Khoá luận tốt nghiệp
LỜI CẢM ƠN
Em xin chân thành cảm ơn các thầy giáo, cô giáo trong tổ Hình học và
trong khoa Toán trường ĐHSP Hà Nội 2 đã quan tâm và giúp đỡ em trong
thời gian em nghiên cứu và hoàn thành khóa luận của mình.
Em xin bày tỏ lòng biết ơn sâu sắc tới thầy Đinh Văn Thủy, người đã
tận tình hướng dẫn em trong suốt thời gian vừa qua để em có thể hoàn thành
được khóa luận này.
Do trình độ và thời gian nghiên cứu còn hạn chế nên những vấn đề mà
em trình bày trong khoá luận kho tránh khỏi những thiếu sót. Em kính mong
nhận được sự chỉ bảo và đóng góp ý kiến của các thầy giáo, cô giáo, các bạn
sinh viên đẻ khóa luận của em được hoàn thiện hơn.
Em xin chân thành cảm ơn!
Hà Nội, tháng 05 năm 2010
Sinh viên
Phan Thị Minh Huệ
Phan Thị Minh Huệ
1
K32G- Toán
Khoá luận tốt nghiệp
Lời cam đoan
Em xin cam đoan khóa luận này được hoàn thành do sự nỗ lực tìm hiểu,
nghiên cứu của bản thân, cùng với giúp đỡ tận tình của thầy Đinh Văn Thủy
và sự giúp đỡ của các thầy cô trong khoa toán trường ĐHSP Hà Nội 2.
Bản khóa luận này không trùng với kết quả của các tác giả khác. Nếu
trùng em xin hoàn toàn chịu trách nhiệm!
Hà Nội , tháng 05 năm 2010
Sinh viên
Phan Thị Minh Huệ
Phan Thị Minh Huệ
2
K32G- Toán
Khoá luận tốt nghiệp
mục lục
Nội dung
Trang
Lời cảm ơn
1
Lời cam đoan
2
Mục lục
3
Mở đầu
5
Chương 1: Các kiến thức chuẩn bị
6
1.1.Không gian afin
6
1.1.1.Định nghĩa không gian afin
6
1.1.2.Các tính chất đơn giản
6
1.1.3.Phẳng trong không gian afin
7
1.1.4.Hệ điểm độc lập
7
1.2.Tâm tỉ cự
8
1.2.1.Khái niệm tâm tỉ cự
8
1.2.2.Nhận xét
9
1.2.3.Một số định lí
10
Chương 2:ứng dụng tâm tỉ cự để giải một số bài toán
13
2.1.ứng dụng tâm tỉ cự để giải một số bài toán chứng minh
13
2.1.1.Bài tập mẫu
13
2.1.2.Bài tập đề nghị
20
2.2.ứng dụng tâm tỉ cự để giải một số bài toán tính toán
23
2.2.1.Bài tập mẫu
23
2.2.2.Bài tập đề nghị
32
Phan Thị Minh Huệ
3
K32G- Toán
Khoá luận tốt nghiệp
2.3.ứng dụng tâm tỉ cự để giải một số bài toán quỹ tích
35
2.3.1.Bài tập mẫu
35
2.3.2.Bài tập đề nghị
43
2.4.ứng dụng tâm tỉ cự để giải một số bài toán dựng hình
47
2.4.1.Bài tập mẫu
47
2.4.2.Bài tập đề nghị
57
Kết luận
60
Tài liệu tham khảo
61
`
Phan Thị Minh Huệ
4
K32G- Toán
Khoá luận tốt nghiệp
Mở đầu
1.Lý do chọn đề tài:
Toán học là một môn học gây nhiều hứng thú đối với những học sinh
yêu toán. Học tốt môn toán giúp các em có khả năng tư duy logic và lập luận
vấn đề một cách chặt chẽ. Trong các môn của toán học, hình học luôn được
coi là môn học khó nhất đối với nhiều học sinh.
Trong chương trình hình học ở phổ thông học sinh được biết đến các
khái niệm: Trung điểm của đoạn thẳng, trọng tâm của tam giác, và trọng tâm
của tứ diện. Đó đều là các trường hợp riêng của khái niệm tâm tỉ cự được
trình bày ở bậc cao đẳng và đại học khi chúng ta làm quen với môn hình học
Afin .
Để góp phần làm rõ tính thống nhất giữa khái niệm tâm tỉ cự và các
khái niệm mà học sinh phổ thông được biết đến đã nêu trên, em đi sâu nghiên
cứu về lý thuyết tâm tỉ cự và ứng dụng của nó để giải các bài toán hình học.
Trong khuôn khổ một luận văn tốt nghiệp, do thời gian nghiên cứu có
hạn, em chỉ trình bày những kiến thức cơ bản về tâm tỉ cự và ứng dụng của nó
trong một số lớp bài toán: chứng minh, tính toán, quỹ tích, dựng hình.
Đó là những lý do mà em chọn đề tài:“ Tâm tỉ cự và các ứng dụng “.
2.Mục đích, nhiệm vụ nghiên cứu:
-Nghiên cứu các kiến thức cơ bản của tâm tỉ cự và ứng dụng của nó
trong việc giải các bài toán hình học.
-Xây dựng hệ thống bài tập và bài tập tự luyện thể hiện việc sử dụng
tâm tỉ cự để giải các lớp bài toán: chứng minh, tính toán, quỹ tích, dựng hình.
3.Đối tượng, phạm vi nghiên cứu:
-Đối tượng nghiên cứu: tâm tỉ cự
-Phạm vi nghiên cứu: ứng dụng tâm tỉ cự trong việc giải một số lớp bài
toán: chứng minh, tính toán, quỹ tích, dựng hình.
Phan Thị Minh Huệ
5
K32G- Toán
Khoá luận tốt nghiệp
4.Phương pháp nghiên cứu:
Phân tích, tổng hợp tài liệu có liên quan.
chương 1:các kiến thức chuẩn bị
1.1. Không gian afin
1.1.1.Định nghĩa không gian afin
1.1.1.1. Định nghĩa
* Cho không gian vectơ V trên trường K, tập A ≠ mà các phần tử của
nó gọi là điểm và ánh xạ :
A A V
( M , N ) ( M , N ) MN
Bộ ba (A, , V) gọi là không gian afin nếu 2 tiên đề sau đây được thoả mãn:
i, Với mọi điểm M V, có duy nhất điểm N A sao cho: MN u
ii, Với mọi điểm M, N, P A có: MN NP MP
* Không gian afin (A, , V) còn gọi là không gian afin A liên kết với
không gian vectơ V, còn gọi tắt là không gian afin A trên trường K (hoặc K không gian afin A).
Không gian vectơ liên kết V thường được ký hiệu là A .
* Không gian afin A gọi là n chiều (ký hiệu dim A = n) nếu dim V = n.
1.1.1.2. Ví dụ
Không gian Euclid 2 chiều E2 và 3 chiều E3 thông thường trình bày ở
trường trung học phổ thông là những không gian afin liên kết với không gian
vectơ (tự do) 2 chiều, 3 chiều ở PTTH.
1.1.2.Các tính chất đơn giản
a. Với mọi điểm M A thì MM 0 .
Phan Thị Minh Huệ
6
K32G- Toán
Khoá luận tốt nghiệp
b. Với mọi điểm M , N A mà MN 0 thì M N .
c.Với mọi cặp điểm M , N A thì MN NM .
d. Với mọi điểm M , N , P, Q A ta có: MN PQ MP NQ .
e. Với 3 điểm O, M , N A ta có : MN ON OM .
1.1.3. Phẳng trong không gian afin
* Cho không gian afin A liên kết với không gian vectơ A . Gọi I là một
điểm của A và là một không gian vectơ con của A . Khi đó tập hợp
M A IM được gọi là cái phẳng (cũng gọi tắt là "phẳng") qua I
và có phương là .
* Nếu có số chiều bằng m thì gọi là phẳng m chiều (hay còn gọi là
m - phẳng).
Như vậy:
+ 0- phẳng chính là điểm.
+ n - phẳng của không gian afin n chiều A chính là A.
+ 1- phẳng còn gọi là đường thẳng.
+ Nếu dim A = n thì (n - 1 )- phẳng còn gọi là siêu phẳng.
1.1.4. Hệ điểm độc lập
1.1.4.1. Định nghĩa
Hệ m + 1 điểm A0, A1, ..., Am (m 1) của không gian afin A gọi là độc
lập nếu m vectơ A0 A1 , A0 A2 ,..., A0 Am của A là hệ vectơ độc lập tuyến tính. Hệ
gồm một điểm A0 bất kỳ (tức trường hợp m = 0) luôn được xem là độc lập.
1.1.4.2. Định lý
1.1.4.2.1. Định lý
Qua m + 1 điểm độc lập của không gian afin A có một và chỉ một
m - phẳng (m 0) .
Phan Thị Minh Huệ
7
K32G- Toán
Khoá luận tốt nghiệp
Chứng minh:
Giả sử A0, A1 ,... , Am là m + 1 điểm độc lập của không gian afin A liên
kết với không gian vectơ A .
Khi đó: Hệ m vectơ A0 A1 , A0 A2 ,..., A0 Am độc lập tuyến tính.
Ta gọi là không gian vectơ con của A nhận m vectơ đó là cơ sở. Bây
giờ gọi là cái phẳng qua A0 có phương là .
Rõ ràng, vì A0 Ai nên Ai , i, m .
Vậy là cái phẳng qua m + 1 điểm đã cho.
Mặt khác: Do là cái phẳng qua A0 và có phương nên là duy nhất.
1.1.4.2.2. Hệ quả
m +1 điểm của không gian afin A là độc lập khi và chỉ khi chúng
không cùng nằm trên một (m - 1) - phẳng (m 1) .
1.2.Tâm tỉ cự
1.2.1. Khái niệm tâm tỉ cự
1.2.1.1. Định lý
Cho k điểm P1,P2,...,Pk của không gian afin và k số thuộc trường K:
1, 2 ,..., k sao cho
n
0 .
i 1
i
Khi đó có duy nhất điểm G sao cho:
k
i GPi 0
i 1
Chứng minh:
Gọi O là điểm tuỳ ý của không gian afin A. Khi đó:
k
GP
0
(
OP
i i
i i OG) 0
k
i 1
i 1
Phan Thị Minh Huệ
8
K32G- Toán
Khoá luận tốt nghiệp
k
i OPi ( i )OG
k
i 1
i 1
OG
k
i 1
k
1
i OPi
(1)
i 1
i
Đẳng thức (1) chứng tỏ điểm G xác định và duy nhất.
1.2.1.2. Định nghĩa
Điểm G thỏa mãn định lý nêu trên được gọi là tâm tỉ cự của hệ điểm
{Pi} gắn với họ hệ số i.
Trong trường hợp các i bằng nhau, điểm G gọi là trọng tâm của hệ
điểm {Pi}.
Khi k=2 thì trọng tâm G của hệ 2 điểm P1 , P2 còn được gọi là trung
điểm của đoạn [P1P2] .
1.2.2. Nhận xét
k
Nếu thay các hệ số i , i 1, k , i 0 bởi mi , m K \ 0 thì tâm tỉ cự
i 1
G không thay đổi.
Thật vậy:
k
Giả sử G là tâm tỉ cự của hệ điểm {Pi} gắn với họ hệ số i , i, k , i 0
i 1
Khi đó ta có : i GPi 0
k
i 1
k
Do
i 0 nên
i 1
k
m 0 , m K \ 0 .
i 1
i
Do đó:
Phan Thị Minh Huệ
9
K32G- Toán
Khoá luận tốt nghiệp
Gọi G' là tâm tỉ cự của hệ điểm {Pi} gắn với họ hệ số mi , i 1, k , m K \ 0 .
Khi đó ta có:
(
m
)
G
i ' Pi 0
k
i 1
k
m i G ' Pi 0
i 1
k
i G ' Pi 0
i 1
(do m K \ 0 )
Suy ra: G' là tâm tỉ cự của hệ điểm {Pi} gắn với họ hệ số i , i 1, k
Do tâm tỉ cự của hệ điểm gắn với họ hệ số đã cho là duy nhất nên ta có:G'
G.
Từ điều chứng minh được ở trên ta có nhận xét:
Trong trường hợp G là trọng tâm của hệ điểm có thể lấy i 1, i 1, k
1 k
và khi đó trọng tâm G của hệ điểm {Pi} được xác định bởi : OG OPi
k i 1
1.2.3. Một số định lý
1.2.3.1 Định lý 1
1.2.3.1.1. Định lý
Tập hợp tất cả các tâm tỉ cự của họ điểm P0, P1, ..., Pk (với các họ hệ số
khác nhau) là cái phẳng bé nhất chứa các điểm ấy.
Chứng minh :
Gọi là cái phẳng bé nhất chứa các điểm Pi , i 0, k
Khi đó: Các vectơ P0 P1 , P0 P2 ,..., P0 Pk thuộc phương của phẳng .
Ta lấy hệ vectơ con độc lập tuyến tính tối đại của hệ vectơ trên, giả sử đó là:
P0 P1 , P0 P2 ,..., P0 Pk ( s k ) .
Vậy dim = s . Khi đó:
Điểm G P0G
Phan Thị Minh Huệ
10
K32G- Toán
Khoá luận tốt nghiệp
s
P0G i P0 Pi
i 1
s
P0G i (GPi GP0 )
i 1
s
(1 i )GP0 iGPi 0
s
i 1
(2)
i 1
Đẳng thức (2) chứng tỏ G là tâm tỉ cự của họ điểm P0,...,Pk gắn với họ các hệ
số:
s
1 i , 1 , 2 ,..., s ,0,...,0
i 1
Ngược lại, nếu G là tâm tỉ cự của họ điểm P0, P1, ... Pk gắn với họ hệ số
k
0 , 1,..., k thì:
i GPi 0
i 0
i (GP0 P0 Pi ) 0
k
i 0
k
k
( i )GP0 i .P0 Pi 0
i 0
i 1
1
P0G k
k
i 0
i P0 Pi
i 1
i
P0G G
1.2.3.1.2. Hệ quả
Cho m - phẳng đi qua m + 1 điểm độc lập P0,P1, ...,Pm. Khi đó
chính là tập hợp các tâm tỉ cự của họ điểm đó (gắn với các họ hệ số khác
nhau).
1.2.3.2. Định lý 2
1.2.3.2.1. Định lý
Phan Thị Minh Huệ
11
K32G- Toán
Khoá luận tốt nghiệp
Cho m - phẳng đi qua m + 1 điểm độc lập P0, P1, ..., Pm và 1 điểm O
tuỳ ý. Điều kiện cần và đủ để điểm M là:
m
OM i OPi , Trong đó:
i 0
m
1
i 0
i
Chứng minh:
Vì là m - phẳng đi qua m + 1 điểm độc lập P0, P1, ..., Pm nên theo hệ
quả 2.3.1.2 ta có: là tập hợp các tâm tỉ cự của họ điểm P0, P1,..., Pm (gắn với
các họ hệ số khác nhau).
Điểm M
Do đó:
M là tâm tỉ cự của họ điểm P0, P1, ..., Pm gắn với họ hệ số
0' , 1' ,..., m' nào đó.
i' MPi 0
m
i 0
i' (OPi OM ) 0
m
i 0
m
m
( i' )OM i' OPi
i 0
m
Vì
i 0
'
i
0 nên nếu đặt i
(3)
i 0
i'
m
i 0
m
thì: i 1 và (3) OM i OPi
m
'
i
i 0
i 0
Vậy định lý được chứng minh.
1.2.3.2.2. Nhận xét
Cho m + 1 điểm độc lập P0, P1,..., Pm.
* Theo định lý 2.3.2.1 ta có m - phẳng đi qua m +1 điểm độc lập P0,
P1,…,Pm gồm những điểm M sao cho với điểm O nào đó :
Phan Thị Minh Huệ
12
K32G- Toán
Khoá luận tốt nghiệp
m
OM i OPi
m
1
Với
i 0
i 0
i
Bây giờ ta xét tập hợp gồm những điểm M sao cho:
m
OM i OPi
m
1 và 0 ;
Với
i 0
i 0
i
i
i = 0, 1, ..., m
Tập hợp đó được gọi là m - đơn hình với các đỉnh P0, P1,..., Pm và ký
hiệu là: S(P0,P1,...,Pm.).
m
* Tập hợp những điểm M sao cho P0 M i P0 Pi ,với 0 i 1, i 1, m được
i 0
gọi là m - hộp.
chương 2 : ứng dụng tâm tỉ cự để giải một số bài toán
2.1. ứng dụng tâm tỉ cự để giải một số bài toán chứng minh
2.1.1. Bài tập mẫu
Bài 1:
Cho G' là tâm tỉ cự của họ k điểm P1,..., Pk gắn với họ hệ số 1, ..., k
k
( i 0) . Cho G'' là tâm tỉ cự của họ m - k điểm Pk+1, ..., Pm gắn với họ hệ
i 0
m
số k+1, ..., m ( j 0) . Chứng tỏ rằng khi đó G là tâm tỉ cự của họ điểm
j k 1
k
G', G'' gắn với họ hệ số ' i và
"
i 1
m
j k 1
j
.
Bài giải
Do G' là tâm tỉ cự của họ điểm P1, ..., Pk gắn với họ hệ số 1,...,k nên :
i G' Pi 0
k
(1)
i 1
Phan Thị Minh Huệ
13
K32G- Toán
Khoá luận tốt nghiệp
Tương tự, vì G'' là tâm tỉ cự của họ m - k điểm Pk+1, ...,Pm gắn với họ hệ
m
số k+1, ..., m nên :
(2)
j G'' Pj 0
j k 1
Từ (1) và (2) suy ra:
k
G
i ' Pi
i 1
m
j G " Pj 0
j k 1
k
m
i (GPi GG ') j (GP j GG '' ) 0
i 1
j k 1
m
k
'
i GP i j GPj ( i GG j GG '' ) 0
k
m
i 1
j k 1
i 1
k
i GP i i GG '
m
i 1
m
i 1
j k 1
j k 1
j GG ''
(3)
Mặt khác:
Do G là tâm tỉ cự của họ m điểm P1, ..., Pm gắn với họ hệ số 1, ..., m
m
GP
nên:
(4)
i i 0
i 1
Từ (3) và (4) ta suy ra:
k
i 1
Lại có :
m
i GG ' j GG " 0
(5)
j k 1
k
m
k
i 1
j k 1
i 1
' i ; '' j ' '' i
m
0
j k 1
i
(6)
Từ (5) và (6) suy ra:
G là tâm tỉ cự của họ 2 điểm G', G'' gắn với họ hệ số ', ''.
Bài 2:
Cho 4 điểm phân biệt P1, P2, P3, P4. Xét đường thẳng đi qua 1 trong 4
điểm đó và đi qua trọng tâm của 3 điểm còn lại (có 4 đường thẳng như vậy).
Lại xét các đường thẳng đi qua trung điểm của đoạn thẳng nối 2 điểm trong 4
điểm đó và đi qua trung điểm của đoạn thẳng nối 2 điểm còn lại (có 3 đường
thẳng như vậy). Chứng minh rằng: 7 đường thẳng nói trên cùng đi qua 1
điểm.
Phan Thị Minh Huệ
14
K32G- Toán
Khoá luận tốt nghiệp
Bài giải.
Gọi G là trọng tâm của 4 điểm P1, P2, P3, P4.
GP1 GP2 GP3 GP4 0
(1)
- Xét 4 đường thẳng đi qua 1 trong 4 điểm P1, P2, P3, P4 và đi qua trọng
tâm của 3 điểm còn lại:
Giả sử d1 là đường thẳng đi qua P1 và trọng tâm G1 của 3 điểm P2, P3,
P4.
Do G1là trọng tâm của P2, P3, P4 nên : GP2 GP3 GP4 3GG1
Từ (1) và (2) suy ra: GP1 3GG1
(2)
G , G1, P1 thẳng hàng.
Hay G d1.
Chứng minh tương tự ta cũng có: G nằm trên 3 đường thẳng còn lại.
Xét 3 đường thẳng đi qua trung điểm của đoạn thẳng nối 2 trong 4 điểm
P1, P2, P3, P4 và đi qua trung điểm của đoạn thẳng nối 2 điểm còn lại.
Gọi G', G'' lần lượt là trung điểm của P1P2, P3P4.
GP1 GP2 2GG '
GP3 GP4 2GG ''
GP1 GP2 GP 3 GP 4 2(GG ' GG '')
Gọi d là đường thẳng đi qua G', G''
2(GG ' GG '') 0 GG ' GG '' 0
Từ (1) và (3) suy ra :
(
3
)
Suy ra: G, G', G'' thẳng hàng.
Hay: G d.
Chứng minh tương tự ta cũng có: G nằm trên 2 đường thẳng còn lại.
Vậy: 7 đường thẳng đã cho đồng quy tại G.
* Từ bài toán trên ta có nhận xét:
Phan Thị Minh Huệ
15
K32G- Toán
Khoá luận tốt nghiệp
Ta có thể mở rộng bài toán trên cho m điểm phân biệt:
"Cho m điểm phân biệt P1, P2 , ..., Pm.. Xét các đường thẳng đi qua
trọng tâm của k điểm trong hệ điểm {P1, ..., Pm} và đi qua trọng tâm của (mk) điểm còn lại trong hệ điểm đó (k = 1; 2; ...; m -1 ). Chứng minh rằng: Tất
cả các đường thẳng đó đồng quy".
Bài giải
Gọi G là trọng tâm của hệ m điểm P1, P2, ..., Pm thì:
GP
i0
m
(1)
i 1
Với mỗi k {1; 2; ...: m-1}:
Xét các đường thẳng đi qua trọng tâm của k điểm trong hệ điểm
P1, ...,Pm và đi qua trọng tâm của (m - k) điểm còn lại trong hệ điểm đó:
Không giảm tổng quát, giả sử k điểm trong hệ điểm P 1, ..., Pm là
P1, ..., Pkvà (m - k ) điểm còn lại là Pk+1, ..., Pm.
Gọi G' là trọng tâm của hệ điểm P1, P2, ..., Pk ta có:
GP
k
.
GG
'
i
k
i 1
(2)
Gọi G'' là trọng tâm của hệ điểm Pk+1, Pk + 2, ..., Pm.
GP
(
m
k
)
GG
''
j
m
(3)
j k 1
Gọi d là đường thẳng qua G', G"
Từ (2) và (3) ta suy ra : GPi
k
i 1
GP
kGG
'
(
m
k
)
GG
''
j
m
j k 1
GPi kGG ' (m k )GG ''
m
(4)
i 1
Từ (1) và (4) suy ra:
kGG ' (m k )GG '' 0
Suy ra: G, G', G'' thẳng hàng.
Hay G d
Phan Thị Minh Huệ
16
K32G- Toán
Khoá luận tốt nghiệp
Chứng minh tương tự ta có: G thuộc các đường thẳng còn lại.
Vậy các đường thẳng đang xét đồng quy tại G.
Bài 3:
Trong không gian, cho tứ diện ABCD. Gọi G là trọng tâm tam giác
BCD và O là trọng tâm tứ diện. Chứng minh rằng: A, O, G thẳng hàng.
Bài giải
Gọi M, N lần lượt là trung điểm của AB, CD ,ta có :
OA OB 2OM
OC OD 2ON
Vì O là trọng tâm của tứ diện ABCD nên :
OA OB OC OD 0
2OM 2ON 0
OM ON 0 O là trung điểm của MN
Đặt AB m, AC n, AD p
1 1
Do G là trọng tâm BCD nên : AG ( AB AC AD) (m n p )
3
3
(1)
Do O là trung điểm của MN nên:
1 1 1 1
AO ( AM AN ) AB ( AC AD)
2
2 2
2
1 1
( AB AC AD) (m n p)
4
4
Từ (1) và (2) suy ra: 3 AG 4 AO
(2)
A, O, G thẳng hàng (đpcm).
Bài 4:
Trong mặt phẳng cho k điểm P1, ..., Pk và k số 1, ..., k.
Phan Thị Minh Huệ
17
K32G- Toán
Khoá luận tốt nghiệp
a. Nếu
k
0 thì gọi G là tâm tỉ cự của hệ điểm P1, ..., Pk gắn với họ
i
i 1
hệ số {1, ..., k}. Chứng minh rằng: Khi đó với điểm O tùy ý ta có:
k
k
k
i 1
i 1
i 1
iOPi 2 iGPi 2 ( i )OG 2
thức
(Hệ
Lagrange).
b. Nếu
k
i 0 thì chứng minh rằng:
i 1
k
i OPi là vectơ không đổi.
i 1
Bài giải
k
a. Khi
0 ta có:
i
i 1
Vì G là tâm tỉ cự của hệ điểm P1, ..., Pk gắn với họ hệ số 1, ..., k nên:
k
i GPi 0
(1)
i 1
Với điểm O tùy ý của mặt phẳng ta có:
k
k
i 1
i 1
2
k
iOPi 2 i OPi i (OG GPi )2
i 1
k
k
2
k 2
( i )OG 2( i GPi ).OG iGPi
i 1
i 1
k
i 1
k
iGPi ( i )OG 2
2
i 1
(do (1))
i 1
Vậy ta có điều phải chứng minh.
k
b. Khi
0 ta có:
i 1
i
k
k
k
i OPi i ( PP
1 i PO
1 ) i PP
1 i ( i ) PO
1
k
i 1
Phan Thị Minh Huệ
i 1
i 1
18
i 1
K32G- Toán
Khoá luận tốt nghiệp
i PP
1 i
k
k
(do i 0)
i 1
Do đó:
i 1
k
i OPi là vectơ không đổi.
i 1
Bài 5:
Trong mặt phẳng cho G, G' lần lượt là trọng tâm của hệ điểm
A1,…,Amvà hệ điểm B1, ..., Bn. Chứng minh:
a. Với mọi điểm M ta có:
1
MG
m
2
b.
GG '2
m
1 m
MAi 2 Ai Aj 2
m i j
i 1
(Hệ thức Jaccobi).
2
1 m
(
m.n i 1
n
Ai B2j )
j 1
1 m
1 n
2
A
A
B B2
i j
2 i j
m i j
n i j
Bài giải
a. Do G là trọng tâm của hệ điểm A1,..., Am nên với mọi điểm M ta có:
m
m
m
2
2
2
mMG MAi m MG MAi 2 MAi .MAj
(1)
i 1
i 1
Mặt khác:
i j
m
2 m
2
2
(
MA
MA
)
(
MA
MA
)
2
MA
i
i
i .MAj
j
j
m
i j
i j
i j
m
m
m
Ai Aj 2 ( MAi 2 MAj 2 ) 2 MAi .MAj
i j
i j
i j
m
m
2
2
MAi .MAj ( MAi MAj ) Ai Aj 2
m
i j
i j
(2)
i j
m
m
m
Từ (1) và (2) suy ra: m MG MA ( MA MA ) Ai A2j
2
2
2
i
i 1
2
i
i j
m
m
i 1
i j
2
j
i j
m2 MG 2 m MAi2 Ai A2j
Phan Thị Minh Huệ
19
K32G- Toán
Khoá luận tốt nghiệp
1 m
1 m
2
MG MAi 2 Ai A2j
m i 1
m i j
2
b. áp dụng kết quả của câu a, ta có:
Do G là trọng tâm của hệ điểm B1, ..., Bn nên:
GG '2
1 n
1 n
2
GB
B B2
i
2 i j
n i 1
n i j
(3)
Do G là trọng tâm của hệ điểm A1, ..., Am nên:
1 n
1 n
2
Bk G Bk Ai 2 Ai A2j , k 1, n
m i 1
m i j
2
n
Bk G 2
k 1
1 m n
n m
2
A
B
A A2
i j
2 i j
m i 1 j 1
m i j
1 m n
1 m
1 n
2
2
A
B
A
A
B B2
i j
i j
2 i j
m.n i 1 i 1
m i j
n i j
Từ (3) và (4) ta có: GG '2
*Nhận xét :
ở bài toán trên ta xét trường hợp G là trọng tâm, còn trong trường hợp
G là tâm tỉ cự thì ta có hệ thức sau được gọi là hệ thức Jaccobi tổng quát:
Nếu G là tâm tỉ cự của hệ điểm P1, ..., Pk gắn với họ hệ số 1, ... k thì
với mọi điểm M ta có:
k
MP
i 1
i
i
2
k
1
k
i 1
k
( i j PP
) ( i ) MG 2
i
i j
2
j
j 1
i
2.1.2. Bài tập đề nghị
Bài 1:
Trong không gian, cho tứ diện ABCD. Gọi G là trọng tâm của BCD
và O là trung điểm của AG. Chứng minh rằng: O là tâm tỉ cự của hệ điểm
{A, B, C, D} gắn với họ hệ số {3; 1; 1; 1}
Hướng dẫn:
Phan Thị Minh Huệ
20
K32G- Toán
Khoá luận tốt nghiệp
1
Vì G là trọng tâm BCD nên OG OB OC OD
3
Lại có: O là trung điểm của AG nên OA OG 0
Từ (1) và (2) suy ra: 3OA OB OC OD 0
(1)
(2)
Từ đó suy ra điều phải chứng minh.
Bài 2:
Chứng minh rằng, trong không gian hai tứ diện ABCD và A'B'C'D' có
cùng trọng tâm khi và chỉ khi AA ' BB ' CC ' DD ' 0
Hướng dẫn:
Gọi G là trọng tâm tứ diện ABCD. Ta có:
GA GB GC GD 0
Từ đó suy ra: AA ' BB ' CC ' DD ' 0
GA ' GB ' GC ' GD ' 0
G là trọng tâm tứ diện A'B'C'D'
Bài 3:
Trong mặt phẳng, gọi G là trọng tâm tứ giác ABCD; A', B', C', D' lần
lượt là trọng tâm các tam giác: BCD, ACD, ABD, ABC. Chứng minh
rằng: G cũng là trọng tâm của tứ giác A'B'C'D'.
Hướng dẫn:
Do G là trọng tâm tứ giác ABCD nên GA GB GC GD 0
(1)
Do A', B', C', D' lần lượt là trọng tâm các tam giác: BCD, ACD,
ABD, ABC nên ta có:
GB GC GD 3GA '
GA GC GD 3GB '
Phan Thị Minh Huệ
(2)
(3)
21
K32G- Toán
Khoá luận tốt nghiệp
GA GB GD 3GC '
GA GB GC 3GD '
(4)
(5)
Từ (1), (2), (3), (4), (5) suy ra GA ' GB ' GC ' GD ' 0
Từ đó suy ra diều phải chứng minh.
Bài 4:
Cho G là tâm tỉ cự của hệ điểm {P1,..., Pk} gắn với họ hệ số 1, ... k và
k
k
.
Gọi
là
điểm
sao
cho
0,
j
1,
k
G
G
i
i j Pi 0, j 1, n .Chứng
j
i j
i j
minh các đường thẳng Pj G j ( j 1, n ) đồng quy tại G.
Hướng dẫn:
Với mỗi j = 1,2,…,n ta có:
Do G là tâm tỉ của hệ điểm{P1,...,Pk} gắn với họ hệ số 1, ... k nên:
k
k k
GG
0
GG
G
P
G
i
i
j
i
j i
j
j Pj
i
i 1
i j
i1
k
i GG j j Pj G j (Vì
i 1
k
i G j Pi 0
j 1, n )
i j
Do đó G, Gj, Pj thẳng hàng j 1, n
Từ đó ta có điều phải chứng minh.
Bài 5:
Trong mặt phẳng cho ABC . Gọi I là tâm tỉ cự của hệ điểm {A, B, C}
gắn với hệ số {1; 1;2}. M, N là hai điểm thay đổi trên mặt phẳng sao cho M là
tâm tỉ cự của hệ điểm {A, B, C, N} gắn với họ hệ số {1, 1, 2, -1}.
Chứng minh rằng: MN luôn đi qua một điểm cố định.
Hướng dẫn:
Do I là tâm tỉ cự của hệ điểm {A, B, C} gắn với hệ số {1; 1;2} nên:
Phan Thị Minh Huệ
22
K32G- Toán
Khoá luận tốt nghiệp
MA MB 2MC 4MI
(1)
Do M là tâm tỉ cự của hệ điểm {A, B, C,N} gắn với họ hệ số {1,1,2,-1}
nên :
MA MB 2MC MN 0
(2)
MN MA MB 2MC
Từ (1) và (2) suy ra: MN 4MI
Từ đó suy ra điều phải chứng minh.
2.2. ứng dụng tâm tỉ cự để giải một số bài toán tính toán
2.2.1. Bài tập mẫu
Bài 1:
Trong không gian cho tứ diện ABCD. Gọi A1, B1, C1, D1 lần lượt là tâm
tỉ cự của các hệ diểm {A; B}, {B; C},{C; D},{D; A} đều gắn với họ hệ
số{1;2}.
Đặt AB b, AC c, AD d .
,
A
D
Hãy tính các vectơ: A1B1 , AC
theo
3
vectơ
b
, c, d .
1 1
1 1
Phan Thị Minh Huệ
23
K32G- Toán
Khoá luận tốt nghiệp
Bài giải
Do A1 là tâm tỷ cự của hệ điểm{ A; B} gắn với họ hệ số {1;2} nên:
A1 A 2 A1B 0 A1 A 2( A1 A AB ) 0
2
A1 A AB
3
2
A1 A b
3
Tương tự do B1 , C1 , D1 lần lượt là tâm tỉ cự của các hệ điểm
{ B,C},{C,D}, {D, A} đều gắn với họ hệ số {1, 2} nên:
+ B1B 2 B1C 0 B1 A AB 2( B1 A AC ) 0
ơ
1
B1 A ( AB 2 AC )
3
1
B1 A (b 2c)
3
+ C1C 2C1D 0 C1 A AC 2(C1 A AD) 0
1
C1 A ( AC 2 AD)
3
1
C1 A (c 2d )
3
+ D1D 2 D1 A 0 D1 A AD 2 D1 A 0
D1 A AD 2 D1 A 0
1
1
D1 A AD d
3
3
Do đó ta có:
Phan Thị Minh Huệ
24
K32G- Toán
Khoá luận tốt nghiệp
2 1
1 2
A1 B1 A1 A B 1 A b (b 2c) b c
3
3
3
3
2 1
2 1 2
A1 C1 A1 A C 1 A b (c 2d ) b c d
3
3
3
3
3
2 1
A1 D1 A1 A D 1 A b d
3
3
* Nhận xét:
Từ bài toán trên ta có bài toán tổng quát:
"Trong không gian cho tứ diện ABCD. Gọi A1, B1, C1, D1 lần lượt là
tâm tỉ cự của các hệ điểm {A, B}, {B, C}, {C, D}, {D, A} đều gắn với họ hệ
số {1, k} với k ≠ 0 và k ≠ -1. Đặt AB b , AC c , AD d ". Hãy tính các
vectơ: A1B1 , A1C1 , A1D1 theo 3 vectơ b , c , d .
Lời giải tóm tắt
Bằng phương pháp tương tự như đã trình bày ở bài toán trên, ta nhận
1 k
k
A1B1
b
c
được kết quả:
1 k
1 k
k
1
k
A1C1
b
c
d
1 k
1 k
1 k
k
1
A1D1
b
d
1 k
1 k
Bài 2:
Cho tứ diện đều ABCD cạnh a. Gọi G là trọng tâm BCD. Tính độ dài
AG theo a.
Bài giải
Do ABCD là tứ diện đều cạnh a nên: ABC, ACD, ABD là các tam
giác đều cạnh a
AB AC AD a
ˆ CAD
ˆ BAD
ˆ 600
BAC
Phan Thị Minh Huệ
25
K32G- Toán