Phương trình mũ và Logarit
Hoàng Ngọc Phú Page 1
PHƯƠNG TRÌNH MŨ VÀ LOGARIT
1.
x1
x
x
5 .8 500
2.
x x 1 x 2 x x 1 x 2
5 5 5 3 3 3
3.
2
9x
3
22
x 2x 2 x 2x 2
4.
x1
cosx cosx
22
x
2 x 2 x
5.
x 4 x 2 2x 1 3x 2
2 .3 2 .3
6.
8
2x
3
x4
3
28
7.
xx
x
3 5 3 5 7.2 0
8.
x x x
8 18 2.27
9.
2 3x 3
xx
8 2 20 0
10.
3x x
3.(x 1) x
1 12
2 6.2 1
22
11.
3x x x x
5 9.5 27.(125 5 ) 64
12.
3x x 1 x
4.3 3 1 9
13.
22
sin x cos x
81 81 30
14.
xx
2 3 7 4 3 . 2 3 4. 2 3
15.
lgx lg5
5 50 x
16.
2x 1 x 1 x x 1
5.3 7.3 1 6.3 9 0
17.
3x x 2x 2 4x 2
4.2 3.2 1 2 2
18.
2
log x 1 2.log x
22
2 x 48
19.
x
log
2
log 6
2
22
2.9 x x
20.
x x 3x 1
125 50 2
21.
x
xx
2
4.3 9.2 5.6
22.
2
2
x 1 x 2x 1
4
2 3 2 3
23
23.
2x x x x
3 2 9 .3 9.2 0
24.
2 x x
x 3 2 .x 2. 1 2 0
25.
xx
9 2. x 2 .3 2x 5 0
26.
x 2 x 2
3.25 3x 10 .5 3 x 0
27.
2 2 2
x 3x 2 x 6x 5 2.x 3x 7
4 4 4 1
28.
2
22
x1
x x 1 x
4 2 2 1
29.
x x x
8.3 3.2 24 6
30.
x x x 1
12.3 3.15 5 20
31.
x x x
2 3 1 6
32.
x x x
3 4 5
33.
x
x
2
2 1 3
34.
xx
2 2 x x 1 x 1
3 2 2 3 2 x 1
35.
log 3 log 5
22
x x x
36.
log 3 log 7
22
x x x 2
Phương trình mũ và Logarit
Hoàng Ngọc Phú Page 2
37.
5
2
x 6x
2
2 16 2
38.
x2
2x 1
3
0,25.4 16
39.
2x 1
2
x x 1 x 1
34
2x
2 2 4 2
40.
3x 4
2x 2
39
41.
3sinx 1
29
34
42.
cos2x 3cosx
4 49
7 16
43.
2 x 2 x
3 3 30
44.
x 1 x
2 2 1
45.
22
x 1 4 x
5 2.5 123 0
46.
22
x x 2 x x
2 2 3
47.
x x 1
4 6.2 32 0
48.
x x x
27 13.9 39.3 27 0
49.
cot x cotx
9 3 2
50.
22
x 1 x 3
9 36.3 3 0
51.
xx
3 2 2 2 2 1 2 1 0
52.
x
2x
x2
8 36.3
53.
2
log x log x
33
3 x 162
54.
x x x
2 5 7
55.
x x x
3 4 5
56.
x x x x
2 3 5 10
57.
x
2 6 x
58.
x
3 5 2x
59.
xx
9 2.(x 2)3 2x 5 0
60.
xx
4 x 7 .2 12 4x 0
61.
9
22
log x 3logx
2logx
2
x 10
62.
log 4x
2
2
x 16x
63. 8.3
x
+ 3.2
x
= 24 + 6
x
64. 12.3
x
+ 3.15
x
– 5
x + 1
= 20
65.
22
x x x x 2x
2 4.2 2 4 0
66.
2 2 2
x 3x 2 x 6x 5 2x 3x 7
4 4 1 4
67.
x x x x
3.8 4.12 18 2.27 0
68. 8
x
+ 18
x
= 2.27
x
69.
xx
2 3 2 3 4
70.
xx
2 1 2 1 2 2 0
71.
sinx sinx
5 2 6 5 2 6 2
72.
xx
x3
3 5 16 3 5 2
73.
x x x
6.9 13.6 6.4 0
74.
x x x
8.4 70.10 125.25 0
75.
x 4 x
1x
lg 3 2 2 lg16 lg 4
42
76.
1
x
1
2 lg2 1 lg3 lg 3 27 0
2x
Phương trình mũ và Logarit
Hoàng Ngọc Phú Page 3
77.
x x 3
22
log 4 1 x log 2 6
78.
x 1 x
2 2 1
2
1
log 4 4 .log 4 1 log
8
79.
2
log 1 7x 2.x
1
4
1
2x 1
2x 1
80.
4 3 2 3
1
log 2 log 1 log 1 3log x
2
81.
2
9 3 3
2log x log x.log 2x 1 1
82.
2
x3
1
log 3 1 2x x
2
83. Tìm x biết
xx
lg2,lg 2 1 ,lg 2 3
, theo thứ tự lập thành một cấp số cộng.
84.
x x 1
5 25
log 5 1 .log 5 5 1
85.
23
48
2
log x 1 2 log 4 x log 4 x
86.
2 2 4 2 4 2
2 2 2 2
log x x 1 log x x 1 log x x 1 log x x 1
87.
3
2
2
27 9
3
1 x 3
log x 5x 6 .log log x 3
22
88.
3
3log 4 8
log x 3log x
22
33
x3
89.
log x 3
5
2x
90.
1
log x
3
log x
3
3
2
log x
3
3
x
x
91.
23
log 1 x log x
92.
4
64
2log x x log x
93.
75
log x 2 log x
94.
2 3 3 2
log log x log log x
95.
2 2 2
2 3 6
log x x 1 .log x x 1 log x x 1
96.
3
2 l ogx 1 logx 1
97.
22
22
3 log x 4x 5 2. 5 log x 4x 5 6
98.
22
x3
1
log 3x 1 2 log x 1
log 2
99.
23
x 16x 4x
2
log x 14.log x 40.log x 0
100.
2
2x
x
log 2 x log x 2
101.
11
xx
66
1
log 3.4 2.9 log 5
x
102. Cho
x 0,y 0
và x+y = 1.Tìm giá trị nhỏ nhất của:
xy
P 3 9
103.
2 2 4 2 4 2
2 2 2 2
log (x x 1) log (x x 1) log (x x 1) log (x x 1)
104.
22
2 2 2
log (x 3x 2) log (x 7x 12) 3 log 3
Phương trình mũ và Logarit
Hoàng Ngọc Phú Page 4
105.
2
9 3 3
2(log x) log x.log ( 2x 1 1)
106.
xx
2
22
3
log 4.3 6 log 9 6 1
2
107.
32
1
log(x 8) log(x 58) log(x 4x 4)
2
108.
4 2 2 4
log log x log log x 2
109.
22
(x 3)
1
log 3x 1 2 log (x 1)
log 2
110.
23
48
2
log x 1 2 log 4 x log 4 x
111.
x 1 x
5 5 5
(x 1).log 3 log 3 3 log 11.3 9
112.
5 25 0,2
log x log x log 3
113.
2
x3
log(x 2x 3) log 0
x1
114.
1
.log(5x 4) log x 1 2 log0,18
2
115.
x 1 x
2 log2 1 log 5 1 log 5 5
116.
2
22
log x 4 x log 8 x 2
117.
12
1
4 logx 2 logx
118.
0,04 0,2
log x 1 log x 3 1
119.
x4
7
log 2 log x 0
6
120.
2 x 1
1 log x 1 log 4
121.
x 16 2
3log 16 4 log x 2log x
122.
2 2x
x
log 16 log 64 3
123.
22
2x
log (2x ).log 2 1
124.
15log.5log
22
5
x
x
125.
xx
log 5x log 5
126.
sinx 2
sin x
log 4.log 2 4
127.
cosx 2
cos x
log 4.log 2 1
128.
2(x 1) x 1
2
log 4(x 1) 2 log (x 1) 2
129.
2
2x
x
log 2 x log x 2
130.
22
x
log 2 log 4x 3
131.
23
x 16x 4x
2
log x 14log x 40log x 0
132.
a x 2
a
1
log ax .log ax log
a
với
a 0 ; a 1
133.
xx
22
log (3 1).log (2.3 2) 2
134.
3
log(logx) log(logx 2) 0
135.
23
42
log x 1 l og x 1 25
136.
2 2 2 2 2
log (x 1) (x 5).log(x 1) 5x 0
Phương trình mũ và Logarit
Hoàng Ngọc Phú Page 5
137.
logx log5
5 50 x
138.
log x 3
5
2x
139.
2
33
(log x) (x 4)log x x 3 0
140.
x
2
log x 2 2 2
141.
x
2
3
1
2 1 log x
142.
2
2
2 2 2
log x x 1 log x.log (x x) 2 0
143. 3x + 5x = 6x + 2 144. 12.9
x
- 35.6
x
+ 18.4
x
= 0
145. 4
x
= 3
x
+ 1 146.
xx
x
3 2 2 3 2 2 6
147.
xx
2 3 2 3 4
148.
xx
2 2 18 2 6
149. 6
x
+ 8 = 2
x
+ 1 + 4.3
x
150. 3
x
+ 33
x
= 12.
151.
x x
3 6 3
152.
x x x
2010 2008 2.2009
153.
2
x 1 x 1
25
154.
2
2
x x x 8
2 2 8 2x x
155.
22
x x 2 x x
2 2 5
156.
2 x x 2 x x
x .2 4 8 4.x x.2 2 1
157.
x x 1 x
6 8 2 4.3 1
158.
2 2 2
x x 1 x (x 1)
4 2 2 1
159.
2. x 3 x x 3 1 x 4
2 5.2 2 0
160.
43
34
x x
161.
22
22
xx
4 (x 7).2 12 4x 0
162. 8
x
7.4
x
+ 7.2
x + 1
8 = 0 163.
3x
log x log 9 3
164.
24
x x 1
log 2 1 .log 2 2 1
165.
2
2
2
log x 3.log x 2 0
166.
3x x
3
log 9x log 3x 1
167.
5 5 5
x x 1
x.log 3 log 3 2 log 3 4
168.
log x log 2
33
4 x 6
169.
2
33
log x x 5 log 2x 5
170.
2
3
3
log x (x 12)log x 11 x 0
171.
2
log x
log x
33
3 x 6
172.
22
log x 4 log 2 x 4
173.
2
2 2 2
2
log x 3.log x 2 log x 2
174.
2 3 3 2 3
log x.log x x.log x 3 log x 3log x x
175.
3 3 3
x x x 2
log 2 2 log 2 1 log 2 6
Phương trình mũ và Logarit
Hoàng Ngọc Phú Page 6
176.
2
2 2 2 2 2
log x log x.log x 1 2 3.log x 2.log x 1
177.
32
3.log x 2 2.log x 1
178.
log 4 log x log 2
2
3 3 3
x x .2 7.x
179.
2
2
2
log 4x log 2x 5
180.
3 27 27 3
1
3
log log x log log x
181.
33
log x 2 4 log x
182.
2 3 3 2
log x.log x 3 3.log x log x
183.
2
22
4
2.log x log x.log x 7 1
184.
2
22
2
8
x
2
log log 8x 8
185.
2
log x log 6
22
6.9 6.x 13.x
186.
log x log 3
22
3 x 18
187.
2
22
x.log x 2(x 1).log x 4 0
188.
x 1 x 4 x 2
4 2 2 6
189.
4x 8 2x 5
3 4.3 27 0
190.
x
xx
2
4.3 9.2 5.6
191.
x x x
8.3 3.2 24 6
192.
2x
x
x
7
6. 0.7 7
100
193.
x
x
2
1 3 2
194.
x
2 128
195.
xx
4 2 6 0
196.
x x 1 3
25 6.5 5 0
197.
xx
9 5.3 7 0
198.
xx
9 25.3 54 0
199.
2 x 2 x
3 3 30
200.
2 x 1
x
3 82.3 9 0
201.
3x 2x 2x 3x
7 9.5 5 9.7
202.
22
x 1 x 3
9 36.3 3 0
203.
22
x 1 x 1
9 3 6 0
204.
log 9 log x log 3
2
2 2 2
x x .3 x
205.
x
x
x2
3 .8 6
206.
log x 3log x
28
2.x 2x 5 0
207.
log 3 log 5
22
x x x
208.
log 4 x 2 3
2
x 2 4 x 2
209.
lg10x lgx lg100x
4 6 2.3
210.
x x 3x 1
125 50 2
211.
2 x 1 x 2 x
4x x.3 3 2x .3 2x 6
212.
x1
x
x
5 .8 500
213.
x 1 x 2 x 3 x 4
3 3 3 3 750
214.
x 1 x 2 x 4 x 3
7.3 5 3 5
215.
x x x
6.4 13.6 6.9 0
216.
x 2x 1
48
217.
2x 1 2x 1
5 3.5 110
218.
x x x
3.4 2.9 5.6
Phương trình mũ và Logarit
Hoàng Ngọc Phú Page 7
219.
2x 8 x 5
3 4.3 27 0
220.
x 1 x 2 x 4 x 3
7.3 5 3 5
221.
1 1 1
6.
x x x
6.9 13.6 6.4 0
222.
x 1 x x x 2
5 2 5 2 0
223.
2
2x 3 x 3x 5
24
224.
13
xx
x 2x 1
22
9 2 2 3
225.
x
2
x log 9 2 3
226.
x x x
25 15 2.9
227.
x 2 x 2
4 16 10.2
228.
22
2x 1 x x 2x 2
2 9.2 2 0
229.
3x x
x
3 x 1
1 12
2 6.2 1
2
2
230.
3
x
x x 1
2
4 9 6
231.
2x 2x x x
5 3 2.5 2.3
232.
2 2 2 2
x 1 x x 1 x 2
2 3 3 2
233.
x x 1 2 x
1
2 .5 10
5
234.
xx
x3
3 5 16 3 5 2
235.
x x x
3.16 2.81 2.36
236.
x x x 1
12.3 3.15 5 20
237.
2
log 2x log 6 log 4x
2 2 2
4 x 2.3
238.
xx
3 5 6x 2
239.
2
2
x 1 x x
2 2 x 1
240.
4 4 4
log x 3 log x 1 2 log 8
241.
2
5x
log x 2x 65 2
242.
log x
2
lo x
2
2
2 2 x 2 2 1 x
243.
22
x 2x 1 x 2x 1
101
2 3 2 3
10 2 3
244.
xx
2 3 7 4 3 2 3 4 2 3
245.
x 2 2
2 x 4 x 2 4 x 4 4x 8
246.
x x x
xx
1 1 1
3 2 2x 6
3 2 6
247.
2x 1 x 1 x x 1
5.3 7.3 1 6.3 9 0
248.
lg5 lg x 10 1 lg 21x 20 lg 2x 1
249.
1 1 1 1 1
lgx lg x lg x lg x
2 2 2 2 8
250.
22
lg x 3lgx lgx 4
Phương trình mũ và Logarit
Hoàng Ngọc Phú Page 8
251.
11
33
log x 3 log x 2 0
252.
2
2
12
2
x
log 4x log 8
8
253.
2
xx
5
5
log 4 6 log 2 2 2
254.
23
x 4x 2x
2
4log x 2 log x 3log x
255.
2
33
x
log 2 log x 1
256.
3
lg lgx lg lg x 2 0
257.
35
log x 1 log 2x 1 2
258.
2
22
log x 3 log 6x 10 1 0
259. 260.
2
x x 2
log x 1
261.
22
x2
log 4x .log x 12
262.
x
log x 1 lg4,5 0
263.
22
33
log x log x 3
xx
264.
2
x lg x x 6 4 lg x 2
265.
2
22
log x 3 log 6x 10 1 0
266.
x
33
log x. log 3 3 log 3 3 6
267.
2
9 3 3
2.log x log x.log 2x 1 1
268.
33
3. log x log 3x 1 0
269.
2
1
lg x 10 lgx 2 lg 4
2
270.
2
x3
1
log 3 1 2x x
2
271.
23
x 4x 16x
2
log x 40log x 14log x 0
272.
3
log x 1
2
22
22
3x 2 log x 1 log x
273.
22
23
2 2 3
log x 2x 2 log x 2x 3
274.
44
4
2 x 2 2
x
log 2x log 2x log log x
2
275.
2 3 5 2 3 2 5 3 5
log x.log x.log x log x.log x log x.log x log x.log x
276.
2
33
x 3 log x 2 4 x 2 log x 2 16
277.
3
3 2 3 2
x1
log 3x .log x log log x
2
3
278.
2
x 4x 15
2
22
2
log 36
log 81 log 3
log 4
279.
2
x1
log 2x 1 2
280.
2
22
log x x 1 log x 2x 6 0
281.
9x
4.log x log 3 3
282.
22
log 6 x log 3 x 1
Phương trình mũ và Logarit
Hoàng Ngọc Phú Page 9
283.
22
2 2 2
log x 3x 2 log x 7x 12 3 log 3
284.
2
2
x 1 1 x 2 log x x 0
285.
x x 1
5 25
log 5 1 .log 5 5 1
286.
48
64
2.log x x log x
287.
2
22
2 3 2 3
log x 1 x log x 1 x 6
288.
22
x
log 2 log 4x 3
289.
34
13
3
3
log x log x log 3x 3
290.
x
7
log 2 log 4x 0
6
291.
5 3 5 9
log x log x log 3.log 225
292.
22
x3
1
log 3x 1 2 log x 1
log 2
293.
x x 1
21
2
log 4 4 x log 2 3
294.
2 7 2 7
log x 2log x 2 log x.log x
295.
2 2 2
4 5 20
log x x 1 .log x x 1 log x x 1
296.
xx
2
log 9 5.3 4
297.
x 1 x
x
log 9 4.3 2 3x 1
298.
x
x3
log log 9 6 1
299.
xx
22
log 2 4 x log 2 12 1
300.
2 x 1
log x 1 log 16
301.
log x log x
22
2
2 2 x 2 2 1 x
302.
2
21
2
log x 1 log x 1
303.
2 3 2
log log log x 1
304.
2 2 2 2 2
x 1 lg x 1 4 2 x 1 .lg x 1 0
305.
2
33
log x 1 x 5 log x 1 2x 6 0
306.
2 2 2
2 3 6
log x x 1 .log x x 1 log x x 1
307.
3
4 1 8
16
log x log x log x 5
308.
x x 1
5 25
log 5 1 .log 5 5 1
309.
5 3 5 9
log x log x log 3.log 225
310.
93
log x 8 log x 26 2 0
Phương trình mũ và Logarit
Hoàng Ngọc Phú Page 10
311.
2
x9
x .log 27.log x x 4
312.
2
2
33
log x 2 log x 4x 4 9
313.
22
1 2x 1 3x
log 6x 5x 1 log 4x 4x 1 2 0
314.
2 2 2 2 2
x 1 lg x 1 4 2 x 1 lg x 1 0
315.
2
5 1 5 1
5 25
log x 1 log 5 log x 2 2log x 2
316.
2
33
x 2 log x 1 4 x 1 log x 1 16 0
317.
2 3 3
1 1 1
4 4 4
3
log x 2 3 log 4 x log x 6
2
318.
3
3 2 3 2
3 x 1
log .log x log log x
x2
3
319.
22
3x 7 2x 5
log 9 12x 4x log 6x 23x 21 4
320.
2 2 2 2
61
6
x .log 5x 2x 3 xlog 5x 2x 3 x 2x
321.
3
2 3 3 2
log x.log x log x log x 3
322.
22
2 x 1 x 1 2
x 3 .log x 1 2log 2 x 3 .log 2 2log x 1
323.
2
2 7 7 2
x
log x x log x 3 2 log x 3 log x
2
324.
21
1
xx
11
3 12
33
325.
x 4 x
1x
lg 3 2 2 lg16 lg 4
42
326.
1
x
1
2 lg2 1 lg3 lg 3 27 0
2x
327.
x x 3
22
log 4 1 x log 2 6
328.
x 1 x
2 2 1
2
1
log 4 4 .log 4 1 log
8
329.
2
log 1 7x 2.x
1
4
1
2x 1
2x 1
330.
4 3 2 3
1
log 2 log 1 log 1 3log x
2
331.
2
9 3 3
2log x log x.log 2x 1 1
332.
2
x3
1
log 3 1 2x x
2
Phương trình mũ và Logarit
Hoàng Ngọc Phú Page 11
333. Tìm x biết
xx
lg2,lg 2 1 ,lg 2 3
, theo thứ tự lập thành một cấp số cộng.
334.
x x 1
5 25
log 5 1 .log 5 5 1
335.
23
48
2
log x 1 2 log 4 x log 4 x
336.
2 2 4 2 4 2
2 2 2 2
log x x 1 log x x 1 log x x 1 log x x 1
337.
3
2
2
27 9
3
1 x 3
log x 5x 6 .log log x 3
22
338.
3
3log 4
log x 3log x
22
33
x 3 8
339.
log x 3
5
2x
340.
1
log x
3
log x
3
3
2
log x
3
3
x
x
341.
23
log 1 x log x
342.
4
64
2log x x log x
342.
xx
57
log2log
344.
2 3 3 2
log log x log log x
346.
3
2 l ogx 1 logx 1
345.
2 2 2
2 3 6
log x x 1 .log x x 1 log x x 1
347.
22
22
3 log x 4x 5 2. 5 log x 4x 5 6
348.
22
x3
1
log 3x 1 2 log x 1
log 2
349.
23
x 16x 4x
2
log x 14.log x 40.log x 0
350.
2
2x
x
log 2 x log x 2
351. Cho
x 0,y 0
và x+y = 1.Tìm giá trị nhỏ nhất của:
xy
P 3 9
352.
2 2 4 2 4 2
2 2 2 2
log (x x 1) log (x x 1) log (x x 1) log (x x 1)
353.
22
2 2 2
log (x 3x 2) log (x 7x 12) 3 log 3
354.
2
9 3 3
2(log x) log x.log ( 2x 1 1)
355.
xx
2
22
3
log 4.3 6 log 9 6 1
2
356.
32
1
log(x 8) log(x 58) log(x 4x 4)
2
357.
4 2 2 4
log log x log log x 2
Phương trình mũ và Logarit
Hoàng Ngọc Phú Page 12
358.
22
(x 3)
1
log 3x 1 2 log (x 1)
log 2
359.
23
48
2
log x 1 2 log 4 x log 4 x
360.
x 1 x
5 5 5
(x 1).log 3 log 3 3 log 11.3 9
361.
5 25 0,2
log x log x log 3
362.
2
x3
log(x 2x 3) log 0
x1
363.
1
.log(5x 4) log x 1 2 log0,18
2
364.
x 1 x
2 log2 1 log 5 1 log 5 5
365.
2
22
log x 4 x log 8 x 2
366.
12
1
4 logx 2 logx
367.
0,04 0,2
log x 1 log x 3 1
368.
x4
7
log 2 log x 0
6
369.
2 x 1
1 log x 1 log 4
370.
x 16 2
3log 16 4log x 2log x
371.
2 2x
x
log 16 log 64 3
372.
22
2x
log (2x ).log 2 1
373.
15log.5log
22
5
x
x
374.
xx
log 5x log 5
375.
sinx 2
sin x
log 4.log 2 4
376.
cosx 2
cos x
log 4.log 2 1
377.
2(x 1) x 1
2
log 4(x 1) 2 log (x 1) 2
378.
2
2x
x
log 2 x log x 2
379.
22
x
log 2 log 4x 3
380.
23
x 16x 4x
2
log x 14log x 40log x 0
381.
a x 2
a
1
log ax .log ax log
a
với
a 0 ; a 1
382.
xx
22
log (3 1).log (2.3 2) 2
383.
3
log(logx) log(logx 2) 0
384.
23
42
log x 1 l og x 1 25
385.
2 2 2 2 2
log (x 1) (x 5).log(x 1) 5x 0
386.
logx log5
5 50 x
387.
log x 3
5
2x
388.
2
33
(log x) (x 4)log x x 3 0
389.
x
2
log x 2 2 2
Phương trình mũ và Logarit
Hoàng Ngọc Phú Page 13
390.
x
2
3
1
2 1 log x
391.
2
2
2 2 2
log x x 1 log x.log (x x) 2 0
392.
32
13
3
log 2 x x 2 log 2x 2 0
393.
4 3 2 2
1
log 2log 1 log 1 3log x
2
394.
2
21
2
log x 1 log x-1
395.
2
x
log x 4x 4 3
396.
cosx 2
cos x
log 4.log 2 1
397.
2
3
22
log x-1 2log x x 1
398.
3 4 5
log x log x log x
399.
32
1
log x 8 log x 58 log x 4x 4
2
400.
2 3 3
1 1 1
4 4 4
3
log x 2 -3 log 4-x log x 6
2
401.
1log1log1log1log
24
2
24
2
2
2
2
2
xxxxxxxx
402.
112log.loglog2
33
2
9
xxx
403.
3log3127log23log
2
2
2
2
2
xxxx
404.
xxxx
10432
loglogloglog
405.
36log x
x
406.
12
32
log
3
x
x
407.
3
8
2
2
4
4log4log21log xxx
408.
93.11log33log3log1
5
1
55
xx
x
409.
2 2 2
2 3 6
log x- x 1 .log x x 1 log x- x 1
410.
2 2 2 2 2
lg x 1 x 5 lg x 1 -5x 0
411.
2
2
22
log x x-1 log x x -2 0
412.
22
22
3 log x 4x 5 2 5-log x 4x 5 6
Phương trình mũ và Logarit
Hoàng Ngọc Phú Page 14
413.
9
22
lg x 3lgx
2lgx
2
x 10
414.
log 9 x 2 3
3
x-2 9 x-2
415.
xx
22
log 3 1 .log 2.3 2 2
416.
x
x lg 1 2 xlg5 lg6
417.
2
22
log x log x 1 1
418.
xxx
4
8
4
6
loglog2
419.
2loglog
37
xx
420.
5loglog2
22
3 xx
x
421.
x
2
log x 2 2 2
422.
x
2
3
1
2 1 log x
423.
log x 1
2
2 x
424.
x x 1
5 25
log (5 1).log (5 5) 1
425.
314log
181
2
xx
x
426.
225.2log.15log
22
xx
427.
63
3loglog
22
x
x
428.
22
x
log 2 log 4x 3
429.
0562log12log
2
2
2
2
xxxxx
430.
09lg9lg2lglg
234
xxxx
431.
2
l g 6 l g 2 4o x x x o x
432.
x
x
3log
5
2
433.
1log2log
23
xx
434.
1loglog
23
xx
435.
xx
7
3
2
log1log
436.
0162log242log3
3
2
3
xxxx
437.
32log22log
2
2
2
5
4
xxxx
438.
03log4log
3
2
3
xxxx
439.
2
22
log x 4 x log 8 x 2
440.
2
22
log x x-5 log x-2x 6 0
441.
log x
6
26
log x 3 log x
442.
016log4log1
3
2
3
xxxx
443.
0141loglog
2
3
2
3
xx
444.
322
22
2
xxxx
445. 3.8
x
+ 4.12
x
- 18
x
- 2.27
x
= 0 446.
22
2
2 4.2 2 4 0
x x x x x
Phương trình mũ và Logarit
Hoàng Ngọc Phú Page 15
447.
xxx 4log1log
4
1
3log
2
1
2
8
4
2
448.
0log3log16
2
3
27
3
xx
x
x
449.
x
x
145log
5
450.
082.124
515
22
xxxx
451.
2loglogloglog
4224
xx
452.
6223223
tgxtgx
453.
016log4log1
3
2
3
xxxx
454.
xxx
4.269
455.
093.283
22
122
xxxx
456.
033.23
22
224
xx
457.
16log1log
12
x
x
458. CMR:
yx
xyyx
loglogloglog
thì x = y.
459.
2
1
122
2
x
xxx
460.
1cossin
20002000
xx
461. 3
x
+ 5
x
= 6x + 2 462. 8.3
x
+ 3.2
x
= 24 + 6
x
463. 8.3
x
+ 3.2
x
= 24 + 6
x
464.
2log2log
2
2
xx
x
x
465.
1444
7325623
222
xxxxxx
466.
4347347
sinsin
xx
467.
2
1
213log
2
3
xx
x
468.
93.11log33log3log1
5
1
55
xx
x
469.
2 1 2 1 2 2 0
xx
470.
5(7 2) 6 5(7 2 7
xx
471.
3 9 27
11
log log log
2
x x x
472.
3 4 5 6
x x x x
473.
tan tan
3 2 2 3 2 2 6.
xx
474.
22
32
log ( 2 1) log ( 2 )x x x x
475.
1
2
12
2
1
2.62
)1(3
3
xx
xx
477.
)2(loglog
37
xx
476.
)4(log4log2)1(log
3
8
2
2
4
xxx
478.
)2(loglog
75
xx
479.
072.32.5
35
13
x
x
480.
3
28
12
2
1
log4log232log
x
x
481.
x
xx
x
1
3
2
2
log
3
2
log
482.
05
8
log3
2
2
log
2
x
x
x
x
483.
xxxx 26log)1(log
2
2
2
484.
x
x
x
4
4
log
2
)10(log.2log21
Phương trình mũ và Logarit
Hoàng Ngọc Phú Page 16
485.
1 1 1
2 2 2
log x 1 log x 1 log 7 x 1 (1)
486.
2 3 3
1 1 1
4 4 4
3
log x 2 3 log 4 x +log x 6 (1)
2
487.
2
1
24
2
log x 2 log x 5 log 8 0 (1)
488.
1
22
2
log x 2 log x 5 log 8 0
489.
42
2x 1
11
log x 1 log x 2
log 4 2
490.
2
2 2 2
log 2x log 6 log 4x
4 x 2.3
491.
3 9x
3
4
2 log x .log 3 1
1 log x
492.
x x+1
33
log 3 -1 .log 3 - 3 = 6
493.
x7
log 7x.log x 1
494.
2
2
2x 1 x 1
log 2x x 1 log 2x 1 4
495.
x
3
16
3 log 9x
log x x
496.
1
2
2
2log 2x 2 log 9x 1 1
498.
)4(log)3(log)542(log
3
3
1
2
3
xxx
499.
1
2
log
10
2
log
55
x
x
500.
01lg20lg
32
xx
501.
2
2
log4log
4
4
2
x
x
502.
1
2
log
10
2
log
55
x
x
503.
09log42log
2
4
x
x
504.
3
4
1
3
4
1
2
4
1
)6(log)4(log3)2(log
2
3
xxx
505.
)1(log)1(log)1(log
2
6
2
3
2
2
xxxxxx
506.
)1(log)1(log)1(log
2
20
2
5
2
4
xxxxxx
507.
0)1434(log
2
1
)1(log
33
xxxx
508.
)344(log
4
2
2
2
cot
22
xx
xygxytg
509.
3loglog
2
9log
222
3. xxx
x
510.
xx
32
log)1(log
511.
)2(log2)2(log5log)1(log
25
15
5
1
2
5
xxx
Phương trình mũ và Logarit
Hoàng Ngọc Phú Page 17
512.
016)1(log)1(4)1(log)2(
3
2
3
xxxx
513.
5,1lg)1(log x
x
514.
2
1
)213(log
2
3
xx
x
515.
x
x
3)29(log
2
516.
x
x
x
x
2
3
323
log
2
1
3
loglog
3
log
517. log
2
x + 2log
7
x = 2 + log
2
xlog
7
x 518.
2log)2(log
2
2
xx
x
x
519.
)32(log)44(log
1
2
12
xx
x
520.
4)21236(log)4129(log
2
32
2
73
xxxx
xx
521.
)1(log2
2log
1
)13(log
2
3
2
xx
x
522.
1)69(loglog
3
x
x
523.
13)23.49(log
1
3
x
xx
524.
2
22
4log6log
2
3.22log4
x
xx
525.
2
9
3
32
27
)3(log
2
1
log
2
1
)65(log
x
x
xx
526.
3
8
2
2
4
)4(log4log2)1(log xxx
527.
)2(loglog
37
xx
528.
2
3
2
3
2log)1(log xxxxx
529. log
2
(x
2
+x+1)+log
2
(x
2
-x+1)=log
2
(x
4
+x
2
+1)+log
2
(x
4
-x
2
+1)
530.
3)29(log
2
x
x
531.
)93.11(log)33(log3log)1(
5
1
55
xx
x
532.
3log
2
1
log
2
1
)65(log
3
3
22
9
x
x
xx
533.
)4ln()32ln()4ln()32ln(
22
xxxx
534.
0log40log14log
4
3
16
2
2
xxx
xxx
535.
2log)
2
log
2
(loglog)2log2(log
2
442
2
242
x
x
x
xxx
536.
0)2cos
2
(sinlog)sin
2
(sinlog
3
13
x
x
x
x
537.
1
12
2
log
4
12
x
x
x
538.
2
1
)213(log
2
3
xx
x
539.
xxx
2
3
3
log2)1(log3
540.
1)3(log
2
3
x
xx
541.
)13(log)11(log
2
xx
a
a
542. log
3
(2x+1)+log
5
(4x+1)+log
7
(6x+1)=3x 543.
19log)148(log
44
2
3
2
xx
xx
Phương trình mũ và Logarit
Hoàng Ngọc Phú Page 18
544.
21lg1lg31lg
22
xxx
545.
)22(
4
1
log
2
1
xxx
546.
8
1
)2lg(
2
1
x
x
547.
)32(log)22(log
2
32
2
322
xxxx
548.
2log
cos2sin
sin22sin3
log
22
77 xx
xx
xx
550. (x+1)
lg(x+1)
=100(x+1)
549.
9
11
)22(log
1
2
1
1
2
1
1
2
1
1
2
1
2
22
22
xx
x
x
x
x
x
x
x
x
551.
5log3log
22
xxx
(x>0) 552.
642.3
55
log2log
x
x
553.
)52(log
2
25
1
)53(
53
1
xx
x
x
554.
)271(log
2
4
1
)12(
12
1
xx
x
x
555.
11659
2
)21(log
3
x
x
556. log
3
(3
x
-8)=2 – x
557. log
7
(7
-x
+6)=1 + x 558.
0222
1loglog1log
55
2
5
xxx
559.
243log
27log
)
27
125
()
5
3
(
5
5
)1(log
)1(log2
27
1
9
x
x
560.
5
7
3log
36
6
xx
x
561.
2
loglog
1)22()22(
22
xx
xx
562.
2
6log
2
log
2
2
9.2 xx
x
563.
12)12.3(log
2
x
x
564.
11
1
11
1
2
3lglg
32
xx
x
xx
565.
4)2(log)2(log)2(log
2,0
3
5
5
xxx
566.
5,0log3loglog3log
33
xx
x
x
567.
01222
1loglog1log
55
2
5
xxx
568.
)112(logloglog2
33
2
9
xxx
569.
04log34log24log3
164
xxx
570. log
5
x+log
3
x=log
5
3log
9
225
571.
5,2)
5
2
(
)85(log
2
25,0
xx
572.
0)2cos(coslog)sin(coslog
1
xxxx
x
x
573.
xxx
4
8
4
6
log)(log2
574. log
2
(6
x
+2.3
2x+2
)=2x+2
574. (2
xx
2
)1
. Nghiệm x thộc miền xác định của hàm số y= lg(4x-1)
575. (2
xx
2
)1
. Nghiệm x thộc miền xác định của hàm số y= ln(x
2
- x-2)
Phương trình mũ và Logarit
Hoàng Ngọc Phú Page 19
576. log
a
axlog
x
ax=
a
a
1
log
2
với 0<a
1 577. 9
x
+ 6
x
= 2.4
x
578.
43
64
255
x
x
579.
22
43
93
x
x
580. 2
2x-3
- 3.2
x-2
+ 1 = 0
581.
2442
)
2
5
()
5
2
(
xx
582.
033.43
24
xx
583. 5
2x
- 7
x
- 5
2x
.35 + 7
x
.35 = 0 584.
4
410
2
9
2
2
x
x
585.
33,0.2
100
3
2
x
x
x
586.
x
x
1001,0.1000
587.
73
3
1
3
13
82
x
x
x
x
588. 2
x
.5
x
=0,1(10
x-1
)
5
589.
363.2
xx
590.
4
2
1
)1(
39
xx
591.
431
)
3
4
(
2
1
3
4
.)
4
3
(
xx
592. 3
x
+3
x+1
+3
x+2
=5
x
+5
x+1
+5
x+2
593. 2
x
+2
x-1
+2
x-2
=7
x
+7
x-1
+7
x-2
594.
4
4
xx
xx
595.
161
42.2
xx
596.
4)32()32(
xx
597.
10)625()625(
xx
598.
xxx
)22()154()154(
599.
xxx
)5()23()23(
600.
3
2)125(7)215(
xxx
601.
2)625()625(
sinsin
xx
602.
2653 x
xx
603.
21
)1(22
2
x
xxx
604.
093.613.73.5
1112
xxxx
605.
112
323
xx
606.
11
34
2
xx
x
607.
xxx
6242.33.8
608.
x
x
231
2
609.
022.92
2212
22
xxxx
610.
8444)24(2
22
1
xxxx
x
611. 4x
2
+ x.3
x
+ 3
x+1
=2x
2
.3
x
+ 2x + 6 612. 4
sinx
-2
1+sinx
.cosxy+
y
2
=0
613.
11
2
1
9
xx
x
614.
1
2
12
33
1
2.62
3
x
xx
x
615.
12122
11
2
xx
x
616.
1)1(
34
2
xx
x
617.
1313)1(3)4(
1
11
xx
x
xxx
618.
xx
xx
619.
232
14231
yxyx
620.
2 2 4 2 1
3 3 6 7 1 2.3
xx
xx
Phương trình mũ và Logarit
Hoàng Ngọc Phú Page 20
621.
)32(10
101
)32()32(
1212
22
xxxx
622.
033.369
31
22
xx
623. 27
x
+13.9
x
+ 13.3
x+1
+ 27 = 0 624.
3133
)10.(01,05.2
22
xxx
625. 5
2x+1
-3.5
2x-1
=110 626.
308181
22
cossin
xx
627.
1
32
2
xx
628. 5
2x+1
-3.5
2x-1
=110
629. 5
x-1
+2
x
-5
x
+2
x+2
=0 630. 3
2 + x
+ 3
2- x
= 30
631. 3.25
x – 2
+ (3x - 10)5
x-2
+ 3 - x = 0 632. 2
x
.3
x-1
.5
x-2
=12
633. 3.4
x
+(3x-10).2
x
+3-x=0 634.
222
)1(1
224
xxxx
635.
2
2)53()53(3
xxx
636.
x
x
cos
sin
637.
5008.5
1
x
x
x
638.
222
18
22
2
2
8
111
xxx
x
x
639.
6)83()83(
33
xx
640. 3
x
+ 4
x
= 5
x
641. 7
6-x
=x + 2 642. 5
x-2
=3 - x
643.
132
2
x
x
644. 8
x
- 3.4
x
- 3.2
x + 1
+ 8 = 0
645.
xxxxxx
2332
52623
22
646. 4
x
+ 4
-x
+ 2
x
+ 2
-x
= 10
647. 4
x
= 2.14
x
+ 3.49
x
648.
03
2
77
7)
2
77
.(2
2
xxxx
649.
34)1132()1132(
1212
xx
650.
5,13.2
2
2
xxx
651. x
x+3
= 1
652. 8
x
+ 18
x
=2.27
x
653. 27
x
+ 12
x
= 2.8
x
654. 3
x-1
+ 5
x-1
= 34 655.
161
422
xx
656.
xxxx 23231
22
2.924
657.
10100010
15
15
5
x
x
x
658.
16
9
)
3
4
.()
4
3
(
1
1
x
x
659. 25
x
- 2(3 - x)5
x
+ 2x - 7 = 0 660. 9
x
+ 2(x - 2)3
x
+ 2x - 5 = 0
661.
03.49
22
a
xx
Với -3<a<0
662.
)4(log)3(log)542(log
3
3
1
2
3
xxx
663. 4
2x + 1
. 5
4x + 3
= 5. 10
2x
2
+ 3x - 78
Phương trình mũ và Logarit
Hoàng Ngọc Phú Page 21
664.
4
3. 243
2x + 3
x + 8
= 3
-2
.9
x + 8
x + 2
665. log
2
(3x - 1) +
1
log
(x + 3)
2
= 2 + log
2
(x + 1)
666. 2log
9
(x
2
- 5x + 6)
2
= log
3
x - 1
2
+ log
3
(x - 3)
2
668. 2
x
2
- 3
.5
x
2
- 3
= 0,01.(10
x - 1
)
3
667.
3
2
log
1
4
(x + 2)
2
- 3 = log
1
4
(4 - x)
3
+ log
1
4
(x + 6)
3
669. (0,6)
x
25
9
x
2
- 12
= (0,216)
3
670. 2
x
.3
x - 1
.5
x - 2
= 12 671. 2
x
+ 2
x - 1
+ 2
x - 2
= 3
x
+ 3
x - 1
+ 3
x - 2
672. 2
x
2
+ 3x - 4
= 4
x - 1
673. 2
x
2
- 6x -
5
2
= 16 2
674. 32
x + 5
x - 7
=
1
4
.128
x + 17
x - 3
675. 16
x + 10
x - 10
= 0,125.8
x + 5
x - 15
676. 5
x + 1
+ 6.5
x
- 3.5
x + 1
= 52 677. 3
|3x - 4|
= 9
2x - 2
678. (x
2
- 2x + 2)
4 - x
2
= 1 679. 2
x + 1
.3
x - 2
.5
x
= 200
680. 4.9
x - 1
= 3 2
2x + 1
681. 3
x
2
+ 3x +
1
2
=
1
3 3
682. log
5
(x - 2) + log
5
(x
3
- 2) + log
0,2
(x - 2) = 4
683. log
2
x
2
+ 3
5
= 2log
1
4
(x - 1) - log
2
(x + 1) 684. log
2
(x - 2) - 2 = 6log
1
8
3x - 5
685. log
1
3
[
2(x
3
+ x
2
) - 2
]
+ log
3
(2x + 2) = 0 686. log
x
(x
2
+ 4x - 4) = 3
687. log
2
(x - 1)
2
= 2log
2
(x
3
+ x + 1)
688. log
2
(x
2
+ 3x + 2) + log
2
(x
2
+ 7x + 12) = 3 + log
2
3
689.
3
2
log
1
4
(x + 2)
2
- 3 = log
1
4
(4 - x)
3
+ log
1
4
(x + 6)
3
690. log
4
(x + 1)
2
+ 2 = log
2
4 - x + log
8
(4 + x)
3
694. 25
x
= 9
x
+ 2.5
x
+ 2.3
x
Phương trình mũ và Logarit
Hoàng Ngọc Phú Page 22
691. log
2
x + 1 - log
1
2
(3 - x) - log
8
(x - 1)
3
= 0
692. log
2
(x
2
+ 3x + 2) - log
1
4
(x
2
+ 7x + 12)
2
= 2 + log
4
3
693. log
x + 1
(2x
3
+ 2x
2
- 3x + 1) = 3
695. 4
x
2
- 3x + 2
+ 4
x
2
+ 6x + 5
= 4
2x
2
+ 3x + 7
+ 1
696. 12.3
x
+ 3.15
x
- 5
x + 1
= 20 697. 9
x
+ 2(x - 2)3
x
+ 2x - 5 = 0
698. log
2
x + log
3
x = 1 + log
2
x.log
3
x 699. (x + 1)[log
2
x]
2
+ (2x + 5)log
2
x + 6 = 0
700. 2
x
2
- 5x + 6
+ 2
1 - x
2
= 2.2
6 - 5x
+ 1
701. x
2
.2
x
+ 6x + 12 = 6x
2
+ x.2
x
+ 2
x + 1
702. 2
x + 1
+ 3
x
= 6
x
+ 2
703. 4
x
2
+ x.3
x
+ 3
x + 1
= 2x
2
.3
x
+ 2x + 6 704. x.2
x
= x(3 - x) + 2(2
x
- 1)
705. 2[log
2
x]
2
+ xlog
2
x + 2x - 8 = 0 706. 3.25
x - 2
+ (3x - 10).5
x - 2
+ 3 - x = 0
708. (x + 2)[log
3
(x + 1)]
2
+ 4(x + 1)log
3
(x + 1) - 16 = 0
709. 8 - x.2
x
+ 2
3 - x
- x = 0 710. x
2
.3
x
+ 3
x
(12 - 7x) = - x
3
+8x
2
- 19x + 12
711. 25
x
- 2(3 - x).5
x
+ 2x - 7 = 0 712. log
2
2
x + (x - 1)log
2
x = 6 - 2x
713. x
2
+ (2
x
- 3)x + 2(1 - 2
x
) = 0 714. lg
2
(x
2
+ 1) + (x
2
- 5)lg(x
2
+ 1) - 5x
2
= 0
715. log
4
x. log
x
5 - 1 = log
4
x - log
x
5 716. log
3
x + 5log
5
x = 5 + log
3
x.log
5
x
717. 2
x
+ 2
3 - x
= 9 718.
(
6 - 35
)
x
+
(
6 + 35
)
x
= 12
719. 3
2x
2
+ 2x + 1
- 28.3
x
2
+ x
+ 9 = 0 720. (3 - 5)
2x + 1
+ (3 + 5)
2x + 1
= 6.2
2x
721. 125
x
- 4.50
x
+ 20
x
+ 6.8
x
= 0 722. log
2
(4
x + 1
+ 4).log
2
(4
x
+ 1) = 3
723. 1 + log
2
(x - 1) = log
(x - 1)
4 724. log
2
2
(x - 1)
4
- 5log
2
(x - 1)
2
+ 1 = 0
725. log
2 + 3
x
2
- 3x + 2 + log
2 - 3
x - 1 = log
7 - 4 3
(x + 2)
726. log
3x + 7
(4x
2
+ 12x + 9) = 4 - log
2x + 3
(6x
2
+ 23x + 21)
727. 3
x + 2
+ 3
2 - x
= 30 728. 2
2x + 6
+ 2
x + 7
- 17 = 0
Phương trình mũ và Logarit
Hoàng Ngọc Phú Page 23
729. 9
x
2
+ x + 1
- 10.3
x
2
+ x - 2
+ 1 = 0 730. 64.9
x
- 84.12
x
+ 27.16
x
= 0
731. 4
1 + 3x
2
- 2x
- 9.2
3x
2
- 2x
+ 2 = 0 732.
22
2 1 2
4 5.2 6 0
x x x x
733. 3.3
x - 4
x - 2
- 10.3
x - 2
2
+ 3 = 0 734. 3.2
x - 1
x + 1
- 8.2
x - 1
2
+ 4 = 0
735. 2
2x
2
+ 1
- 9.2
x
2
+ x
+ 2
2x + 2
= 0 736. 25
x
= 25
x + 1
+ 24.5
x + x
737. (2 - 3)
x
+ (2 + 3)
x
= 14 738.
4 15 4 15 8
xx
739. 8
x
- 3.4
x
- 3.2
x + 1
+ 8 = 0 740. 2
3x
- 6.2
x
-
1
2
3(x - 1)
+
12
2
x
= 1
741. ( 5 + 1)
x
+ 2( 5 - 1)
x
= 3.2
x
742.
(
5 + 2 6
)
x
+
(
5 - 2 6
)
x
= 10
743. (5 - 21)
x
+ 7(5 + 21)
x
= 2
x + 3
744.
3
3 + 8
x
+
3
3 - 8
x
= 6
745. 3.4
x
+ 2.9
x
= 5.6
x
746. (7 + 5 2)
x
+ ( 2 - 5)(3 + 2 2)
x
+ 3(1 + 2)
x
+ 1 - 2 = 0
747. (2 + 3)
(x -1)
2
+ (2 - 3)
x
2
- 2x - 1
=
4
2 - 3
748. (2 + 3)
x
+ (7 + 4 3)(2 - 3)
x
= 4(2 + 3) 749. ( 2 - 1)
x
+ ( 2 + 1)
x
- 2 2 = 0 750.
3.8
x
+ 4.12
x
- 18
x
- 2.27
x
= 0 751. 3
2x
2
- 2.3
x
2
+ x + 6
+ 3
2(x + 6)
= 0
752. (7 + 4 3)
x
- 3(2 - 3)
x
+ 2 = 0 753. log
x
2 + log
8
x =
7
6
754. log
3
x
9
- 4log
9
3x = 1 755. 2log
8
(-x) - log
8
x
2
= 0
756.
1
2
log
x - 1
(x
2
- 8x + 16) + log
4 - x
(-x
2
+ 5x - 4) = 3
757. 1 +
1
4
-log
2
1
x
4
= log
2
x 758.
log
3
3
x
.log
2
x - log
3
x
3
3
=
1
2
+ log
2
x
759. log
2
(-x) - 2logx
2
+ 4 = 0 760. log
2
x - log x
2
= log
2
3 - 1
Phương trình mũ và Logarit
Hoàng Ngọc Phú Page 24
761. log
2
(5
x
- 1).log(2.5
x
- 2) = 2 762. 5log
x
9
x + log
9
x
x
3
+ 8log
9x
2
x
2
= 2
763. log
2
(4
x
+ 15.2
x
+ 27) + 2log
1
4.2
x
- 3
= 0
764. log
x
5 + log
x
5x - 2,25 = log
2
x
5 765. 3log
x
6 - 4log
16
x = 2log
2
x
766. log
x
2.log
2x
2 = log
4x
2
767. log
2
(lgx + 2 lgx + 1) - 2log
4
( lgx + 1) = 1
768. log
0,04
x + 1 + log
0,2
x + 1 = 1 769. lg
2
x - lgx
3
+ 2 = 0
770. log
x
2
x
2
+ 40log
4x
x = 14.log
16x
x
3
771. log
4
(x - 1)
2
- 5log
2
(x - 1)
3
- 3376 = 0
773. log
x
2
(2 + x) + log
x + 2
x = 2
774. log
3 - 2x
(2x
2
- 9x + 9) + log
3 - x
(4x
2
- 12x + 9) = 4
775. log(9
x - 1
+ 7) = 2 + log
2
(3
x - 1
+ 1) 776. lg
4
(x - 1)
2
+ lg
2
(x - 1)
3
= 25
777. 3 +
1
log
3
x
= log
x
9x -
6
x
778. log
2x - 1
(2x
2
+ x - 1) + log
x + 1
(2x - 1)
2
= 4
779. 4
2x + x + 2
+ 2
x
3
= 4
2 + x + 2
+ 2
x
3
+ 4x - 4
780. 4
x
- 3.2
x + x
2
- 2x - 3
- 4
1 + x
2
- 2x - 3
= 0
781. log
2
2
(x + 1) - 6log
2
x + 1 + 2 = 0 782. (3 + 2 2)
x
= ( 2 - 1)
x
+ 3
783.
3
2x
100
x
= 2(0,3)
x
+ 3 784.
7
2x
100
x
= 6.(0,7)
x
+ 7
785. 3.16
x - 1
+ 2.81
x - 1
= 5.36
x - 1
786. 3
2x
- 8.3
x + x + 4
- 9.9
x + 4
= 0
787. 5.3
2x - 1
- 7.3
x - 1
+ 1 - 6.3
x
+ 9
x + 1
= 0 788. 8.3
x +
4
x
+ 9
1 +
4
x
= 9
x
789. (26 + 15 3)
x
+ 2(7 + 4 3)
x
- 2(2 - 3)
x
= 1 790. 4
x
2
+ x
+ 2
1 - x
2
= 2
(x + 1)
2
+ 1
791. lg
2
x
9
- 20lg x +
1
9
= 0 792. 3
2x
+ 3
x
+ 5 = 5
793. 9
x
2
- 2x +
3
2
- 3
x
2
= 3
(x - 2)
2
- 1 794. 2
2x
- 2
x
+ 6 = 6
Phương trình mũ và Logarit
Hoàng Ngọc Phú Page 25
795. 2
2x
2
- 5x + 2
+ 2
4x
2
- 8x + 3
= 1 + 2
6x
2
- 13x + 5
796. log
9x
27 - log
3x
3 + log
9
243 = 0 797. 8
x
+ 1 = 2.
3
2
x - 1
- 1
798. 2
3x
- 2
3 - 3x
- 6(2
x
- 2.2
-x
) = 1 799. 5
x
.8
x - 1
x
= 500
800. x
lgx
= 1000x
2
801. log
3
(log
9
x +
1
2
+ 9
x
) = 2x
802. log
5
log
2
x = log
2
log
5
x 803. 3log
3
(1 + x +
3
x) = 2log
2
x
804. 3
x
. 2
3(2x - 1)
x + 1
= 72 805. 2
x
2
= 3
x - 1
806. 2
log
2
(x + 1)
= x
807. 8
x
x + 2
= 36.3
2 - x
808. 5
x
2
- 5x + 6
= 2
x - 3
809. 3
x
.8
x
x + 1
= 36
810. 5
x
.2
2x - 1
x + 1
= 50 811. 3
x
2
- 4x
= 2
x - 4
812. x
2 + log
2
2
x
= 8
813. 5
2 - x
.3
3x
x + 1
= 4 814. 2
x
2
- 2x
.3
x
=
1
2
815. x
log x + 7
7
= 10
log x + 1
816. 2
log
5
(x + 3)
= x 817. log
3
(x
2
- 3x - 13) = log
2
x
818. log
2
(1 + x) = log
3
x 819. 2log
6
( x +
4
x) = log
4
x
820. log
7
(x + 2) = log
5
x 821. log
3
(x
2
+ 2x + 1) = log
2
(x
2
+ 2x)
822. log
2
(log
3
x) = log
3
(log
2
x) 823. 3log
3
(x + 2) = 2log
2
(x + 1)
824. log
3
(76 +
4
x) = log
5
x 825. log
2
(1 +
3
x) = log
7
x
826. log
3
(x + 1) + log
5
(2x + 1) = 2 827. 2
x
2
- 2x
. 3
x
= 1,5
828. log
4
[2log
3
(1 + 3log
2
x)] =
1
2
829. log
x
(x + 2) = log
3
5
830. 3
x + 1
.2
x
2
= 8.4
x
831. 9
x
= 5
x
+ 4
x
+ 2. 20
x
832. 3
x
+ 5
x
= 6x + 2 833. (2 - 3)
x
+ (2 + 3)
x
= 4
x
834. 7
x - 1
= 1 + 2log
7
(6x - 5)
3
835. log
2
x + log
3
(2x - 1) + log
5
(7x - 9) = 3
836. x
3
.log
3
x = 27 837. 2
x
2
+ x
+ log
2
x = 2
x + 1