▼ô❝ ❧ô❝
✶
❈➳❝ ❦❤➳✐ ♥✐Ö♠ ❝➡ ❜➯♥ ✈Ò ❧ý t❤✉②Õt ①➳❝ s✉✃t ✈➭ q✉➳ tr×♥❤ ♥❣➱✉ ♥❤✐➟♥
✸
✶✳✶✳ ❈➳❝ tÝ♥❤ ❝❤✃t ❝ñ❛ ❤➭♠ ♣❤➞♥ ♣❤è✐
✸
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✷✳ ➜é ➤♦ ❤÷✉ ❤➵♥ ❧➭ ♠ét ❤➭♠ ❧✐➟♥ tô❝
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹
✶✳✷✳✶✳ ➜é ➤♦ ❤÷✉ ❤➵♥ ❧➭ ♠ét ❤➭♠ ❧✐➟♥ tô❝ ❜➟♥ tr➳✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹
✶✳✷✳✷✳ ➜é ➤♦ ❤÷✉ ❤➵♥ ❧➭ ♠ét ❤➭♠ ❧✐➟♥ tô❝ ❜➟♥ ♣❤➯✐
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺
✶✳✸✳ ➜Þ♥❤ ❧ý ❘❛❞♦♥✲◆✐❝♦❞②♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺
✶✳✹✳ ❈➳❝ tÝ♥❤ ❝❤✃t ❝ñ❛ ❦ú ✈ä♥❣ ❝ã ➤✐Ò✉ ❦✐Ö♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✼
✶✳✺✳ ◗✉❛♥ ❤Ö ❣✐÷❛ ❝➳❝ ❦✐Ó✉ ❤é✐ tô
✾
✶✳✺✳✶✳ ◆Õ✉
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
{ξn } ❤é✐ tô ❤➬✉ ❝❤➽❝ ❝❤➽♥ ✈Ò ξ
{ξn } ❤é✐ tô t❤❡♦ ①➳❝ s✉✃t ✈Ò ξ
✳ ✳
✾
✶✳✺✳✷✳ ➜Þ♥❤ ❧ý
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✾
✶✳✺✳✸✳ ➜Þ♥❤ ❧ý
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✵
✶✳✺✳✹✳ ◆Õ✉
{ξn } ❤é✐ tô t❤❡♦ ❜×♥❤ ♣❤➢➡♥❣ tr✉♥❣ ❜×♥❤ ✈Ò ξ
s✉✃t ✈Ò
✶✳✺✳✺✳ ◆Õ✉
t❤×
ξ
t❤×
{ξn } ❤é✐ tô t❤❡♦ ①➳❝
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
{ξn } ❤é✐ tô t❤❡♦ ①➳❝ s✉✃t ✈Ò ξ
{ξn } ❤é✐ tô ②Õ✉ ✈Ò ξ
✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✵
✶✳✺✳✻✳ ❚✐➟✉ ❝❤✉➮♥ ❈❛✉❝❤② ✈Ò sù ❤é✐ tô t❤❡♦ ①➳❝ s✉✃t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✶
✶✳✺✳✼✳ ❚✐➟✉ ❝❤✉➮♥ ❈❛✉❝❤② ✈Ò sù ❤é✐ tô ❤✳❝✳❝
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✷
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✷
✶✳✼✳ ➜Þ♥❤ ❧ý✿ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✸
✶✳✽✳ ❇æ ➤Ò ❋❛t♦✉✿
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✹
✶✳✾✳ ➜Þ♥❤ ❧ý ❤é✐ tô ❜Þ ❝❤➷♥ ✭▲❡❜❡s❣✉❡✮ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✺
✶✳✶✵✳❈❤ø♥❣ ♠✐♥❤ ❝➳❝ ❜✃t ➤➻♥❣ t❤ø❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✺
✶✳✻✳ ➜Þ♥❤ ❧ý ❤é✐ tô ➤➡♥ ➤✐Ö✉ ✭❇✳▲❡✈②✮
✶
t❤×
✶✵
❚r➢➡♥❣ ◆❣ä❝ ❍➯✐ ▲í♣✿ ❚♦➳♥ ●✐➯✐ tÝ❝❤ ❑✶✻
✶✳✶✵✳✶✳❇✃t ➤➻♥❣ t❤ø❝ ❍♦❧❞❡r✿
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✶✵✳✷✳❇✃t ➤➻♥❣ t❤ø❝ ▼✐♥❦♦✈s❦✐✿
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✻
✶✳✶✵✳✸✳❇✃t ➤➻♥❣ t❤ø❝ ❏❡♥s❡♥✿ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✼
✶✳✶✵✳✹✳❇✃t ➤➻♥❣ t❤ø❝ ❈❤❡❜②❡✈✿ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✽
✶✳✶✶✳❇æ ➤Ò ❇♦r❡❧✲❈❛♥t❡❧❧✐ ✭❧✉❐t ✵✲✶✮ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✽
✶✳✶✷✳➜Þ♥❤ ❧ý ❋✉❜✐♥✐
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✾
✶✳✶✸✳➜Þ♥❤ ❧ý ✶✳✶✵ ✭❚✐➟✉ ❝❤✉➮♥ ➤ñ ❑♦❧♠♦❣♦r♦✈ ❝❤♦ tÝ♥❤ ❧✐➟♥ tô❝✮ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✵
✶✳✶✹✳◆Õ✉
✷
✸
✶✺
{ξt }t∈T
❧➭ q✉➳ tr×♥❤ ❣✐❛ sè ➤é❝ ❧❐♣ t❤×
{ξt }t∈T
❧➭ q✉➳ tr×♥❤ ▼❛r❦♦✈ ✳ ✳ ✳ ✳ ✳
✷✶
✶✳✶✺✳❈❤ø♥❣ ♠✐♥❤ ❝➳❝ tÝ♥❤ ❝❤✃t ❝ñ❛ t❤ê✐ ➤✐Ó♠ ▼❛r❦♦✈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✶
✶✳✶✻✳❱Ý ❞ô ✈Ò t❤ê✐ ➤✐Ó♠ ▼❛r❦♦✈
✷✸
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
▼❛rt✐♥❣❛❧❡ tr➟♥ ❦❤♦➯♥❣ t❤ê✐ ❣✐❛♥ rê✐ r➵❝ ✈➭ ❧✐➟♥ tô❝
✷✹
✷✳✶✳ ▼ét sè ✈Ý ❞ô ✈Ò ▼❛rt✐♥❣❛❧❡
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✹
✷✳✷✳ ➜Þ♥❤ ❧ý ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✻
✷✳✸✳ ➜Þ♥❤ ❧ý ✷✳✸ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✻
✷✳✹✳ ❍Ö q✉➯ ✷✳✺ ✭❜✃t ➤➻♥❣ t❤ø❝ ❑♦❧♠♦❣♦r♦✈✮
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✼
✷✳✺✳ ❍Ö q✉➯ ✷✳✻
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✼
✷✳✻✳ ❍Ö q✉➯ ✷✳✼
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✽
✷✳✼✳ ▼ét sè ❜➭✐ t❐♣ tr❛♥❣ ✶✹✻ tr♦♥❣ s➳❝❤ ❈➳❝ ♠➠ ❤×♥❤ ①➳❝ s✉✃t ✈➭ ø♥❣ ❞ô♥❣ ✳ ✳ ✳ ✳ ✳
✷✾
◗✉➳ tr×♥❤ ❲✐❡♥❡r ✲ ❚Ý❝❤ ♣❤➞♥ ♥❣➱✉ ♥❤✐➟♥ ■t♦ ✲ P❤➢➡♥❣ tr×♥❤ ✈✐ ♣❤➞♥ ♥❣➱✉ ♥❤✐➟♥
✸✶
✸✳✶✳ ▼ét sè ❜➭✐ t❐♣ tr❛♥❣ ✶✻✺ tr♦♥❣ s➳❝❤ ❈➳❝ ♠➠ ❤×♥❤ ①➳❝ s✉✃t ✈➭ ø♥❣ ❞ô♥❣ ✳ ✳ ✳ ✳ ✳
✸✶
✸✳✷✳ ●✐➯✐ ♣❤➢➡♥❣ tr×♥❤ ✈✐ ♣❤➞♥ ♥❣➱✉ ♥❤✐➟♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✸✸
✷
❈❤➢➡♥❣ ✶
❈➳❝ ❦❤➳✐ ♥✐Ö♠ ❝➡ ❜➯♥ ✈Ò ❧ý t❤✉②Õt ①➳❝
s✉✃t ✈➭ q✉➳ tr×♥❤ ♥❣➱✉ ♥❤✐➟♥
✶✳✶✳
❈➳❝ tÝ♥❤ ❝❤✃t ❝ñ❛ ❤➭♠ ♣❤➞♥ ♣❤è✐
❛✮ ❑❤➠♥❣ ❣✐➯♠✿
Fξ (x1 ) ≤ Fξ (x2 )✱ ✈í✐ x1 ≤ x2 .
❜✮ ▲✐➟♥ tô❝ tr➳✐ tr➟♥
❝✮
R.
Fξ (−∞) = lim Fξ (x) = 0, Fξ (+∞) = lim Fξ (x) = 1
x→−∞
x→+∞
❈❤ø♥❣ ♠✐♥❤✳
❛✮ ❚r➢í❝ ❤Õt t❛ ❝❤ø♥❣ ♠✐♥❤ tÝ♥❤ ❝❤✃t✿ ◆Õ✉
❚❤❐t ✈❐②✱ ❚❛ ❝ã✿
▼➭ râ r➭♥❣ ✈í✐
❉♦ ➤ã✿
❜✮ ❱í✐
t❤×
P (A) ≤ P (B)
B = A ∪ (B \ A). ❉♦ ➤ã✿ P (B) = P (A) + P (B \ A) ≥ P (A)
x1 ≤ x2
t❤×
{ω ∈ Ω : ξ(ω) < x1 } ⊂ {ω ∈ Ω : ξ(ω) < x2 }
Fξ (x1 ) ≤ Fξ (x2 )✱ ✈í✐ x1 ≤ x2 .
x0 ∈ R tï② ý t❛ ♣❤➯✐ ❝❤ø♥❣ ♠✐♥❤ lim− Fξ (x) = Fξ (x0 )
❚❛ ✈✐Õt ❧➵✐
▲✃② ❞➲②
❚❛ t❤✃②
❱×
A⊂B
−1
x→x0
−1
Fξ (x) = P (ξ (−∞, x)) = P ξ (−∞, x)
{xn } t❤á❛ x1 < x2 < · · · < xn < · · · < x0
Bn = (−∞, xn )
✈➭
xn
x0
B0 = (−∞, x0 )
P ξ −1 ❧➭ ➤é ➤♦ ➯♥❤ ✈➭ ➤é ➤♦ ❧➭ ✶ ❤➭♠ ❧✐➟♥ tô❝ ♥➟♥ Fξ (xn ) = P ξ −1 (Bn )
F (x0 )
✸
P ξ −1 (B0 ) =
✹
❈❤➢➡♥❣✶✳ ❈➳❝ ❦❤➳✐ ♥✐Ö♠ ❝➡ ❜➯♥ ✈Ò ▲❚❳❙ ✈➭ ◗❚◆◆
❝✮ ▲✃② ❞➲②
❚❛ t❤✃②
❉♦ ➤ã
{xn } t❤á❛ x1 > x2 > · · · > xn > · · ·
❚ø❝ ❧➭✿
P ξ −1 (∅) = 0
Fξ (−∞) = lim Fξ (x) = 0
x→−∞
❚➢➡♥❣ tù ❧✃② ❞➲②
{xn } t❤á❛ x1 < x2 < · · · < xn < · · ·
Dn = (−∞, xn )
❚❤×
P ξ −1 (Dn )
❚ø❝ ❧➭✿
Fξ (+∞) = lim Fξ (x) = 1
✶✳✷✳✶✳
+∞
P ξ −1 (−∞, +∞) = 1
x→+∞
µ : F → R ❧➭ ➤é ➤♦ ❤÷✉ ❤➵♥
➜é ➤♦ ❤÷✉ ❤➵♥ ❧➭ ♠ét ❤➭♠ ❧✐➟♥ tô❝ ❜➟♥ tr➳✐
❈❤ø♥❣ ♠✐♥❤✳
●✐➯ sö ❝ã ❞➲②
{An } ⊂ F
t❤á❛
A 1 ⊂ A2 ⊂ · · · ⊂ An ⊂ · · ·
A0 = ∅
Bn = An \ An−1 , n = 1, 2, . . .
❚❛ ❝ã✿
xn
➜é ➤♦ ❤÷✉ ❤➵♥ ❧➭ ♠ét ❤➭♠ ❧✐➟♥ tô❝
●✐➯ sö
➜➷t
✈➭
(−∞, +∞)
❉♦ ➤ã✿
✶✳✷✳
−∞
xn
∅
Cn = (−∞, xn )
P ξ −1 (Cn )
✈➭
Bi ∩ Bj = ∅, ∀i = j
∞
∞
Bn =
n=1
An = A
n=1
∞
∞
⇒ µ(A) = µ(
Bn ) =
n=1
µ(Bn )
n=1
n
= lim
n→∞
µ(Bk )
k=1
n
= lim µ
n→∞
Bk
k=1
= lim µ(An )
n→∞
❚r➢➡♥❣ ◆❣ä❝ ❍➯✐ ✲ ❑✶✻
✈➭
An
A
ệ ề
ộ ữ ột tụ
ứ
sử
A 1 A2 ã ã ã An ã ã ã
An
A
A=
ó
An =
n=1
An =
Ak
kn
(Ak AC
k+1 )
Ak
kn
kn
à(An ) = à(
à(Ak AC
k+1 )
Ak ) +
kn
k=n
à(Ak AC
k+1 )
= à(A) +
k=n
n
à(Ak AC
k+1 ) < )
à(A) (ì ỗ
n=1
ị ý
sử
P << Q ó tồ t t t ĩ t ố
ớ ợ
0 : P (A) =
dQ, A F
A
ứ
t
ứ sự tồ t
P, Q ộ ữ P 0
K = { : R,
dQ P (A), A F}
A
t
I = sup dQ
K
ó
t
{n } K : lim
n
n dQ = I
n () = max n ()
ó
1kn
n
n K t A F t ó A =
Ak , Ak F
n () = k () tr Ak
k=1
n
n () =
k ()Ak
k=1
n
n dQ =
A
r ọ
n
n
k dQ
k Ak =
A k=1
k=1
Ak
P (Ak ) = P (A)
k=1
✻
❈❤➢➡♥❣✶✳ ❈➳❝ ❦❤➳✐ ♥✐Ö♠ ❝➡ ❜➯♥ ✈Ò ▲❚❳❙ ✈➭ ◗❚◆◆
➜➷t
ξ = sup ξn ≥ ηn
❚❛ t❤✃②✿
ηn
ξ
n
❉♦ ➤ã✿
ηn dQ ≤ P (A), ∀A ∈ F
ξdQ = lim
n→∞
A
A
❈➬♥ ❈▼✿
λ(A) = P (A) −
ξdQ = 0, ∀A ∈ F
A
❚❛ t❤✃②
λ ❧➭ ➤ä ➤♦ ❤÷✉ ❤➵♥ tr➟♥ F
P❤➯♥ ❝❤ø♥❣✱ ●❙
✈➭
λ << Q
∃A ∈ F : λ(A) = 0
+
⇒ ∃n ∈ N, Ω+
n ∈ F, Q(Ωn ) > 0 s❛♦ ❝❤♦✿
1
+
+
Q(A ∩ Ω+
n ) ≤ λ(A ∩ Ωn ) = P (A ∩ Ωn ) −
n
ξdQ, ∀A ∈ F
A∩Ω+
n
❳Ðt
η=ξ+
1
χ + ✳ ❚❛ ❝ã✿
n Ωn
ηdQ =
A
1
Q(A ∩ Ω+
n)
n
ξdQ +
A
≤
ξdQ + P (A ∩ Ω+
n) =
ξdQ −
A∩Ω+
n
A
ξdQ + P (A ∩ Ω+
n)
≤
A\Ω+
n
+
≤ P (A \ Ω+
n ) + P (A ∩ Ωn ) = P (A)
⇒ η ∈ K✳ ❱➠ ❧ý ✈×
ηdQ =
Ω
ξdQ +
1
Q(Ω+
n)
n
Ω
>
sup ξn dQ ≥
ξdQ =
n
Ω
Ω
ξn dQ ≥ lim
> sup
Ω
▼➞✉ t❤✉➱♥ ✈í✐
I = sup ξdQ.
ξ∈K Ω
❱❐②
λ(A) = 0, ∀A ∈ F
❚r➢➡♥❣ ◆❣ä❝ ❍➯✐ ✲ ❑✶✻
ξn dQ = I
n→∞
n
Ω
✼
❈❤➢➡♥❣✶✳ ❈➳❝ ❦❤➳✐ ♥✐Ö♠ ❝➡ ❜➯♥ ✈Ò ▲❚❳❙ ✈➭ ◗❚◆◆
•ξ
t❤á❛
ξdQ, ∀A ∈ F
P (A) =
❧➭ ❞✉② ♥❤✃t ✭t❤❡♦ ♥❣❤Ü❛ t➢➡♥❣ ➤➢➡♥❣ ♥❣➱✉ ♥❤✐➟♥✮✳
A
❚❤❐t ✈❐②✱ ●❙
∃ξ1 , ξ2
ξ2 dQ = P (A), ∀A ∈ F
ξ1 dQ =
t❤á❛
A
A
⇔
(ξ1 − ξ2 )dQ = 0 ⇔ ξ1 = ξ2 (h.k.n)
A
✶✳✹✳
❛✮
❈➳❝ tÝ♥❤ ❝❤✃t ❝ñ❛ ❦ú ✈ä♥❣ ❝ã ➤✐Ò✉ ❦✐Ö♥
E(ξ|G) ≥ 0, ∀ξ ≥ 0;
❜✮ ◆Õ✉ ❝ ❧➭ ❤➺♥❣ sè t❤×
❝✮
E(aξ1 + bξ2 |G) = aE(ξ1 |G) + bE(ξ2 |G) ✭P✲❤✳❝✳❝✮❀
G ✲➤♦ ➤➢î❝ ✈➭ ∃E(ξη), ∃E(η) t❤× E(ξη|G) = ξE(η|G) ✭P✲❤✳❝✳❝✮❀
❞✮ ◆Õ✉
ξ
❡✮ ◆Õ✉
G1 ⊂ G2
❢✮ ◆Õ✉
G
❣✮
E(c|G) = c ✭P✲❤✳❝✳❝✮❀
❧➭
✈➭
ξ
t❤×
E[E(ξ|G2 )|G1 ] = E(ξ|G1 ) ✭P✲❤✳❝✳❝✮❀
➤é❝ ❧❐♣ t❤×
E(ξ|G = Eξ
E(ξ|Gmin ) = Eξ, E(ξ|Gmax ) = ξ ❀
✭P✲❤✳❝❝✮❀
✈í✐
Gmin = {∅, Ω}, Gmax = 2Ω .
❈❤ø♥❣ ♠✐♥❤✳
❛✮ ❚❛ ❝ã✿
∀A ∈ G
t❤×
A
E(ξ|G)dP =
A
ξdP ≥ 0
⇒ E(ξ|G) ≥ 0 ✭P✲❤✳❝✳❝✮
❜✮ ❚❛ ❝ã✿
❝✮
∀A ∈ G
A
E(c|G)dP =
A
cdP,
∀A ∈ G ⇒ E(c|G) = c ✭P✲❤✳❝✳❝✮✳
t❛ ❝ã✿
E(aξ1 + bξ2 |G)dP =
A
(aξ1 + bξ2 )dP
A
=a
ξ1 dP + b
A
E(ξ1 |G)dP + b
=a
A
E(ξ2 |G)dP
A
[aE(ξ1 |G) + bE(ξ2 |G)]
=
A
❚r➢➡♥❣ ◆❣ä❝ ❍➯✐ ✲ ❑✶✻
ξ2 dP
A
✽
❈❤➢➡♥❣✶✳ ❈➳❝ ❦❤➳✐ ♥✐Ö♠ ❝➡ ❜➯♥ ✈Ò ▲❚❳❙ ✈➭ ◗❚◆◆
⇒ E(aξ1 + bξ2 |G) = aE(ξ1 |G) + bE(ξ2 |G) ✭P✲❤✳❝✳❝✮
❞✮
• ●✐➯ sö ξ, η ≥ 0 :
n
✯ ❚❍✶✿
xk χAk ✱ tr♦♥❣ ➤ã xk ∈ R, Ak = {ω : ξ(ω) = xk } ⊂ G
ξ=
k=1
❑❤✐ ➤ã✿
∀A ∈ G
t❛ ❝ã✿
n
ξE(η|G)dP =
n
xk χAk E(η|G)dP =
A
A k=1
n
=
E(η|G)dP
A∩Ak
k=1
n
xk
ηdP =
A∩Ak
k=1
n
xk
k=1
n
n
χAk ηdP =
A
xk χAk ηdP
A k=1
E(ξη|G)dP
ξηdP =
=
xk
A k=1
A k=1
⇒ ξE(η|G) = E(ξη|G)(P − h.c.c)
✯ ❚❍✷✿
ξ
❧➭
G−➤♦ ➤➢î❝ ❜✃t ❦ú✳ ❑❤✐ ➤ã✿ ∃{ξn } ❜❐❝ t❤❛♥❣ t❤á❛ ξn → ξ ✳
❚❤❡♦ ❚❍✶ ë tr➟♥ t❤×
▼➭
ξn E(η|G) = E(ξn η|G)
ξn E(η|G) → ξE(η|G) E(ξn η|G) → E(ξη|G)
❉♦ tÝ♥❤ ❞✉② ♥❤✃t ❝ñ❛ ❣✐í✐ ❤➵♥
• ❚r➢ê♥❣ ❤î♣ ξ, η
⇒ ξE(η|G) = E(ξη|G) ✭P✲❤✳❝✳❝✮
tï② ý✿
ξ = ξ+ − ξ−
η = η+ − η−
E(ξη|G) = E[(ξ + − ξ − )(η + − η − )|G)]
= E(ξ + η + |G) − E(ξ + η − |G) − E(ξ − η + |G) + E(ξ − η − |G)
= ξ + E(η + |G) − ξ + E(η − |G) − ξ − E(η + |G) + ξ − E(η − |G)
= ξ + E[(η + − η − )|G] − ξ − E[(η + − η − )|G]
= (ξ + − ξ − )E[(η + − η − )|G]
= ξE(η|G)
❡✮
∀A ∈ G1
A
t❛ ❝ã✿
A ∈ G2
E[E(ξ|G2 )|G1 ]dP =
A
E(ξ|G2 )dP =
⇒ E[E(ξ|G2 )|G1 ] = E(ξ|G1 ) ✭P✲❤✳❝✳❝✮
❚r➢➡♥❣ ◆❣ä❝ ❍➯✐ ✲ ❑✶✻
A
ξdP =
A
E(ξ|G1 )dP
✾
❈❤➢➡♥❣✶✳ ❈➳❝ ❦❤➳✐ ♥✐Ö♠ ❝➡ ❜➯♥ ✈Ò ▲❚❳❙ ✈➭ ◗❚◆◆
G
❢✮ ❱×
✈➭
❉♦ ➤ã✿
= Eξ
ξ
A
Ω
➤é❝ ❧❐♣ ♥➟♥
E(ξ|G)dP =
χA dP = Eξ
⇒ E(ξ|G) = Eξ
❣✮ ❱í✐
A ∈ Gmin
A
✶✳✺✳
❧➭
dP =
A
✈➭
A
ξχA dP = E(ξχA ) = EξEχA
χA
➤é❝ ❧❐♣✳
EξdP
E(ξ|Gmin )dP =
E(ξ|Gmin )dP =
A
⇒ E(ξ|Gmin ) = Eξ
ξ
ξdP =
ξ
A = ∅ ❤♦➷❝ A = Ω
t❤×
• ❱í✐ A = Ω t❤×✿
∀A ∈ Gmax
A
A
t❤×
✭P✲❤✳❝✳❝✮
• ❱í✐ A = ∅ t❤×✿
❱×
∀A ∈ G
t❛ ❝ã✿
A
A
ξdP = 0 =
A
ξdP = Eξ =
EξdP
A
EξdP
✭P✲❤✳❝✳❝✮
E(ξ|Gmax )dP =
A
A
ξdP
Gmax − ➤♦ ➤➢î❝ ♥➟♥ E(ξ|Gmax ) = ξ
✭P✲❤✳❝✳❝✮
◗✉❛♥ ❤Ö ❣✐÷❛ ❝➳❝ ❦✐Ó✉ ❤é✐ tô
{ξn } ❧➭ ❞➲② ➤➵✐ ❧➢î♥❣ ♥❣➱✉ ♥❤✐➟♥✱ ξ
✶✳✺✳✶✳
◆Õ✉
❧➭ ➤➵✐ ❧➢î♥❣ ♥❣➱✉ ♥❤✐➟♥
{ξn } ❤é✐ tô ❤➬✉ ❝❤➽❝ ❝❤➽♥ ✈Ò ξ
t❤×
{ξn } ❤é✐ tô t❤❡♦ ①➳❝ s✉✃t ✈Ò
ξ
∞
❚❛ ❝ã✿
❈❤ø♥❣ ♠✐♥❤✳
k=n
∞
{|ξk − ξ| ≥ }
An =
➜➷t
{|ξk − ξ| ≥ }] → 0, ∀ > 0
P[
k=n
Bn = {|ξn − ξ| ≥ } ⊂ An
❚❛ t❤✃②
❉♦ ➤ã✿
0 ≤ P (Bn ) ≤ P (An ) → 0
⇒ lim Bn = 0.
n→∞
❱❐②
P
ξn −
→ ξ.
◆♦t❡✳ ➜✐Ò✉ ♥❣➢î❝ ❧➵✐ ♥ã✐ ❝❤✉♥❣ ❦❤➠♥❣ ➤ó♥❣✳
✶✳✺✳✷✳
◆Õ✉
➜Þ♥❤ ❧ý
P
ξn −
→ξ
✈➭
ξn
( ) t❤× ξn → ξ ✭P✲❤✳❝✳❝✮
❚❤❐t ✈❐②✱ ❦❤➠♥❣ ♠✃t tÝ♥❤ tæ♥❣ q✉➳t t❛ ①Ðt ❞➲② ξn
❚r➢➡♥❣ ◆❣ä❝ ❍➯✐ ✲ ❑✶✻
P
,−
→ 0 ✭✈× ♥Õ✉ ξn
P
,−
→ ξ t❤× ξn −ξ
P
,−
→ 0✮
✶✵
❈❤➢➡♥❣✶✳ ❈➳❝ ❦❤➳✐ ♥✐Ö♠ ❝➡ ❜➯♥ ✈Ò ▲❚❳❙ ✈➭ ◗❚◆◆
⇒ ∃ > 0 : P{
0(P − h.c.c)
ξn
P❤➯♥ ❝❤ø♥❣✱ ❣✐➯ sö
{ξk ≥ }} > δ > 0
k≥n
❱×
{ξn }
{ξk ≥ } ⊂ {ξn ≥ }
♥➟♥
k≥n
❉♦ ➤ã✿
P
P {ξn ≥ } ≥ P (
{ξk ≥ }) > δ > 0 ✭▼➞✉ t❤✉➱♥ ✈í✐ ξn −
→ ξ✮
k≥n
✶✳✺✳✸✳
◆Õ✉
➜Þ♥❤ ❧ý
P
ξn −
→ξ
t❤×
∃{ξnk } ⊂ {ξn } : ξnk → ξ(P − h.c.c)
∞
{ n}
❚❤❐t ✈❐②✿ ▲✃②
0; {δn } :
δn < ∞
n=1
❱×
P
ξn −
→ξ
♥➟♥ t❛ ❝❤ä♥ ➤➢î❝
nk
s❛♦ ❝❤♦✿
P {|ξnk − ξ| ≥
k}
≤ δk
∞
➜➷t
{|ξnk − ξ| ≥
Rj =
k}
k=j
∞
∞
⇒ P[
∞
{|ξnk − ξ| ≥
k}
{|ξnk − ξ| ≥
= lim P (
j→∞
j=1 k=j
∞
∞
≤ lim
j→∞ k=j
∞
k}
k=j
P {|ξnk − ξ| ≥
k}
≤ lim
j→∞ k=j
δk = 0
∞
{|ξnk − ξ| ≥
⇒ P[
k}
= 0✳ ❚ø❝ ❧➭ ξnk → ξ(P − h.c.c)
j=1 k=j
✶✳✺✳✹✳
◆Õ✉
{ξn }
❤é✐ tô t❤❡♦ ❜×♥❤ ♣❤➢➡♥❣ tr✉♥❣ ❜×♥❤ ✈Ò
t❤❡♦ ①➳❝ s✉✃t ✈Ò
❈❤ø♥❣ ♠✐♥❤✳
●❙
ξ
t❤×
{ξn }
ξ
n→∞
ξ = l.i.mn→∞ ξn ✳ ❚ø❝ ❧➭ E(|ξn − ξ|2 ) =
|ξn − ξ|2 dP −−−→ 0
Ω
❱í✐
tï② ý✱ ➤➷t
❑❤✐ ➤ã✿
Bn = {ω : |ξn − ξ| ≥ }
E(|ξn − ξ|2 ) =
≥
Bn
Bn
|ξn − ξ|2 dP +
|ξn − ξ|2 dP ≥
Bn C
2
Bn
|ξn − ξ|2 dP
dP =
2
P (Bn )
⇒ lim Bn = 0
n→∞
❱❐②
P
ξn −
→ξ
✶✳✺✳✺✳
◆Õ✉
❈❤ø♥❣ ♠✐♥❤✳
❱í✐
{ξn } ❤é✐ tô t❤❡♦ ①➳❝ s✉✃t ✈Ò ξ
❚❛ ❝➬♥ ❝❤ø♥❣ ♠✐♥❤
x , x ∈ R t❤á❛ x < x < x
t❤×
{ξn } ❤é✐ tô ②Õ✉ ✈Ò ξ
Fn (x) → F (x), ∀x ∈ C(F )
✳ ❚❛ ❝➬♥ ❝❤ø♥❣ ♠✐♥❤
F (x ) ≤ lim Fn (x) ≤ lim Fn (x) ≤ F (x )
❚r➢➡♥❣ ◆❣ä❝ ❍➯✐ ✲ ❑✶✻
(∗)
❤é✐ tô
ệ ề
ừ
x
x t ợ Fn (x) F (x)
x, x
ứ ợ t
F (x ) = P { < x } = P { < x ; n < x} + P { < x ; n x}
P {n < x} + P { < x ; n x}
= Fn (x) + P { < x ; n x}
t
r
P
lim P { < x ; n x} lim P {|n | < x x } = 0 n
F (x ) lim Fn (x)
tự t ét
Fn (x) = P {n < x} = P {n < x; < x } + P {n < x; x }
F (x ) + P {|n | > x x }
lim Fn (x) F (x )
ề sự ộ tụ t st
ị ĩ
{n } ợ ọ t st ế > 0
P {|n m | > } 0 n, m
ị ý
{n } ộ tụ t st ỉ ó t
st
ứ
ề ệ sử
P
n
ó > 0 t ó
n,m
P {|n m | > } P {|n | > } + P {|m | > } 0
2
2
ề ệ ủ từ ở ột ết q ế
tồ t
{n }
t st tì
{nk } ộ tụ t st ế ế ó ừ t tứ
P {|n | > } P {|n nk | > } + P {|nk | > }
2
2
n, nk t s r ề ứ
r ọ
✶✷
❈❤➢➡♥❣✶✳ ❈➳❝ ❦❤➳✐ ♥✐Ö♠ ❝➡ ❜➯♥ ✈Ò ▲❚❳❙ ✈➭ ◗❚◆◆
✶✳✺✳✼✳
❚✐➟✉ ❝❤✉➮♥ ❈❛✉❝❤② ✈Ò sù ❤é✐ tô ❤✳❝✳❝
{ξn } ➤➢î❝ ❣ä✐ ❧➭ ❞➲② ❈❛✉❝❤② P✲❤✳❝✳❝ ♥Õ✉✿ ∀ > 0
➜Þ♥❤ ♥❣❤Ü❛✳ ❉➲②
P { sup |ξk − ξl | ≥ } → 0 ❦❤✐ n → ∞
k,l≥n
➜Þ♥❤ ❧ý✳ ❉➲②
{ξn }
❤é✐ tô P✲❤✳❝✳❝ ❦❤✐ ✈➭ ❝❤Ø ❦❤✐
{ξn }
❧➭ ❞➲② ❈❛✉❝❤② t❤❡♦ ♥❣❤Ü❛
P✲❤✳❝✳❝
❈❤ø♥❣ ♠✐♥❤✳
➜✐Ò✉ ❦✐Ö♥ ❝➬♥✳ ●✐➯ sö
h.c.c
ξn −−→ ξ ✳
❚❛ ❝ã✿
P { sup |ξk − ξl | ≥ } ≤ P {sup |ξk − ξ| ≥ } + P {sup |ξl − ξ| ≥ }
2
2
k,l≥n
k≥n
l≥n
❱×
h.c.c
ξn −−→ ξ
n→∞
n→∞
P {sup |ξk − ξ| ≥ 2 } −−−→ 0 ✈➭ P {sup |ξl − ξ| ≥ 2 } −−−→ 0
♥➟♥
k≥n
❙✉② r❛
l≥n
n→∞
P { sup |ξk − ξl | ≥ } −−−→ 0
k,l≥n
➜✐Ò✉ ❦✐Ö♥ ➤ñ✳ ●✐➯ sö
{ξn } ❧➭ ❞➲② ❈❛✉❝❤② t❤❡♦ ♥❣❤Ü❛ P✲❤✳❝✳❝✳
❚❛ ❝ã ♠ét ❦Õt q✉➯✿ ◆Õ✉
{ξn }
❧➭ ❞➲② ❈❛✉❝❤② t❤❡♦ ♥❣❤Ü❛ P✲❤✳❝✳❝ t❤× ✈í✐ ①➳❝ s✉✃t ✶✱ ❝➳❝
{ξn (ω)} ❧➭ ❞➲② ❈❛✉❝❤② tr♦♥❣ R
❉♦ ➤ã✿
˜
ξn (ω) → ξ(ω)
♥➭♦ ➤ã✳ ➜➷t
ξ(ω) =
❑❤✐ ➤ã✿
✶✳✻✳
◆Õ✉
E(ξn |G)
˜
ξ(ω)
0
ω
t➵✐ ω
t➵✐
♠➭ ❣✐í✐ ❤➵♥ tå♥ t➵✐
♠➭ ❣✐í✐ ❤➵♥ ❦❤➠♥❣ tå♥ t➵✐
h.c.c
ξn −−→ ξ
➜Þ♥❤ ❧ý ❤é✐ tô ➤➡♥ ➤✐Ö✉ ✭❇✳▲❡✈②✮
G ⊂ F, ξn
ξ
✭P✲❤✳❝✳❝✮ ✈➭
E(ξ|G) ✭❤♦➷❝ E(ξn |G)
❚r➢➡♥❣ ◆❣ä❝ ❍➯✐ ✲ ❑✶✻
M ξ1− < ∞
✭❤♦➷❝
ξn
E(ξ|G) t➢➡♥❣ ø♥❣✮
ξ
✭P✲❤✳❝✳❝✮ ✈➭
M ξ1+ < ∞✮
t❤×
✶✸
❈❤➢➡♥❣✶✳ ❈➳❝ ❦❤➳✐ ♥✐Ö♠ ❝➡ ❜➯♥ ✈Ò ▲❚❳❙ ✈➭ ◗❚◆◆
•
❈❤ø♥❣ ♠✐♥❤✳
❚❛ ❝ã✿
●✐➯ sö
0 ≤ ξn + ξ1−
ξn
ξ
✈➭
M ξ1− < ∞
ξ + ξ1− , ∀n ≥ 1
ξ1 ≤ ξ2 ≤ · · · ξn ≤ · · ·
❚❤❐t ✈❐②✱ ❱×
✈➭
ξ1− = max{−ξ1 , 0} ♥➟♥
✰✮ ❱í✐
ξ1− = 0 ⇒ ξ1 ≥ 0 ⇒ ξn + ξ1− = ξn ≥ ξ1 ≥ 0, ∀n ≥ 1
✰✮ ❱í✐
ξ1− = −ξ1 ⇒ ξ1 < 0 ⇒ ξn + ξ1− = ξn − ξ1 ≥ 0, ∀n ≥ 1
∀A ∈ G
t❛ ❝ã✿
A
[ lim E(ξn |G) + E(ξ1− |G)]dP
E(ξ1− |G)]dP =
lim E(ξn |G) +
n→∞
n→∞
A
A
lim E[(ξn + ξ1− )|G]dP
=
n→∞
A
=
E[(ξn + ξ1− )|G]dP
lim
n→∞
A
=
(ξn + ξ1− )dP
lim
n→∞
A
(ξ + ξ1− )dP
=
A
E[(ξ + ξ1− )|G]dP
=
A
E(ξ1− |G)dP
E(ξ|G)dP +
=
A
A
⇒ lim E(ξn |G) = E(ξ|G) ✭P✲❤✳❝✳❝✮
n→∞
•
✶✳✼✳
❚r➢ê♥❣ ❤î♣
ξn
ξ
✭P✲❤✳❝✳❝✮ ✈➭
M ξ1+ < ∞✮ ❝❤ø♥❣ ♠✐♥❤ t➢➡♥❣ tù✳
➜Þ♥❤ ❧ý✿
{ξα }α∈U
❦❤➯ tÝ❝❤ ➤Ò✉ ❦❤✐ ✈➭ ❝❤Ø ❦❤✐
∃η ≥ 0 ❦❤➯ tÝ❝❤✿ |ξα | ≤ η
❈❤ø♥❣ ♠✐♥❤✳
➜✐Ò✉ ❦✐Ö♥ ❝➬♥✳ ●✐➯ sö
❑❤✐ ➤ã✱ t❛ ❝ã
{ξα }α∈U
❦❤➯ tÝ❝❤ ➤Ò✉✳
sup E|ξα | < +∞✳ ❉♦ ➤ã✱ t❛ ❝❤ä♥ η = ξα0
α
➜✐Ò✉ ❦✐Ö♥ ➤ñ✳ ●✐➯ sö
❚❛ ❝ã✿
∃η ≥ 0 ❦❤➯ tÝ❝❤✿ |ξα | ≤ η ∈ L
|η(ω)| ≥ |ξα (ω)| > x
❚r➢➡♥❣ ◆❣ä❝ ❍➯✐ ✲ ❑✶✻
♠➭
Eα0 = sup E|ξα | ❧➭ t❤á❛✳
α
❈❤➢➡♥❣✶✳ ❈➳❝ ❦❤➳✐ ♥✐Ö♠ ❝➡ ❜➯♥ ✈Ò ▲❚❳❙ ✈➭ ◗❚◆◆
✶✹
⇒ {ω : |ξα (ω)| > x} ⊂ {ω : |η(ω)| > x}
⇒ sup
x→∞
|ξα |dP ≤
α∈U {|ξα |>x}
|η|dP −−−→ 0
✭❱×
{|η| > x} → ∅ ❦❤✐ x → ∞✮
{|η|>x}
x→∞
⇒ sup
|ξα |dP −−−→ 0
α∈U {|ξα |>x}
{ξα }α∈U
❱❐②
✶✳✽✳
❦❤➯ tÝ❝❤ ➤Ò✉✳
❇æ ➤Ò ❋❛t♦✉✿
{ξn }n≥1
◆Õ✉ ❞➲②
❦❤➯ tÝ❝❤ ➤Ò✉ t❤×✿
❛✮
E(lim ξn |G) ≤ lim E(ξn |G)
❜✮
E(lim ξn |G) ≥ lim E(ξn |G)
❈❤ø♥❣ ♠✐♥❤✳
❛✮ ❚❛ ❝ã✿
❱×
inf ξm
m≥n
{ξn }n≥1
lim ξn
✭✯✮
❦❤➯ tÝ❝❤ ➤Ò✉ ♥➟♥
∃η ≥ 0 ❦❤➯ tÝ❝❤✿ |ξn | ≤ η ⇔ −η ≤ ξn ≤ η
ξn ≥ −η ⇒ ξn− ≤ (−η)− = η ✳ ❉♦ ➤ã✿ ( inf ξm )− ≤ (−η)−
❱í✐
m≥n
−
⇒ E( inf ξm ) ≤ Eη < +∞
✭✯✯✮
m≥n
❚õ ✭✯✮ ✈➭ ✭✯✯✮✱ t❤❡♦ ➤Þ♥❤ ❧ý ❇✳▲❡✈② t❛ ❝ã✿
lim E( inf ξm |G) = E(lim ξn |G)
n
▼➭
m≥n
lim E( inf ξm |G) ≤ lim E(ξn |G)
❱❐②
n
m≥n
n
E(lim ξn |G) ≤ lim E(ξn |G)
❜✮ ❚➢➡♥❣ tù t❛ ❝ò♥❣ ❝ã✿
sup ξm
lim ξn
m≥n
(sup ξm )+ ≤ η + = η
⇒ E(sup ξm )+ ≤ Eη < +∞
m≥n
❚r➢➡♥❣ ◆❣ä❝ ❍➯✐ ✲ ❑✶✻
✶✺
❈❤➢➡♥❣✶✳ ❈➳❝ ❦❤➳✐ ♥✐Ö♠ ❝➡ ❜➯♥ ✈Ò ▲❚❳❙ ✈➭ ◗❚◆◆
⇒ lim E(sup ξm |G) = E(lim ξn |G)
m≥n
❱➭
lim E(sup ξm |G) ≥ lim E(ξn |G)
m≥n
❱❐②
✶✳✾✳
E(lim ξn |G) ≥ lim E(ξn |G)
➜Þ♥❤ ❧ý ❤é✐ tô ❜Þ ❝❤➷♥ ✭▲❡❜❡s❣✉❡✮
◆Õ✉ ❞➲②
ξn → ξ
❈❤ø♥❣ ♠✐♥❤✳
➜➷t
✭P✲❤✳❝✳❝✮ ✈➭
∃η ∈ L1 : |ξn | ≤ η
t❤×
h.c.c
E(|ξn − ξ||G) −−→ 0✳
Yn = sup |ξm − ξ|
m≥n
❚❛ t❤✃②✿
Yn
0
0 ≤ Yn ≤ 2η
⇒0≤
E(Yn |G)dP =
Ω
Yn dP → 0
Ω
⇒ E(Yn |G) → 0 ✭P✲❤✳❝✳❝✮
▼➷t ❦❤➳❝✿
|ξn − ξ| ≤ sup |ξm − ξ| = Yn
m≥n
❱❐②
E(|ξn − ξ||G) → 0 ✭P✲❤✳❝✳❝✮✳
✶✳✶✵✳
❈❤ø♥❣ ♠✐♥❤ ❝➳❝ ❜✃t ➤➻♥❣ t❤ø❝
❈❤♦ ❝➳❝ ➤➵✐ ❧➢î♥❣ ♥❣➱✉ ♥❤✐➟♥
✶✳✶✵✳✶✳
ξ, η ✳
❇✃t ➤➻♥❣ t❤ø❝ ❍♦❧❞❡r✿
E(|ξη|) ≤ ξ p . η q , ∀p, q > 1 :
1 1
+ = 1,
p q
✈í✐
ξ
1
p
= [E(|ξ|p )] p
• ❚r➢í❝ ❤Õt t❛ ❝❤ø♥❣ ♠✐♥❤ ❜✃t ➤➻♥❣ t❤ø❝ s❛✉✿
1
1
a b
1 1
+ ≥ a p .b q ; a, b > 0, p, q > 1 : + = 1
p q
p q
p
❚❤❐t ✈❐②✱ t❛ t❤✃② ❤➭♠ f (x) = x , ✈í✐ p > 1 ❧➭ ❤➭♠ ❧å✐ tr➟♥ (0, +∞)
(1)
❈❤ø♥❣ ♠✐♥❤✳
(1.1)
⇒ f (x) − f (1) ≥ f (1)(x − 1), ∀x > 0
⇔ xp − 1 ≥ p(x − 1)
a p1
❚❤❛② x = ( ) , a, b > 0 ✈➭♦ ✭✶✳✷✮ t❛ ➤➢î❝✿
b
❚r➢➡♥❣ ◆❣ä❝ ❍➯✐ ✲ ❑✶✻
(1.2)
✶✻
❈❤➢➡♥❣✶✳ ❈➳❝ ❦❤➳✐ ♥✐Ö♠ ❝➡ ❜➯♥ ✈Ò ▲❚❳❙ ✈➭ ◗❚◆◆
a
a p1
− 1 ≥ p[( ) − 1]
b
b
⇔
1
1
1
1
1
1
a b
a
1
a b
1
1
− ≥ a p .b1− p − b ⇔ + (1 − )b ≥ a p .b1− p ⇔ + ≥ a p .b q (➜➷t = 1 − )
p p
p
p
p q
q
p
• ❈❤ø♥❣ ♠✐♥❤ ❜✃t ➤➻♥❣ t❤ø❝ ❍♦❧❞❡r✿
ξ p. η
✰✮ ●✐➯ sö
q
=0:
(1) ⇔
|ξ|
ξ p
➳♣ ❞ô♥❣ ❜✃t ➤➻♥❣ t❤ø❝ ✭✶✳✶✮ ❝❤♦ a =
1
p
⇒
❍❛②
ξ p. η
✰✮ ◆Õ✉
q
|ξ|
ξ p
p
1
+
q
E|ξη|
ξ p. η
≤1
q
p
|η|
η q
,b =
|η|
η q
q
≥
q
t❛ ➤➢î❝ ❦Õt q✉➯✿
|ξ|.|η|
ξ p. η
E|ξ.η|
1 E(|ξ|p ) 1 E(|η|q )
p +
q ≥
p ( ξ p)
q ( η q)
ξ p. η
1=
q
q
E|ξ.η|
1 E(|ξ|p ) 1 E(|η|q )
+
≥
p
q
p E(|ξ| ) q E(|η| )
ξ p. η
q
= 0 ⇔ E(|ξ|p )E(|η|q ) = 0
❑❤➠♥❣ ♠✃t tÝ♥❤ tæ♥❣ q✉➳t t❛ ❣✐➯ sö
E(|ξ|p ) = 0
⇒ ξ = 0(P − h.c.c) ⇒ E|ξ.η| = 0(P − h.c.c) ✭▲ó❝ ➤ã ①➯② r❛ ➤➻♥❣ t❤ø❝✮
✶✳✶✵✳✷✳
ξ+η
❇✃t ➤➻♥❣ t❤ø❝ ▼✐♥❦♦✈s❦✐✿
p
≤ ξ
❈❤ø♥❣ ♠✐♥❤✳
p
+ η p , ∀p ≥ 1.
(2)
❚r➢í❝ ❤Õt t❛ ❝ã ❜✃t ➤➻♥❣ t❤ø❝ s❛✉ ✭sÏ ❝❤ø♥❣ ♠✐♥❤ s❛✉✮✿
(a + b)p ≤ 2p−1 (ap + bp ), ∀a, b > 0, p ≥ 1
❚r♦♥❣ ❜✃t ➤➻♥❣ t❤ø❝ ✭✷✳✶✮✱ ❧✃②
a = |ξ|, b = |η| t❛ ➤➢î❝✿
|ξ + η|p ≤ (|ξ| + |η|)p ≤ 2p−1 (|ξ|p + |η|p )
• ❱í✐ p = 1 t❤× (2.2) ⇒ E|ξ + η| ≤ E(|ξ|p ) + E(|η|p ) ✭❝❤Ý♥❤ ❧➭ ✭✷✮ tr♦♥❣ ❚❍ ♣ ❂✶✮
• ❱í✐ p > 1 :
|ξ + η|p = |ξ + η|.|ξ + η|p−1 ≤ |ξ||ξ + η|p−1 + |η||ξ + η|p−1
❚r➢➡♥❣ ◆❣ä❝ ❍➯✐ ✲ ❑✶✻
✭✷✳✶✮
✭✷✳✷✮
✶✼
❈❤➢➡♥❣✶✳ ❈➳❝ ❦❤➳✐ ♥✐Ö♠ ❝➡ ❜➯♥ ✈Ò ▲❚❳❙ ✈➭ ◗❚◆◆
⇒ E|ξ + η|p ≤ E(|ξ||ξ + η|p−1 ) + E(|η||ξ + η|p−1 )
1 1
+ = 1 ✈➭ ➳♣ ❞ô♥❣ ❜➤t ❍♦❧❞❡r t❛ ➤➢î❝✿
▲✃② q > 1 :
p q
1
(2.3)
1
E(|ξ||ξ + η|p−1 ) ≤ (E|ξ|p ]) p .(E|ξ + η|(p−1)q ) q =
1
1
1 1
≤ (E|ξ|p ) p .(E|ξ + η|p ) q = ( ✈× + = 1 ⇔ p = (p − 1)q)
p q
1 p
1
1
≤ (E|ξ|p ) p .(E|ξ + η|p ) p . q = ξ p ( ξ + η pp ) q
1
❚➢➡♥❣ tù✿
❱➭
E(|η||ξ + η|p−1 ) ≤ η p ( ξ + η pp ) q
E|ξ + η|p = ξ + η
p
p
❚❤❛② ✈➭♦ ✭✷✳✸✮✱ t❛ ➤➢î❝✿
ξ+η
⇔
ξ+η
p
p
p
p
≤( ξ
1− 1q
❍❛②
1
p
≤ ξ
ξ+η
+ η p )( ξ + η pp ) q
p
p
+ η
≤ ξ
p
p
+ η
(1 −
1
1
= )
q
p
p
❈✉è✐ ❝ï♥❣ t❛ ❈▼ ❜✃t ➤➻♥❣ t❤ø❝ ✭✷✳✶✮ ë tr➟♥
❳Ðt ❤➭♠ sè
f (x) = (a + x)p − 2p−1 (ap + xp ), x > 0
❉Ô ❞➭♥❣ t❤✃②
f (x) ≤ f (a) = 0, ∀x > 0
❉♦ ➤ã ✈í✐
x = b t❤× (a + b)p ≤ 2p−1 (ap + bp )
✶✳✶✵✳✸✳
❇✃t ➤➻♥❣ t❤ø❝ ❏❡♥s❡♥✿
❈❤♦ ❤➭♠
f : R −→ R ❧å✐✱ ξ ∈ L1 , E(|f (ξ)|) < ∞.❑❤✐ ➤ã✿
f (Eξ) ≤ Ef (ξ).
❈❤ø♥❣ ♠✐♥❤✳
❱× ❢ ❧➭ ❤➭♠ ❧å✐ ♥➟♥ t❛ ❝ã
k(x0 ) =
▲✃②
x0 = Eξ, x = ξ
f (x) − f (x0 ) ≥ k(x0 )(x − x0 )✱ tr♦♥❣ ➤ã✿
f (x0 − )
f (x0 + )
∃f (x0 − )
+
♥Õ✉ ∃f (x0 )
♥Õ✉
t❤× t❛ ➤➢î❝✿
f (ξ) − f (Eξ) ≥ k(Eξ)(ξ − Eξ)
⇒ E[f (ξ) − f (Eξ)] ≥ k(Eξ)E(ξ − Eξ) = 0
❱❐②
Ef (ξ) ≥ f (Eξ)
❚r➢➡♥❣ ◆❣ä❝ ❍➯✐ ✲ ❑✶✻
✶✽
❈❤➢➡♥❣✶✳ ❈➳❝ ❦❤➳✐ ♥✐Ö♠ ❝➡ ❜➯♥ ✈Ò ▲❚❳❙ ✈➭ ◗❚◆◆
✶✳✶✵✳✹✳
❇✃t ➤➻♥❣ t❤ø❝ ❈❤❡❜②❡✈✿
P {|ξ| > a} ≤
E|ξ|
, ∀ξ ∈ L1 , ∀a > 0
a
❈❤ø♥❣ ♠✐♥❤✳
❚❛ ❝ã✿
|ξ|dP =
E|ξ| =
Ω
⇒ P {|ξ| > a} ≤
|ξ|dP +
{|ξ|>a}
{|ξ|≤a}
Ef |ξ| =
Ef |ξ|
, ∀ξ ∈ L1 , ∀a > 0
f (a)
f |ξ|dP +
{|ξ|>a}
✶✳✶✶✳
{|ξ|>a}
f : R+ −→ R+ ✱ ❦❤➠♥❣ ❣✐➯♠ t❤×
P {|ξ| > a} ≤
P {|ξ| > a} ≤
|ξ|dP ≥ a.P {|ξ| > a}
E|ξ|
a
❚æ♥❣ q✉➳t✿ ◆Õ✉
❚❤❐t ✈❐②✱
|ξ|dP ≥
f |ξ|dP ≥
{|ξ|≤a}
f |ξ|dP ≥ f (a).P {|ξ| > a} ⇒
{|ξ|>a}
Ef |ξ|
f (a)
❇æ ➤Ò ❇♦r❡❧✲❈❛♥t❡❧❧✐ ✭❧✉❐t ✵✲✶✮
❈❤♦ ❞➲② ❝➳❝ ❜✐Õ♥ ❝è
{An }n≥1 ⊂ F, A∗ := lim An :=
∞
∞
Am ✳ ❑❤✐ ➤ã✿
n=1 m=n
∞
❛✮
P (An ) < ∞ ⇒ P (A∗ ) = 0.
n=1
∞
❜✮ ◆Õ✉ t❤➟♠ ❣✐➯ t❤✐Õt ❞➲②
{An }n≥1
➤é❝ ❧❐♣ t❤×✿
P (An ) = ∞ ⇒ P (A∗ ) = 1.
n=1
❈❤ø♥❣ ♠✐♥❤✳
∞
❛✮ ❚❛ ❝ã
Am }n≥1
{
m=n
P (A∗ ) = lim P (
n→∞
❧➭ ❞➲② ❣✐➯♠ ♥➟♥
∞
m=n
❚r➢➡♥❣ ◆❣ä❝ ❍➯✐ ✲ ❑✶✻
∞
Am ) ≤ lim
n→∞ m=n
∞
P (An ) < ∞✮
P (Am ) = 0 ✭❱×
n=1
✶✾
❈❤➢➡♥❣✶✳ ❈➳❝ ❦❤➳✐ ♥✐Ö♠ ❝➡ ❜➯♥ ✈Ò ▲❚❳❙ ✈➭ ◗❚◆◆
{An }n≥1
❜✮ ●✐➯ sö
⇒ P(
⇒ {An }n≥1
➤é❝ ❧❐♣
➤é❝ ❧❐♣
∞
∞
Am ) =
P (Am ) ❉♦ ➤ã t❛ ❝ã✿
m=n
m=n
∞
∞
0 ≤ P(
∞
Am ) =
(1 − P (Am ))
P (Am ) =
m=n
m=n
m=n
∞
∞
−P (Am )
≤
e
−
(∗) = e
P (Am )
m=n
= e−∞ = 0
m=n
∞
⇒ P(
∞
m=n
✭✭✯✮ sö ❞ô♥❣ ❜✃t ➤➻♥❣ t❤ø❝
✶✳✶✷✳
m=n
−x
1 − x ≤ e , 0 ≤ x ≤ 1✮
➜Þ♥❤ ❧ý ❋✉❜✐♥✐
{ξt }t∈T
❈❤♦ q✉➳ tr×♥❤ ♥❣➱✉ ♥❤✐➟♥
❛✮
Am ) = 1 ⇒ P (A∗ ) = 1
Am ) = 0 ❤❛② P (
ξ(t, ω) ➤♦ ➤➢î❝ t❤❡♦ t ∈ T
✭P✲❤✳❝✳❝✮❀
❜✮ ◆Õ✉
∃Eξt , ∀t t❤× mt := Eξt
❝✮ ◆Õ✉
S
➤♦ ➤➢î❝ tr➟♥
➤♦ ➤➢î❝✳ ❑❤✐ ➤ã✿
➤♦ ➤➢î❝ t❤❡♦ t❀
E|ξt |dt < ∞ t❤×✿
T = [0, +∞) ✈➭
S
|ξt |dt < ∞(P − h.c.c)
S
E|ξt |dt = E
S
|ξt |dt
S
❈❤ø♥❣ ♠✐♥❤✳
❛✮ ❚❛ ❝ã✿
{(t, ω) ∈ T × Ω : ξ(t, ω) ∈ B} ∈ BT × F, ∀B ∈ B
❉♦ ➤ã✱ ✈í✐ ♠ç✐
ω
❝è ➤Þ♥❤ t❤×
{t ∈ T : ξ(t, ω) ∈ B} ∈ BT , ∀B ∈ B
⇒ ξ(•, ω) : T −→ R ➤♦ ➤➢î❝ ✭t❤❡♦ t✮✳
❜✮
m : T → R, t → mt := Eξt
∀B ∈ B : {t ∈ T : mt ∈ B} = {t ∈ T :
ξt dP ∈ B} ∈ B
Ω
❚r➢➡♥❣ ◆❣ä❝ ❍➯✐ ✲ ❑✶✻
✷✵
❈❤➢➡♥❣✶✳ ❈➳❝ ❦❤➳✐ ♥✐Ö♠ ❝➡ ❜➯♥ ✈Ò ▲❚❳❙ ✈➭ ◗❚◆◆
❝✮
• ❈▼
|ξt |dt < ∞ ✭P✲❤✳❝✳❝✮
✭✸✳✶✮
S
E|ξt |dt < ∞ ⇒ E|ξt | < ∞ ✭P✲❤✳❝✳❝✮
S
⇒ |ξ| < ∞ ✭P✲❤✳❝✳❝✮✱ ∀t ∈ S, ω ∈ Ω
⇒
|ξt |dt < ∞ ✭P✲❤✳❝✳❝✮
S
• ❈▼
E|ξt |dt = E
S
✭❱×
S
|ξt |dt
✭✸✳✷✮
S
➤♦ ➤➢î❝ tr➟♥
P❤➞♥ ❤♦➵❝❤ ➤♦➵♥
T = [0, +∞) ♥➟♥ S = [a, b]✱ ✈í✐ 0 ≤ a ≤ b < +∞
[a, b] t❤➭♥❤ n ➤♦➵♥ ♥❤á✿
a = x0 < x1 = a + h < · · · < xn = a + nh = b,
✈í✐
b−a
n
h=
|ξt |dt < ∞(P − h.c.c) ♥➟♥✿
❱×
S
In =
n
n→∞
ξ(a + ih, •) −−−→
ξt dt
S
i=1
E|ξt |dt < ∞ ♥➟♥✿
▲➵✐ ❝ã✿
S
n
1
Eξ(a
n→∞ h i=1
Eξt dt = lim
S
✶✳✶✸✳
1
h
+ ih, •) = lim EIn = E lim In = E
n→∞
n→∞
ξt dt
S
➜Þ♥❤ ❧ý ✶✳✶✵ ✭❚✐➟✉ ❝❤✉➮♥ ➤ñ ❑♦❧♠♦❣♦r♦✈ ❝❤♦ tÝ♥❤ ❧✐➟♥
tô❝✮
◆Õ✉ ✈í✐
T = [a, b], ∃α > 0, > 0, c > 0 : ∀t, t + ∆t ∈ [a, b], E(|ξt+∆t − ξt |α ) ≤ c|∆t|1+
t❤× q✉➳ tr×♥❤ ♥❣➱✉ ♥❤✐➟♥
❈❤ø♥❣ ♠✐♥❤✳
{ξt }t∈T
❝ã ➤➵✐ ❞✐Ö♥ ❧✐➟♥ tô❝✳
➜Ó ❣✐➯✐ q✉②Õt ❜➭✐ ♥➭② t❛ ➳♣ ❞ô♥❣ ➤Þ♥❤ ❧ý ♣❤➬♥ ✷✳✷✳✷ tr❛♥❣ ✻✷ ✭❈➳❝ ♠➠ ❤×♥❤ ①➳❝
s✉✃t ✈➭ ø♥❣ ❞ô♥❣✱ ♣❤➬♥ ■■■✱ ◆❣✉②Ô♥ ❉✉② ❚✐Õ♥✮✳
➳♣ ❞ô♥❣ ❜✃t ➤➻♥❣ t❤ø❝ ▼❛r❦♦✈✱ t❛ ❝ã✿
P {|ξt+∆t − ξt | ≥ d} ≤
▲✃②
g(t) = |t|β , 0 < β <
❚❛ t❤✃②
g(t)
❦❤✐
t
c|∆t|1+
E(|ξt+∆t − ξt |α )
≤
dα
dα
(1)
α
✈➭
∞
∞
−n
g(2
n=1
❚r➢➡♥❣ ◆❣ä❝ ❍➯✐ ✲ ❑✶✻
)=
n=1
1
2β
n
< ∞ (✈× ✈í✐ β > 0
t❤×
1
< 1)
2β
✷✶
❈❤➢➡♥❣✶✳ ❈➳❝ ❦❤➳✐ ♥✐Ö♠ ❝➡ ❜➯♥ ✈Ò ▲❚❳❙ ✈➭ ◗❚◆◆
❚❤❛②
d = g(∆t) = |∆t|β
✈➭♦ ✭✶✮ t❛ ➤➢î❝✿
P {|ξt+∆t − ξt | ≥ |∆t|β } ≤
▲✃②
q(t) = c.|t|1+ −αβ ✳ ❚❛ t❤✃② q(t)
∞
∞
n
−n
2 q(2
)=
n=1
c
n=1
❦❤✐
1
2
−αβ
❱❐② t❤❡♦ ➤Þ♥❤ ❧ý ♣❤➬♥ ✷✳✷✳✷ tr❛♥❣ ✻✷ t❤×
✶✳✶✹✳
◆Õ✉
{ξt}t∈T
t
c|∆t|1+
= c.|∆t|1+ −αβ
|∆t|α β
) ✈➭
1
n
< ∞ (✈×
{ξt }t∈T
− αβ > 0 ⇒
2
−αβ
< 1)
❝ã ➤➵✐ ❞✐Ö♥ ❧✐➟♥ tô❝✳
❧➭ q✉➳ tr×♥❤ ❣✐❛ sè ➤é❝ ❧❐♣ t❤×
{ξt}t∈T
❧➭ q✉➳
tr×♥❤ ▼❛r❦♦✈
✶✳✶✺✳
❈❤ø♥❣ ♠✐♥❤ ❝➳❝ tÝ♥❤ ❝❤✃t ❝ñ❛ t❤ê✐ ➤✐Ó♠ ▼❛r❦♦✈
❚r♦♥❣ ♣❤➬♥ ♥➭② ♥❤÷♥❣ ❜æ ➤Ò ♠➭ t❤➬② ➤➲ ❝❤ø♥❣ ♠✐♥❤ râ tr♦♥❣ ❣✐➳♦ tr×♥❤ t❤×
❣❤✐ ❧➭ ✧❘å✐✧✳
❇æ ➤Ò ✶✳✶✿
❘å✐
❇æ ➤Ò ✶✳✷✿
❘å✐
❇æ ➤Ò ✶✳✸✿
◆Õ✉
τ1 , τ2
❧➭ ❝➳❝ t❤ê✐ ➤✐Ó♠ ▼❛r❦♦✈ t❤× ❝➳❝ t❤ê✐ ➤✐Ó♠
τ1 ∧ τ2 := min{τ1 , τ2 }, τ1 ∨ τ2 := max{τ1 , τ2 }, τ1 + τ2
❝ò♥❣ ❧➭ ❝➳❝ t❤ê✐ ➤✐Ó♠ ▼❛r❦♦✈✳
❈❤ø♥❣ ♠✐♥❤✳
• τ1 ∨ τ2
• τ 1 ∧ τ2
❧➭ t❤ê✐ ➤✐Ó♠ ▼❛r❦♦✈✿ ❘å✐
❧➭ t❤ê✐ ➤✐Ó♠ ▼❛r❦♦✈✱ t❤❐t ✈❐②✿
∀t ∈ T : {τ1 ∨ τ2 ≤ t} = {τ1 ≤ t} ∩ {τ2 ≤ t} ∈ Ft
❚r➢➡♥❣ ◆❣ä❝ ❍➯✐ ✲ ❑✶✻
✷✷
❈❤➢➡♥❣✶✳ ❈➳❝ ❦❤➳✐ ♥✐Ö♠ ❝➡ ❜➯♥ ✈Ò ▲❚❳❙ ✈➭ ◗❚◆◆
• τ1 + τ2
❧➭ t❤ê✐ ➤✐Ó♠ ▼❛r❦♦✈✱ t❤❐t ✈❐②✿
∀t ∈ T : {τ1 + τ2 ≤ t} = {τ1 = 0, τ2 = t} ∪ {τ1 = t, τ2 = 0}
∪
({τ1 < a} ∩ {τ2 < b}) ∈ Ft
a+b≤t; a,b∈Q; a,b>0
❇æ ➤Ò ✶✳✹✿
❛✮ ◆Õ✉
{τn }n≥1
❧➭ ❞➲② ❝➳❝ t❤ê✐ ➤✐Ó♠ ▼❛r❦♦✈ t❤×
sup τn
❝ò♥❣ ❧➭ t❤ê✐ ➤✐Ó♠ ▼❛r❦♦✈✳
n≥1
❜✮ ◆Õ✉ t❤➟♠ ❣✐➯ t❤✐Õt ❞ß♥❣
{Ft } ❧✐➟♥ tô❝ ♣❤➯✐ t❤× inf τn , lim τn , lim τn ❝ò♥❣ ❧➭ ❝➳❝ t❤ê✐ ➤✐Ó♠
n≥1
▼❛r❦♦✈✳
❈❤ø♥❣ ♠✐♥❤✳
❛✮
∀t ∈ T ✱ t❛ ❝ã✿
{sup τn ≤ t} =
n≥1
❜✮
{τn ≤ t} ∈ Ft
n≥1
•{inf τn < t} =
n≥1
{τn < t} ∈ Ft
n≥1
•{lim τn < t} = {inf sup τk < t} ∈ Ft
n≥1 k≥n
•{lim τn < t} = {sup inf τk < t} ∈ Ft
n≥1 k≥n
❇æ ➤Ò ✶✳✺✿
❘å✐
❇æ ➤Ò ✶✳✻✿
❘å✐
❇æ ➤Ò ✶✳✼✿
◆Õ✉
τ, σ
❈❤ø♥❣ ♠✐♥❤✳
❧➭ ❝➳❝ t❤ê✐ ➤✐Ó♠ ▼❛r❦♦✈ t❤×
{τ < σ}, {τ ≤ σ}, {τ = σ} t❤✉é❝ Fτ ∩ Fσ ✳
• {τ < σ} ∈ Fτ ∩ Fσ ✱ t❤❐t ✈❐②✿ ∀t ∈ T ✱ t❛ ❝ã✿
{τ < σ} ∩ {σ ≤ t} =
({τ < r} ∩ {r < σ ≤ t}) ∈ Ft
r
⇒ {τ < σ} ∈ Fσ
❚r➢➡♥❣ ◆❣ä❝ ❍➯✐ ✲ ❑✶✻
✷✸
❈❤➢➡♥❣✶✳ ❈➳❝ ❦❤➳✐ ♥✐Ö♠ ❝➡ ❜➯♥ ✈Ò ▲❚❳❙ ✈➭ ◗❚◆◆
❚➢➡♥❣ tù✿
{τ < σ} ∩ {τ ≤ t} =
({τ ≤ r} ∩ {r < σ} ∩ {τ ≤ t} ∪ {t < σ}) ∈ Ft
r
⇒ {τ < σ} ∈ Fτ ✳ ❱❐② {τ < σ} ∈ Fτ ∩ Fσ
• {τ ≤ σ} = Ω \ {τ > σ} ∈ Fτ ∩ Fσ
• {τ = σ} = {τ ≤ σ} \ {τ < σ} ∈ Fτ ∩ Fσ
✶✳✶✻✳
❱Ý ❞ô ✈Ò t❤ê✐ ➤✐Ó♠ ▼❛r❦♦✈
❱Ý ❞ô ✶✳ ●✐➯ sö
C
❧➭ t❐♣ ♠ë tr♦♥❣
❈❤ø♥❣ ♠✐♥❤✳
{(ξt , Ft )}t∈T
{ξt } ❧✐➟♥ tô❝ ♣❤➯✐✱
R✳ ❑❤✐ ➤ã τC := inf{t ≥ 0 : ξt ∈ C} ❧➭ t❤ê✐ ➤✐Ó♠ ▼❛r❦♦✈✳
rå✐
❱Ý ❞ô ✷✳ ●✐➯ sö
❑❤✐ ➤ã
❧➭ q✉➳ tr×♥❤ ♥❣➱✉ ♥❤✐➟♥ ❧✐➟♥ tô❝ ♣❤➯✐✱ ❞ß♥❣
{(ξt , Ft )}t∈T
❧➭ q✉➳ tr×♥❤ ♥❣➱✉ ♥❤✐➟♥ ❧✐➟♥ tô❝✱
τD := inf{t ≥ 0 : ξt ∈ D}
❧➭ t❤ê✐ ➤✐Ó♠ ▼❛r❦♦✈ ➤è✐ ✈í✐
D
❧➭ t❐♣ ➤ã♥❣ tr♦♥❣
F := (Ftξ )t∈T
Ftξ := σ(ξs , s ≤ t)✳
❈❤ø♥❣ ♠✐♥❤✳
➜➷t
C := R \ D✳ ❱× C
♠ë ♥➟♥
∃{Kn }n∈N
➤ã♥❣✿
C=
Kn ✳
n∈N
∀s ∈ T ✱ t❛ ❝ã✿
{τD ≤ s} =
n
t
❚r➢➡♥❣ ◆❣ä❝ ❍➯✐ ✲ ❑✶✻
∈
/ Kn } =
n
r
∈
/ Kn } ∈ Fsξ
R✳
✱ tr♦♥❣ ➤ã
❈❤➢➡♥❣ ✷
▼❛rt✐♥❣❛❧❡ tr➟♥ ❦❤♦➯♥❣ t❤ê✐ ❣✐❛♥ rê✐ r➵❝
✈➭ ❧✐➟♥ tô❝
✷✳✶✳
▼ét sè ✈Ý ❞ô ✈Ò ▼❛rt✐♥❣❛❧❡
❱Ý ❞ô ✶✳ ◆Õ✉
▼❛rt✐♥❣❛❧❡ t❤×
X := {(xn , Fn )}1≤n≤N , Y := {(yn , Fn )}1≤n≤N
U := {(un := xn ∧yn , Fn )}1≤n≤N
xn ∨ yn , Fn )}1≤n≤N
❈❤ø♥❣ ♠✐♥❤✳
•
●✐➯ sö
•
X, Y
❧➭ ❝➳❝ s✉♣❡r ✭❤♦➷❝ s✉❜✮
❧➭ s✉♣❡r ▼❛rt✐♥❣❛❧❡ ✭❤♦➷❝
V := {(vn :=
❧➭ s✉❜ ▼❛rt✐♥❣❛❧❡ t➢➡♥❣ ø♥❣✮
◆Õ✉
X, Y
❧➭ s✉♣❡r ▼❛rt✐♥❣❛❧❡ t❤×
❧➭ s✉❜ ▼❛rt✐♥❣❛❧❡✳ ❑❤✐ ➤ã✿
U
❧➭ s✉♣❡r ▼❛rt✐♥❣❛❧❡✿ rå✐
∀n ≥ m✱ t❛ ❝ã✿
E(vn |Fm ) ≥ E(xn |Fm ) ≥ xm
E(vn |Fm ) ≥ E(yn |Fm ) ≥ ym
⇒ E(vn |Fm ) ≥ xm ∨ ym = vm
❱Ý ❞ô ✷✳
∀z ∈ L t❤× X := {(xn , Fn )}1≤n≤N ✱ ✈í✐ xn = E(z|Fn ) ❧➭ ▼❛rt✐♥❣❛❧❡✳
❈❤ø♥❣ ♠✐♥❤✳
∀n ≥ m✱ t❛ ❝ã✿
E(xn |Fm ) = E(E(z|Fn )|Fm ) =(∗) E(z|Fm ) = xm
❱Ý ❞ô ✸✳ ❘å✐
✷✹
✭(∗) ✈×
Fm ⊂ Fn ✮
✷✺
❈❤➢➡♥❣✷✳ ▼❛rt✐♥❣❛❧❡ tr➟♥ ❦❤♦➯♥❣ t❤ê✐ ❣✐❛♥ rê✐ r➵❝ ✈➭ ❧✐➟♥ tô❝
{ηn ∈ L}n≥1 , Eηn = 1, pn :=
❱Ý ❞ô ✹✳ ❈❤♦ ❞➲② ❝➳❝ ➤➵✐ ❧➢î♥❣ ♥❣➱✉ ♥❤✐➟♥ ➤é❝ ❧❐♣
n
ηi , Fn := σ(η1 , . . . , ηn )✳ ❑❤♦ ➤ã X := {(pn , Fn )}1≤n≤N
❧➭ ▼❛rt✐♥❣❛❧❡✳
i=1
∀n ≥ m✱ t❛ ❝ã✿
❈❤ø♥❣ ♠✐♥❤✳
n
n
E(pn |Fm ) = E(pm .
ηi |Fm ) = pm .E(
i=m+1
n
= pm .E(
ηi |Fm )
i=m+1
n
Eηi = pm , ∀n ≥ 1
ηi ) = p m .
i=m+1
i=m+1
❱Ý ❞ô ✺✳ ❈❤♦ ❞➲② ❝➳❝ ➤➵✐ ❧➢î♥❣ ♥❣➱✉ ♥❤✐➟♥ ❦❤➠♥❣ ➞♠
{ηn ∈ L}n≥1 , Sn =
n
ηi , Fn :=
i=1
σ(η1 , . . . , ηn )✳ ❑❤✐ ➤ã X := {(Sn , Fn )}1≤n≤N
❈❤ø♥❣ ♠✐♥❤✳
❧➭ s✉❜ ▼❛rt✐♥❣❛❧❡✳
∀n ≥ m✱ t❛ ❝ã✿
m
E(Sn |Fm ) = E[(
n
ηi +
i=1
m
=
ηi )|Fm ]
i=m+1
n
ηi + E(
i=1
ηi )|Fm )
i=m+1
≥ Sm
X := {(xn , Fn )}1≤n≤N
❱Ý ❞ô ✻✳ ◆Õ✉
∞, ∀n t❤× Y := {(f (xn ), Fn )}1≤n≤N
❈❤ø♥❣ ♠✐♥❤✳
❧➭ ▼❛rt✐♥❣❛❧❡✱ ❤➭♠
f : R → R ❧å✐ ✈í✐ E|f (xn )| <
❧➭ s✉❜ ▼❛rt✐♥❣❛❧❡✳
∀n ≥ m✱ ➳♣ ❞ô♥❣ ❜✃t ➤➻♥❣ t❤ø❝ ❏❡♥s❡♥✱ t❛ ❝ã✿
E(f (xn )|Fm ) ≥ f (E(xn |Fm )) = f (xm )
❱Ý ❞ô ✼✳ ◆Õ✉
❧å✐ ✈í✐
♥Õ✉
X := {(xn , Fn )}1≤n≤N
E|f (xn )| < ∞, ∀n
X := {(xn , Fn )}1≤n≤N
❚r➢➡♥❣ ◆❣ä❝ ❍➯✐ ✲ ❑✶✻
t❤×
❧➭ s✉❜ ▼❛rt✐♥❣❛❧❡✱ ❤➭♠
Y := {(f (xn ), Fn )}1≤n≤N
❧➭ ▼❛rt✐♥❣❛❧❡ t❤×
f :R→R
❦❤➠♥❣ ❣✐➯♠✱
❧➭ s✉❜ ▼❛rt✐♥❣❛❧❡✳ ➜➷❝ ❜✐Öt✱
{E|xn |p }1≤n≤N
❧➭ ❞➲② ❦❤➠♥❣ ❣✐➯♠