo ra chùm
ánh sáng kết hợp (gồm các sóng truyền cùng pha với nhau) từ nguồn ánh sáng Mặt
Trời. Khi các tia sáng Mặt Trời chạm tới khe, chúng trải rộng ra, hay nhiễu xạ, tạo
ra một mặt sóng. Nếu như mặt sóng này được cho rọi tới một màn thứ hai có hai
khe đặt rất gần nhau, thì hai nguồn ánh sáng kết hợp nữa, hoàn toàn đồng bộ với
nhau, được tạo ra (hình 6). Ánh sáng từ mỗi khe truyền tới một điểm nằm giữa hai
khe phải hoàn toàn đồng bộ với nhau. Tuy nhiên, nếu xét một điểm nào đó nằm về
một phía so với điểm chính giữa, thì ánh sáng từ một khe sẽ truyền tới điểm đó qua
một đoạn đường dài hơn so với ánh sáng truyền từ khe phía bên kia. Ánh sáng từ
khe gần hơn sẽ truyền tới điểm thứ hai này trước so với ánh sáng từ khe ở xa, nên
hai sóng không còn đồng bộ với nhau, và có thể hủy nhau tạo nên bóng tối.

© hiepkhachquay

Tập bài giảng về Quang học | Trang 17/205



Đúng như ông nghi ngờ, Young phát hiện thấy khi các sóng ánh sáng từ bộ
khe thứ hai bị trải ra (hay nhiễu xạ), chúng gặp nhau và chồng chập lên nhau. Trong
một số trường hợp, sự chồng chập kết hợp đồng bộ chính xác với nhau. Tuy nhiên,
trong một số trường hợp khác, các sóng ánh sáng kết hợp hoàn toàn không đồng bộ
với nhau hoặc chỉ đồng bộ một phần. Young nhận thấy khi các sóng gặp nhau đồng
bộ, chúng cộng gộp với nhau bằng một quá trình gọi là giao thoa tăng cường. Các
sóng gặp nhau không đồng bộ sẽ hủy lẫn nhau, hiện tượng này gọi là giao thoa triệt
tiêu. Ở giữa hai thái cực này, những mức độ khác nhau của giao thoa tăng cường và
triệt tiêu xảy ra làm tạo ra sóng có phổ biên độ rộng. Young cũng có thể quan sát
thấy các hiệu ứng giao thoa trên màn hình đặt ở một khoảng cách nhất định phía sau
hai khe. Sau khi nhiễu xạ, ánh sáng tái kết hợp bằng giao thoa tạo ra dải vân sáng và
tối dọc theo chiều dài của màn hình.

Hình 6. Thí nghiệm hai khe Young

Mặc dù có vẻ quan trọng, nhưng kết luận của Young không được chấp nhận
rọng rãi vào lúc đó, chủ yếu do bởi niềm tin quá mãnh liệt vào thuyết hạt. Ngoài
quan sát sự giao thoa ánh sáng, Young còn cho rằng ánh sáng có các màu khác nhau
gồm các sóng có chiều dài khác nhau, một khái niệm cơ sở được công nhận rộng rãi
hiện nay. Trái lại, thuyết hạt chủ trương rằng màu sắc ánh sáng khác nhau là do các
hạt có khối lượng khác nhau hoặc truyền đi với vận tốc khác nhau.
Hiệu ứng giao thoa không chỉ giới hạn có ánh sáng. Các sóng tạo ra trên mặt
hồ, hoặc ao, sẽ trải ra theo mọi hướng và chịu sự hành xử tương tự. Khi hai sóng
gặp nhau đồng bộ, chúng sẽ cộng gộp với nhau tạo ra một sóng hơn bằng giao thoa
tăng cường. Các sóng chạm nhau không đồng bộ sẽ hủy nhau qua giao thoa triệt
tiêu và tạo ra bề mặt phẳng trên nước.
Thêm một bằng chứng nữa cho bản chất giống sóng của ánh sáng được phát
hiện khi hành trạng của chùm sáng giữa các kính phân cực đặt chéo nhau được
nghiên cứu tỉ mỉ (hình 7). Kính phân cực có cấu trúc phân tử độc nhất vô nhị chỉ
cho phép ánh sáng có một định hướng nào đó truyền qua chúng. Nói cách khác,

kính phân cực có thể được xem như một loại màn che Venice đặc biệt có các hàng
thanh nhỏ xíu định theo một hướng bên trong chất phân cực. Nếu cho một chùm
© hiepkhachquay

Tập bài giảng về Quang học | Trang 18/205


sáng tới đập vào kính phân cực, chỉ có những tia sáng định hướng song song với
hướng phân cực mới có thể truyền qua kính. Nếu đặt một kính phân cực thứ hai
phía sau kính thứ nhất và định hưởng giống như kính thứ nhất, thì ánh sáng truyền
qua được kính thứ nhất cũng sẽ truyền qua được kính thứ hai.
Tuy nhiên, nếu quay kính phân cực thứ hai đi một góc nhỏ, thì lượng ánh
sáng truyền qua nó sẽ giảm xuống. Khi quay kính phân cực thứ hai đến vị trí định
hướng vuông góc với kính thứ nhất, thì không có ánh sáng nào đã truyền qua được
kính thứ nhất sẽ truyền qua được kính thứ hai. Kết quả này dễ dàng giải thích được
với thuyết sóng, còn việc vận dụng thuyết hạt không thể giải thích được ánh sáng bị
chặn lại như thế nào bởi kính thứ hai. Thật vậy, thuyết hạt cũng không thể giải thích
thỏa đáng hiện tượng giao thoa và nhiễu xạ, những hiệu ứng mà sau này người ta
xem là thuộc cùng một hiện tượng.
Kết quả quan sát với ánh sáng phân cực đủ để phát triển khái niệm ánh sáng
gồm các sóng ngang có các thành phần vuông góc với hướng truyền sóng. Mỗi
thành phần ngang phải có một định hướng đặc biệt cho phép nó truyền qua hoặc là
bị chặn lại bởi một kính phân cực. Chỉ những sóng có thành phần ngang song song
với bộ lọc phân cực mới truyền qua được, còn những sóng khác đều bị chặn lại.

Hình 7. Hạt và sóng đi qua các kính phân cực đặt vuông góc

Vào giữa những năm 1800, các nhà khoa học không ngừng bị thuyết phục
trước đặc trưng giống sóng của ánh sáng, nhưng vẫn còn một chỗ hổng lớn chưa
được lấp. Đó là ánh sáng thật ra là gì ? Một đột phá được thực hiện bởi nhà vật lí

người Anh James Clerk Maxwell khi ông phát hiện thấy tất cả các dạng bức xạ điện
từ đều có phổ liên tục và truyền qua chân không với cùng một tốc độ: 186000 dặm
một giây. Khám phá của Maxwell thật sự đã đóng đinh quan tài cho thuyết hạt, và
vào buổi bình minh của thế kỉ 20, hình như những câu hỏi cơ bản về ánh sáng và lí
thuyết quang học cuối cùng đã được trả lời.
Một tai họa lớn ập đến với thuyết sóng vào cuối thập niên 1880, khi các nhà
khoa học lần đầu tiên phát hiện thấy, dưới những điều kiện nhất định, ánh sáng có
thể đánh đuổi các electron ra khỏi nguyên tử của một vài kim loại (hình 8). Mặc dù
© hiepkhachquay

Tập bài giảng về Quang học | Trang 19/205


lúc đầu chỉ là một hiện tượng hiếu kì và không giải thích nổi, nhưng người ta nhanh
chóng phát hiện thấy ánh sáng cực tím có thể làm bật ra electron từ nguyên tử của
nhiều kim loại, làm cho chúng tích điện dương. Nhà vật lí người Đức Phillip Lenard
trở nên bị lôi cuốn vào những quan sát này, và ông đã đặt tên cho nó là hiệu ứng
quang điện. Lenard dùng một lăng kính để tách ánh sáng trắng thành các thành phần
màu của nó, và rồi cho hội tụ có chọn lọc mỗi màu lên một đĩa kim loại để tống khứ
các electron ra khỏi nó.
Cái Lenard phát hiện được làm ông bối rối và ngạc nhiên. Đối với một bước
sóng ánh sáng cụ thể (chẳng hạn ánh sáng xanh dương), các electron tạo ra một thế
không đổi, hay một lượng năng lượng ổn định. Việc giảm hoặc tăng lượng ánh sáng
tạo ra sự tăng hoặc giảm tương ứng số electron được giải phóng, nhưng mỗi
electron vẫn có năng lượng như cũ. Nói cách khác, các electron thoát khỏi liên kết
nguyên tử có năng lượng phụ thuộc vào bước sóng ánh sáng, chứ không phải cường
độ ánh sáng. Điều này trái với cái mà thuyết sóng mong đợi. Lenard cũng khám phá
ra mối liên hệ giữa bước sóng và năng lượng: các bước sóng càng ngắn làm phát
sinh các electron có năng lượng càng lớn.


Hình 8. Hiệu ứng quang điện

Việc thiết lập mối quan hệ giữa ánh sáng và các nguyên tử có được vào đầu
thập niên 1800 khi William Hyde Wollaston khám phá thấy phổ của Mặt Trời
không phải là một dải sáng liên tục mà chứa hàng trăm bước sóng bị thiếu. Trên 500
vạch hẹp ứng với các bước sóng bị thiếu đã được lập biểu đồ bởi nhà vật lí người
Đức Joseph von Fraunhofer, người đặt các kí hiệu chữ cái cho các khe hở lớn nhất.
Sau này, người ta phát hiện thấy các khe hở sinh ra do sự hấp thụ những bước sóng
cụ thể bởi các nguyên tử trong lớp bên ngoài Mặt Trời. Những quan trắc này là một
số liên hệ đầu tiên giữa các nguyên tử và ánh sáng, mặc dù tác dụng cơ bản của nó
không được hiểu rõ vào lúc ấy.
Năm 1905, Albert Einstein đề xuất rằng ánh sáng thực ra có một số đặc trưng
hạt, bất chấp những bằng chứng tràn ngập cho bản chất giống sóng của ánh sáng.
Trong khi phát triển thuyết lượng tử của ông, Einstein đề xuất về mặt toán học rằng
các electron gắn liền với các nguyên tử trong kim loại có thể hấp thụ một số lượng
ánh sáng nhất định (ban đầu đặt tên là lượng tử, nhưng về sau đổi tên là photon), và
như thế nó có năng lượng để thoát ra ngoài. Ông cũng cho rằng nếu năng lượng của
photon tỉ lệ nghịch với bước sóng thì các bước sóng càng ngắn sẽ tạo ra những
electron có năng lượng càng lớn, một giả thuyết được hình thành trên cơ sở những
kết quả nghiên cứu của Lenard.

© hiepkhachquay

Tập bài giảng về Quang học | Trang 20/205


Lí thuyết của Einstein được củng cố trong thập niên 1920 bởi các thí nghiệm
của nhà vật lí người Mĩ Arthur H. Compton, người chứng minh được photon có
xung lượng, một yêu cầu cần thiết để củng cố lí thuyết vật chất và năng lượng có
thể hoán đổi cho nhau. Cũng vào khoảng thời gian đó, nhà khoa học người Pháp

Louis Victor-de Broglie cho rằng tất cả vật chất và bức xạ đều có những tính chất
vừa giống sóng vừa giống hạt. Dưới sự chỉ dẫn của Max Planck, de Broglie đã
ngoại suy công thức nổi tiếng của Einstein liên hệ khối lượng với năng lượng chứa
luôn hằng số Planck:
E = mc2 = hν
ν
trong đó E là năng lượng của hạt, m là khối lượng, c là vận tốc ánh sáng, h là
hằng số Planck và ν là tần số. Công trình của de Broglie, liên hệ tần số của một
sóng với năng lượng và khối lượng của một hạt, mang tính cơ sở trong sự phát triển
của một lĩnh vực mới cuối cùng sẽ được dùng để giải thích bản chất vừa giống sóng
vừa giống hạt của ánh sáng. Cơ học lượng tử ra đời từ nghiên cứu của Einstein,
Planck, de Broglie, Niels Bohr, Erwin Schrodinger, và những người nỗ lực giải
thích bức xạ điện từ bằng thuật ngữ lưỡng tính, hay là hành trạng vừa giống sóng
vừa giống hạt. Có khi ánh sáng hành xử như hạt, và đôi khi lại như sóng. Đặc trưng
lưỡng tính của hành trạng của ánh sáng có thể dùng để mô tả tất cả các đặc điểm đã
biết được quan sát thấy bằng thực nghiệm, từ sự khúc xạ, phản xạ, giao thoa, và
nhiễu xạ cho tới các hiệu ứng phân cực ánh sáng và hiệu ứng quang điện. Hai đặc
trưng của ánh sáng sống hòa thuận cùng nhau và cho phép chúng ta khám phá
những nét đẹp của vũ trụ.
Tác giả: Kenneth R. Spring, Michael W. Davidson
()
hiepkhachquay dịch

© hiepkhachquay

Tập bài giảng về Quang học | Trang 21/205


NGUỒN PHÁT ÁNH SÁNG KHẢ KIẾN
Ánh sáng khả kiến bao gồm chỉ một phần rất nhỏ của toàn bộ phổ bức xạ

điện từ, nhưng nó chứa vùng tần số duy nhất mà các tế bào hình que và hình nón
của mắt người phản ứng được. Bước sóng mà con người bình thường có thể nhìn
thấy được nằm trong một vùng rất hẹp, khoảng chừng giữa 400 và 700 nanomét.
Con người có thể quan sát và phản ứng lại sự kích thích tạo ra bởi ánh sáng khả
kiến là do mắt người có những đầu dây thần kinh đặc biệt nhạy với vùng tần số này.
Tuy nhiên, phần còn lại của phổ điện từ thì không nhìn thấy được.

Hình 1. Phổ ánh sáng khả kiến

Có rất nhiều nguồn phát ra bức xạ điện từ, và người ta thường phân loại theo
phổ bước sóng mà các nguồn phát ra. Các sóng vô tuyến tương đối dài được tạo ra
bởi dòng điện chạy trong các ănten phát thanh truyền hình khổng lồ, còn sóng ánh
sáng khả kiến ngắn hơn nhiều được tạo ra bởi những xáo trộn trạng thái năng lượng
của các electron tích điện âm bên trong nguyên tử. Dạng ngắn nhất của bức xạ điện
từ, sóng gamma, là kết quả của sự phân rã các thành phần hạt nhân ở tâm nguyên tử.
Ánh sáng mà con người có thể nhìn thấy (hình 1) thường là tập hợp nhiều bước
sóng có thành phần thay đổi tùy theo nguồn phát.
Trong cuộc sống hàng ngày, chúng ta bị “oanh tạc” dữ dội bởi phổ bức xạ
điện từ, chỉ một phần nhỏ của nó chúng ta mới thực sự “nhìn thấy” dưới dạng ánh
sáng khả kiến. Khi mạo hiểm bước ra ngoài trời thì một lượng khủng khiếp ánh
sáng khả kiến đập vào người chúng ta được phát ra từ Mặt Trời; Mặt Trời cũng tạo
ra nhiều tần số bức xạ khác không rơi vào vùng khả kiến. Còn khi ở trong nhà,
chúng ta lại tắm mình trong ánh sáng khả kiến phát ra từ các nguồn sáng nhân tạo,
chủ yếu là bóng đèn volfram nóng sáng và đèn huỳnh quang.
Ban đêm, ánh sáng tự nhiên được tạo ra bởi các thiên thể, như Mặt Trăng,
các hành tinh và các sao, ngoài ra còn có cực quang định kì (ánh sáng phương Bắc),
và thỉnh thoảng có sao chổi hoặc sao băng. Những nguồn sáng tự nhiên khác gồm
có tia chớp, núi lửa, lửa cháy rừng, cộng với một số nguồn phát sáng hóa sinh (phát
quang sinh học). Các nguồn sáng sinh học gồm có ánh chớp lập lòe của đom đóm
quá đỗi quen thuộc, và lung linh huyền ảo trên biển có các loài phát quang sinh học

như một số vi khuẩn, tảo, trùng roi, sứa, và một số loài cá.
Bảng 1. Bước sóng ánh sáng khả kiến và màu sắc nhận được

© hiepkhachquay

Bước sóng
(nanomet)

Màu sắc nhận được

340-400

Tử ngoại gần (không nhìn thấy)

400-430

Tím

430-500

Lam

500-570

Lục

570-620

Vàng - Cam


620-670

Đỏ chói

670-750

Đỏ sậm

Trên 750

Hồng ngoại gần (không nhìn thấy)

Tập bài giảng về Quang học | Trang 22/205


Bảng 1 liệt kê sự phân bố màu sắc rạch ròi được nhận ra bởi con người đối
với một số dải bước sóng hẹp trong phổ ánh sáng khả kiến. Việc liên hệ các màu
nhất định với vùng bước sóng cho phép phân biệt giữa các sắc thái, màu sắc và
bóng tối. Có thể nhiều sự phân bố phổ khác nhau cùng tạo ra cảm giác màu giống
nhau (một hiện tượng được biết với cái tên đồng phân dị vị). Ví dụ, cảm giác màu
vàng có thể gây ra bởi một bước sóng ánh sáng, chẳng hạn 590nm, hoặc có thể là
kết quả của việc nhìn hai lượng ánh sáng bằng nhau có bước sóng riêng, ví dụ
580nm và 600nm. Cũng có thể xem màu vàng là một phân bố hẹp gồm toàn bộ các
bước sóng nằm giữa 580nm và 600nm. Đối với hệ thị giác của con người, bước
sóng giữ vai trò đó cho mọi màu sắc trong phổ khả kiến. Những nghiên cứu gần đây
cho thấy một số loài (nhất là chim chóc) có thể phân biệt giữa các màu nhận được
giống như con người.
Các nguồn nóng sáng
Loài người buổi đầu đã không có các nguồn sáng chắc chắn suốt những đêm
trường, nhưng họ thỉnh thoảng có thể tìm thấy và thu thập những thanh gỗ đang

cháy từ những đống lửa trong bụi rậm và rồi giữ lửa cháy rực trong một trại lửa
trong một thời gian ngắn. Theo tri thức tiến bộ thì loài người đã phát hiện thấy tia
lửa điện, và sau đó là lửa có thể phát ra bằng cách cọ xát những loại đá nhất định
lên nhau (ví dụ như đá lửa và sắt pirit) hoặc bằng cách chà xát linh hoạt gỗ với gỗ.
Một khi đã làm chủ được các kĩ thuật này, người ta có thể tạo ra bất cứ khi nào
người ta muốn.
Khi lửa cháy, năng lượng hóa học được giải phóng dưới dạng nhiệt và ánh
sáng. Nhiên liệu cháy, hoặc là cỏ, gỗ, dầu, hoặc là một số chất dễ bắt lửa khác, phát
ra chất khí bị đun nóng bởi năng lượng hóa học khổng lồ phát sinh trong quá trình
cháy, làm cho các nguyên tử trong chất khí rực lên hoặc nóng sáng. Các electron
trong nguyên tử chất khí nhày lên mức năng lượng cao bởi kích thích nhiệt, và ánh
sáng được giải phóng dưới dạng photon khi các electron rơi xuống trạng thái cơ bản
của chúng. Màu của ngọn lửa là một dấu hiệu của nhiệt độ và lượng năng lượng
được giải phóng. Ngọn lửa màu vàng đục thì lạnh hơn nhiều so với ngọn lửa màu
xanh chói, nhưng thậm chí ngọn lửa lạnh nhất thì vẫn còn rất nóng (chừng 350
độ C).

Hình 2. Các nguồn sáng sơ khai
© hiepkhachquay

Tập bài giảng về Quang học | Trang 23/205


Mặc dù nhựa thuốc lá và giẻ rách được dùng để tạo ra những bó đuốc sơ khai,
nhưng bước tiến thiết thực đầu tiên trong việc điều khiển lửa chỉ xuất hiện khi đèn dầu
được phát minh. Những ngọn đèn sơ khai đã hơn 15.000 năm tuổi (hình 2) được phát hiện,
làm từ đá và mai động vật, chúng đốt cháy mỡ động vật và dầu thực vật. Trước khi đèn khí
được phát minh, có một nhu cầu khủng khiếp về dầu động vật. Nguồn cấp chủ yếu loại dầu
này là mỡ động vật khai thác từ việc nấu sôi các mô chất béo lấy từ động vật biển, ví dụ
như cá voi và hải cẩu. Đèn dầu sau cùng tiến hóa thành những ngọn nến, chế tạo bằng cách

đúc mỡ động vật hoặc sáp ong đông cứng, như minh họa trong hình 2. Những ngọn nến
buổi đầu phát ra một chút khói, nhưng không sáng lắm. Cuối cùng, người ta phát hiện thấy
sáp parafin, khi đổ khuôn thích hợp với một bấc vải dễ thấm, sinh ra ngọn lửa tương đối
sáng mà không có lượng khói đáng kể.
Trong thế kỉ 19, việc thắp đèn khí thiên nhiên trở nên phổ biến ở nhiều đô thị chính
tại châu Âu, châu Á và Mĩ. Những ngọn đèn khí buổi đầu hoạt động bằng cách tạo ra một
dòng khí cháy (một việc làm khá nguy hiểm), còn các mẫu đèn sau này được lắp thêm
măng sông, hoặc một mạng vải mịn đã qua xử lí hóa học, chúng làm phân tán ngọn lửa và
phát ra ánh sáng sáng hơn nhiều.
Các nhà hiển vi học buổi đầu sử dụng nến, đèn dầu, và ánh sáng Mặt Trời tự nhiên
để cung cấp sự chiếu sáng cho các hệ quang cụ tương đối thô trong kính hiển vi của họ.
Các nguồn sáng ban sơ này chiếu sáng không đều, khi lập lòe, khi bùng phát rực rỡ, và
thường tiềm ẩn mối nguy hiểm về lửa. Ngày nay, các bóng đèn nóng sáng cường độ cao đế
bằng volfram là nguồn sáng chủ yếu dùng trong kính hiển vi hiện đại và chiếm đa số trong
các hệ thống chiếu sáng gia đình.

Hình 3. Phổ thu được từ một số nguồn sáng phổ biến

Hình 3 biểu diễn các đường cong phân bố phổ biểu thị năng lượng tương đối theo
bước sóng đối với một vài nguồn khác nhau phát ra ánh sáng trắng (là sự pha trộn của tất
cả hay đa số màu trong phổ khả kiến). Đường cong màu đỏ biểu diễn năng lượng tương đối
của ánh sáng đèn volfram trên toàn bộ phổ khả kiến. Như đã được chỉ rõ trong hình, năng
lượng ánh sáng đèn volfram tăng khi bước sóng tăng. Kết quả này ảnh hưởng đến nhiệt độ
màu trung bình của ánh sáng thu được, đặc biệt khi so sánh với nhiệt độ màu trung bình
của ánh sáng Mặt Trời và ánh sáng huỳnh quang (đèn hơi thủy ngân). Đường cong phổ
màu vàng mô tả sự phân bố ánh sáng khả kiến từ phổ ánh sáng Mặt Trời tự nhiên phản xạ
bởi Mặt Trăng. Dưới những điều kiện bình thường, ánh sáng Mặt Trời chứa nhiều năng
lượng nhất, nhưng đường cong minh họa trong hình 3 đã được làm cho bình thường với
phổ đèn volfram để tiện so sánh. Đường cong màu xanh đậm đặc trưng cho đèn hơi thủy
ngân, và biểu hiện một vài chênh lệch đáng kể với phổ ánh sáng Mặt Trời tự nhiên và đèn


© hiepkhachquay

Tập bài giảng về Quang học | Trang 24/205


volfram. Một số cực đại năng lượng có mặt trong phổ đèn hơi phóng điện xuất hiện là kết
quả của từng đường phổ chồng lên nhau phát sinh từ hơi thủy ngân.
Phổ ánh sáng khả kiến tạo ra bởi một diode phát quang (LED) phát ra ánh sáng
trắng được biểu diễn bằng đường cong màu xanh lá trong hình 3. Diode phát quang là dụng
cụ vốn dĩ đơn sắc, với màu sắc được xác định bởi dải khe giữa các chất liệu bán dẫn khác
nhau dùng chế tạo nên diode. Diode phát sáng đỏ, xanh lá, vàng và xanh dương là phổ
biến, và được sử dụng rộng rãi làm ánh sáng chỉ báo cho máy tính và các thiết bị điện tử
tiêu dùng khác, như máy thu radio, máy thu truyền hình, máy hát đĩa compact, máy ghi đĩa,
và máy hát đĩa kĩ thuật số. LED phát ánh sáng trắng được chế tạo từ diode xanh gallium
nitride bằng cách phủ ngoài chất bán dẫn lớp chất phôtpho, chất này phát ra một phạm vi
rộng bước sóng khả kiến khi bị kích thích bởi ánh sáng phát ta từ diode xanh. Phổ laser,
thu được từ laser diode hoặc laser khí, rất hẹp, thường bao gồm chỉ một hoặc vài ba bước
sóng nhất định. Ví dụ minh họa trong hình 3 (đường cong màu xanh lá mạ) là cho laser
diode bán dẫn dòng điện thấp có ích trong nhiều ứng dụng đa dạng, như đọc mã vạch và
kiểm tra dữ liệu đĩa quang.
Nguồn sáng volfram thường được gọi là nóng sáng, vì chúng phát ra ánh sáng khi
bị đun nóng bởi năng lượng điện. Dây tóc của các bóng đèn hiện đại thường làm bằng
volfram, một kim loại có hiệu suất phát sáng tương đối hiệu quả khi bị đun nóng điện trở
bằng dòng điện. Các đèn nóng sáng hiện đại có nguồn gốc từ đèn hồ quang carbon do
Humphry Davy phát minh, chúng tạo ra ánh sáng bằng sự phóng điện hồ quang giữa hai
que than (hoặc các điện cực dây tóc) khi thiết đặt một hiệu điện thế giữa các điện cực. Rốt
cuộc, đèn hồ quang carbon đã mang tới những chiếc đèn đầu tiên sử dụng dây tóc carbon
chứa trong một vỏ bao thủy tinh hàn kín. Dây tóc volfram, được sử dụng trước tiên vào
năm 1910 bởi William David Coolidge, bốc hơi chậm hơn nhiều so với sợi carbon có

nguồn gốc cotton khi bị nung nóng trong chân không của vỏ thủy tinh. Dây tóc hoạt động
như một điện trở đơn giản, và phát ra một lượng đáng kể ánh sáng, ngoài năng lượng nhiệt
phát sinh bởi dòng điện.
Đèn volfram nóng sáng là vật bức xạ nhiệt phát ra phổ ánh sáng liên tục trải rộng từ
khoảng 300nm, trong vùng tử ngoại, tới gần 1400nm, trong vùng hồng ngoại. Cấu trúc,
việc chế tạo và hoạt động của chúng rất đơn giản, và có rất nhiều chủng loại đèn này được
dùng làm nguồn nóng sáng. Loại đèn tiêu biểu gồm một bóng thủy tinh hàn kín (xem hình
4), bên trong chứa đầy một chất khí trơ, và một sợi dây tóc bằng volfram hoạt động mạnh
mẽ khi có dòng điện đi qua. Bóng đèn tạo ra một lượng rất lớn ánh sáng và nhiệt, nhưng
ánh sáng chỉ chiếm có 5 đến 10% tổng năng lượng mà chúng phát ra.
Đèn volfram có xu hướng kém tiện lợi, ví dụ như cường độ của nó giảm theo tuổi
thọ và nó làm đen vỏ đựng bên trong do volfram bốc hơi chậm lắng trở lại thủy tinh. Nhiệt
độ màu và độ chói của đèn volfram biến thiên theo hiệu điện thế áp dụng, nhưng giá trị
trung bình cho nhiệt độ màu biến thiên trong khoảng từ 2200K đến 3400K. Nhiệt độ bề
mặt của dây tóc volfram lúc hoạt động rất cao, thường trung bình khoảng 2550 độ C đối
với một bóng đèn thương mại chuẩn 100 watt. Đôi khi bên trong bóng đèn volfram chứa
các chất khí quý tộc như krypton hoặc xenon (chất khí trơ), chúng là một sự chọn lựa nhằm
tạo ra chân không để bảo vệ dây tóc volfram nóng bỏng. Các chất khí này làm tăng hiệu
suất của đèn nóng sáng vì chúng làm giảm lượng volfram bốc hơi rồi lắng xuống bên trong
bóng thủy tinh bao ngoài.
Các đèn halogen, phiên bản hiệu suất cao của đèn volfram nóng sáng, thường chứa
một ít iode hoặc brom trong chất khí bên trong để mang volfram bốc hơi quay trở lại dây
tóc hiệu quả hơn nhiều so với những chiếc đèn sử dụng chất khí khác. Đèn volframhalogen, được phát triển đầu tiên bởi công ty General Electronic vào những năm 1950
dành cho việc thắp sáng các đầu mút cánh máy bay phản lực siêu âm, có khả năng tạo ra
© hiepkhachquay

Tập bài giảng về Quang học | Trang 25/205



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×