Tải bản đầy đủ (.pdf) (42 trang)

Phương trình mũ và logarit

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (987.39 KB, 42 trang )

Phương trình mũ và Logarit

Hoàng Ngọc Phú Page 1

PHƯƠNG TRÌNH MŨ VÀ LOGARIT

1.
x1
x
x
5 .8 500


2.
x x 1 x 2 x x 1 x 2
5 5 5 3 3 3
   
    

3.
 
2
9x
3
22
x 2x 2 x 2x 2

    
4.



x1
cosx cosx
22
x
2 x 2 x

  

5.
x 4 x 2 2x 1 3x 2
2 .3 2 .3
   

6.
8
2x
3
x4
3
28




7.
   
xx
x
3 5 3 5 7.2 0    
8.

x x x
8 18 2.27

9.
2 3x 3
xx
8 2 20 0

  
10.
3x x
3.(x 1) x
1 12
2 6.2 1
22

   

11.
3x x x x
5 9.5 27.(125 5 ) 64

   
12.
3x x 1 x
4.3 3 1 9

  

13.

22
sin x cos x
81 81 30
14.
       
xx
2 3 7 4 3 . 2 3 4. 2 3     

15.
lgx lg5
5 50 x
16.
2x 1 x 1 x x 1
5.3 7.3 1 6.3 9 0
  
    

17.
3x x 2x 2 4x 2
4.2 3.2 1 2 2

   
18.
2
log x 1 2.log x
22
2 x 48




19.
x
log
2
log 6
2
22
2.9 x x
20.
x x 3x 1
125 50 2



21.
x
xx
2
4.3 9.2 5.6
22.
 
 
 
2
2
x 1 x 2x 1
4
2 3 2 3
23
  

   


23.
 
2x x x x
3 2 9 .3 9.2 0   
24.
   
2 x x
x 3 2 .x 2. 1 2 0    

25.
 
xx
9 2. x 2 .3 2x 5 0    
26.
 
x 2 x 2
3.25 3x 10 .5 3 x 0

    

27.
2 2 2
x 3x 2 x 6x 5 2.x 3x 7
4 4 4 1
     
  
28.

 
2
22
x1
x x 1 x
4 2 2 1


  

29.
x x x
8.3 3.2 24 6  
30.
x x x 1
12.3 3.15 5 20

  

31.
x x x
2 3 1 6  
32.
x x x
3 4 5

33.
x
x
2

2 1 3
34.
xx
2 2 x x 1 x 1
3 2 2 3 2 x 1

     

35.
log 3 log 5
22
x x x
36.
log 3 log 7
22
x x x 2  

Phương trình mũ và Logarit

Hoàng Ngọc Phú Page 2

37.
5
2
x 6x
2
2 16 2


38.

 
x2
2x 1
3
0,25.4 16




39.
     
2x 1
2
x x 1 x 1
34
2x
2 2 4 2



40.
3x 4
2x 2
39




41.
3sinx 1

29
34





42.
cos2x 3cosx
4 49
7 16






43.
2 x 2 x
3 3 30


44.
x 1 x
2 2 1



45.
22

x 1 4 x
5 2.5 123 0

  
46.
22
x x 2 x x
2 2 3
  


47.
x x 1
4 6.2 32 0

  
48.
x x x
27 13.9 39.3 27 0   

49.
cot x cotx
9 3 2
50.
22
x 1 x 3
9 36.3 3 0

  


51.
   
xx
3 2 2 2 2 1 2 1 0     
52.
x
2x
x2
8 36.3




53.
2
log x log x
33
3 x 162
54.
x x x
2 5 7

55.
x x x
3 4 5
56.
x x x x
2 3 5 10  

57.

x
2 6 x
58.
x
3 5 2x

59.
xx
9 2.(x 2)3 2x 5 0    
60.
 
xx
4 x 7 .2 12 4x 0    

61.
9
22
log x 3logx
2logx
2
x 10



62.
 
log 4x
2
2
x 16x


63. 8.3
x
+ 3.2
x
= 24 + 6
x
64. 12.3
x
+ 3.15
x
– 5
x + 1
= 20
65.
22
x x x x 2x
2 4.2 2 4 0

   
66.
2 2 2
x 3x 2 x 6x 5 2x 3x 7
4 4 1 4
     
  

67.
x x x x
3.8 4.12 18 2.27 0   

68. 8
x
+ 18
x
= 2.27
x

69.
   
xx
2 3 2 3 4   
70.
   
xx
2 1 2 1 2 2 0    

71.
   
sinx sinx
5 2 6 5 2 6 2   
72.
   
xx
x3
3 5 16 3 5 2

   

73.
x x x

6.9 13.6 6.4 0  
74.
x x x
8.4 70.10 125.25 0  

75.
 
x 4 x
1x
lg 3 2 2 lg16 lg 4
42

   
76.
1
x
1
2 lg2 1 lg3 lg 3 27 0
2x



    





Phương trình mũ và Logarit


Hoàng Ngọc Phú Page 3

77.
   
x x 3
22
log 4 1 x log 2 6

   
78.
   
x 1 x
2 2 1
2
1
log 4 4 .log 4 1 log
8

  

79.
 
 
2
log 1 7x 2.x
1
4
1
2x 1
2x 1




80.
 
 
4 3 2 3
1
log 2 log 1 log 1 3log x
2

  


81.
 
2
9 3 3
2log x log x.log 2x 1 1  
82.


2
x3
1
log 3 1 2x x
2

   


83. Tìm x biết
   
xx
lg2,lg 2 1 ,lg 2 3
, theo thứ tự lập thành một cấp số cộng.
84.
   
x x 1
5 25
log 5 1 .log 5 5 1

  
85.
   
23
48
2
log x 1 2 log 4 x log 4 x     

86.
       
2 2 4 2 4 2
2 2 2 2
log x x 1 log x x 1 log x x 1 log x x 1          

87.
 
 
3
2

2
27 9
3
1 x 3
log x 5x 6 .log log x 3
22

    
88.
3
3log 4 8
log x 3log x
22
33
x3




89.
 
log x 3
5
2x


90.
 
 
1

log x
3
log x
3
3
2
log x
3
3
x
x



91.
 
23
log 1 x log x
92.
 
4
64
2log x x log x

93.
 
75
log x 2 log x
94.
   

2 3 3 2
log log x log log x

95.






2 2 2
2 3 6
log x x 1 .log x x 1 log x x 1      

96.
3
2 l ogx 1 logx 1   

97.
   
22
22
3 log x 4x 5 2. 5 log x 4x 5 6       

98.
 
 
 
22
x3

1
log 3x 1 2 log x 1
log 2

    
99.
23
x 16x 4x
2
log x 14.log x 40.log x 0  

100.
 
2
2x
x
log 2 x log x 2

  
101.
11
xx
66
1
log 3.4 2.9 log 5
x



  




102. Cho
x 0,y 0
và x+y = 1.Tìm giá trị nhỏ nhất của:
xy
P 3 9

103.
2 2 4 2 4 2
2 2 2 2
log (x x 1) log (x x 1) log (x x 1) log (x x 1)          

104.
22
2 2 2
log (x 3x 2) log (x 7x 12) 3 log 3      

Phương trình mũ và Logarit

Hoàng Ngọc Phú Page 4

105.
2
9 3 3
2(log x) log x.log ( 2x 1 1)  
106.
   
xx

2
22
3
log 4.3 6 log 9 6 1
2
   

107.
32
1
log(x 8) log(x 58) log(x 4x 4)
2
     
108.
   
4 2 2 4
log log x log log x 2

109.
 
22
(x 3)
1
log 3x 1 2 log (x 1)
log 2

    

110.
   

23
48
2
log x 1 2 log 4 x log 4 x     

111.
   
x 1 x
5 5 5
(x 1).log 3 log 3 3 log 11.3 9

    
112.
5 25 0,2
log x log x log 3

113.
2
x3
log(x 2x 3) log 0
x1

   

114.
1
.log(5x 4) log x 1 2 log0,18
2
    


115.
 




x 1 x
2 log2 1 log 5 1 log 5 5

    
116.
 
 
2
22
log x 4 x log 8 x 2

   


117.
12
1
4 logx 2 logx


118.
0,04 0,2
log x 1 log x 3 1   


119.
x4
7
log 2 log x 0
6
  
120.
 
2 x 1
1 log x 1 log 4

  

121.
x 16 2
3log 16 4 log x 2log x
122.
2 2x
x
log 16 log 64 3

123.
22
2x
log (2x ).log 2 1

124.
 
15log.5log
22

5

x
x

125.
xx
log 5x log 5
126.
sinx 2
sin x
log 4.log 2 4

127.
cosx 2
cos x
log 4.log 2 1
128.
2(x 1) x 1
2
log 4(x 1) 2 log (x 1) 2

   

129.
 
2
2x
x
log 2 x log x 2


  
130.
 
22
x
log 2 log 4x 3

131.
23
x 16x 4x
2
log x 14log x 40log x 0  

132.
   
a x 2
a
1
log ax .log ax log
a




với
 
a 0 ; a 1

133.

xx
22
log (3 1).log (2.3 2) 2  
134.
3
log(logx) log(logx 2) 0  

135.
   
23
42
log x 1 l og x 1 25   
136.
2 2 2 2 2
log (x 1) (x 5).log(x 1) 5x 0     

Phương trình mũ và Logarit

Hoàng Ngọc Phú Page 5

137.
logx log5
5 50 x
138.
 
log x 3
5
2x




139.
2
33
(log x) (x 4)log x x 3 0    
140.
x
2
log x 2 2 2  

141.
x
2
3
1
2 1 log x


142.
 
2
2
2 2 2
log x x 1 log x.log (x x) 2 0

    


143. 3x + 5x = 6x + 2 144. 12.9
x

- 35.6
x
+ 18.4
x
= 0
145. 4
x
= 3
x
+ 1 146.
   
xx
x
3 2 2 3 2 2 6   

147.
   
xx
2 3 2 3 4   
148.
xx
2 2 18 2 6   

149. 6
x
+ 8 = 2
x
+ 1 + 4.3
x
150. 3

x
+ 33
x
= 12.
151.
x x
3 6 3
152.
x x x
2010 2008 2.2009

153.
2
x 1 x 1
25


154.
2
2
x x x 8
2 2 8 2x x

   

155.
22
x x 2 x x
2 2 5
  


156.
2 x x 2 x x
x .2 4 8 4.x x.2 2 1     

157.
x x 1 x
6 8 2 4.3 1

   

158.
2 2 2
x x 1 x (x 1)
4 2 2 1
  
  
159.
2. x 3 x x 3 1 x 4
2 5.2 2 0
    
  

160.
43
34
x x

161.
22

22
xx
4 (x 7).2 12 4x 0    

162. 8
x
 7.4
x
+ 7.2
x + 1
 8 = 0 163.
3x
log x log 9 3

164.
 
 
24
x x 1
log 2 1 .log 2 2 1

  
165.
2
2
2
log x 3.log x 2 0  

166.
   

3x x
3
log 9x log 3x 1
167.
 
 
5 5 5
x x 1
x.log 3 log 3 2 log 3 4

   

168.
log x log 2
33
4 x 6
169.
 
 
2
33
log x x 5 log 2x 5   

170.
2
3
3
log x (x 12)log x 11 x 0    
171.
2

log x
log x
33
3 x 6

172.
 
22
log x 4 log 2 x 4   
173.
2
2 2 2
2
log x 3.log x 2 log x 2   

174.
2 3 3 2 3
log x.log x x.log x 3 log x 3log x x    

175.
   
 
3 3 3
x x x 2
log 2 2 log 2 1 log 2 6

    

Phương trình mũ và Logarit


Hoàng Ngọc Phú Page 6

176.
   
2
2 2 2 2 2
log x log x.log x 1 2 3.log x 2.log x 1     

177.
   
32
3.log x 2 2.log x 1  
178.
log 4 log x log 2
2
3 3 3
x x .2 7.x

179.
   
2
2
2
log 4x log 2x 5
180.
   
3 27 27 3
1
3
log log x log log x


181.
33
log x 2 4 log x  
182.
2 3 3 2
log x.log x 3 3.log x log x  

183.
 
2
22
4
2.log x log x.log x 7 1  
184.
 
2
22
2
8
x
2
log log 8x 8

185.
2
log x log 6
22
6.9 6.x 13.x
186.

log x log 3
22
3 x 18

187.
2
22
x.log x 2(x 1).log x 4 0   
188.
x 1 x 4 x 2
4 2 2 6
  
  

189.
4x 8 2x 5
3 4.3 27 0

  
190.
x
xx
2
4.3 9.2 5.6

191.
x x x
8.3 3.2 24 6  
192.
 

2x
x
x
7
6. 0.7 7
100


193.
x
x
2
1 3 2
194.
x
2 128

195.
xx
4 2 6 0  
196.
x x 1 3
25 6.5 5 0

  

197.
xx
9 5.3 7 0  
198.

xx
9 25.3 54 0  

199.
2 x 2 x
3 3 30


200.
 
2 x 1
x
3 82.3 9 0

  

201.
3x 2x 2x 3x
7 9.5 5 9.7  
202.
22
x 1 x 3
9 36.3 3 0

  

203.
22
x 1 x 1
9 3 6 0


  
204.
log 9 log x log 3
2
2 2 2
x x .3 x

205.
x
x
x2
3 .8 6


206.
log x 3log x
28
2.x 2x 5 0

  

207.
log 3 log 5
22
x x x
208.
 
 
 

log 4 x 2 3
2
x 2 4 x 2

  

209.
lg10x lgx lg100x
4 6 2.3
210.
x x 3x 1
125 50 2



211.
2 x 1 x 2 x
4x x.3 3 2x .3 2x 6

    
212.
x1
x
x
5 .8 500



213.
x 1 x 2 x 3 x 4

3 3 3 3 750
   
   
214.
x 1 x 2 x 4 x 3
7.3 5 3 5
   
  

215.
x x x
6.4 13.6 6.9 0  
216.
x 2x 1
48



217.
2x 1 2x 1
5 3.5 110


218.
x x x
3.4 2.9 5.6

Phương trình mũ và Logarit

Hoàng Ngọc Phú Page 7


219.
2x 8 x 5
3 4.3 27 0

  
220.
x 1 x 2 x 4 x 3
7.3 5 3 5
   
  

221.
1 1 1
6.
x x x
6.9 13.6 6.4 0

  
222.
x 1 x x x 2
5 2 5 2 0

   

223.
2
2x 3 x 3x 5
24
  


224.
13
xx
x 2x 1
22
9 2 2 3




225.
 
x
2
x log 9 2 3  
226.
x x x
25 15 2.9

227.
x 2 x 2
4 16 10.2


228.
22
2x 1 x x 2x 2
2 9.2 2 0
  

  

229.
 
3x x
x
3 x 1
1 12
2 6.2 1
2
2

   
230.
3
x
x x 1
2
4 9 6




231.
2x 2x x x
5 3 2.5 2.3  
232.
2 2 2 2
x 1 x x 1 x 2
2 3 3 2

  
  

233.
x x 1 2 x
1
2 .5 10
5


234.
   
xx
x3
3 5 16 3 5 2

   

235.
x x x
3.16 2.81 2.36
236.
x x x 1
12.3 3.15 5 20

  

237.
2
log 2x log 6 log 4x

2 2 2
4 x 2.3
238.
xx
3 5 6x 2  

239.
 
2
2
x 1 x x
2 2 x 1

  
240.
   
4 4 4
log x 3 log x 1 2 log 8    

241.
 
2
5x
log x 2x 65 2

  
242.
 
 
log x

2
lo x
2
2
2 2 x 2 2 1 x    

243.
   
 
22
x 2x 1 x 2x 1
101
2 3 2 3
10 2 3
   
   


244.
      
xx
2 3 7 4 3 2 3 4 2 3     

245.


x 2 2
2 x 4 x 2 4 x 4 4x 8      

246.

x x x
xx
1 1 1
3 2 2x 6
3 2 6
     
      
     
     

247.
2x 1 x 1 x x 1
5.3 7.3 1 6.3 9 0
  
    

248.
     
lg5 lg x 10 1 lg 21x 20 lg 2x 1      

249.
1 1 1 1 1
lgx lg x lg x lg x
2 2 2 2 8
     
     
     
     
250.
22

lg x 3lgx lgx 4  

Phương trình mũ và Logarit

Hoàng Ngọc Phú Page 8

251.
11
33
log x 3 log x 2 0  
252.
 
2
2
12
2
x
log 4x log 8
8


253.
   
2
xx
5
5
log 4 6 log 2 2 2   
254.
23

x 4x 2x
2
4log x 2 log x 3log x

255.
2
33
x
log 2 log x 1
256.
 
 
3
lg lgx lg lg x 2 0

  


257.
   
35
log x 1 log 2x 1 2   
258.
 
 
2
22
log x 3 log 6x 10 1 0    

259. 260.

2
x x 2
log x 1



261.
22
x2
log 4x .log x 12
262.
 
x
log x 1 lg4,5 0  

263.
22
33
log x log x 3
xx
   
   
   
   
264.
 
 
2
x lg x x 6 4 lg x 2     


265.
 
 
2
22
log x 3 log 6x 10 1 0    
266.
x
33
log x. log 3 3 log 3 3 6

267.
2
9 3 3
2.log x log x.log 2x 1 1

  

268.
33
3. log x log 3x 1 0  

269.
 
2
1
lg x 10 lgx 2 lg 4
2
   
270.

 


2
x3
1
log 3 1 2x x
2

   

271.
23
x 4x 16x
2
log x 40log x 14log x 0  
272.
 
 
3
log x 1
2
22
22
3x 2 log x 1 log x

   

273.
   

22
23
2 2 3
log x 2x 2 log x 2x 3


    

274.
44
4
2 x 2 2
x
log 2x log 2x log log x
2
  

275.
2 3 5 2 3 2 5 3 5
log x.log x.log x log x.log x log x.log x log x.log x  

276.
       
2
33
x 3 log x 2 4 x 2 log x 2 16     

277.
 
3

3 2 3 2
x1
log 3x .log x log log x
2
3
  
278.
2
x 4x 15
2
22
2
log 36
log 81 log 3
log 4



279.
 
2
x1
log 2x 1 2


280.
 
2
22
log x x 1 log x 2x 6 0    


281.
9x
4.log x log 3 3
282.
 
22
log 6 x log 3 x 1   

Phương trình mũ và Logarit

Hoàng Ngọc Phú Page 9

283.
   
22
2 2 2
log x 3x 2 log x 7x 12 3 log 3      

284.
 
 
2
2
x 1 1 x 2 log x x 0     
285.
   
x x 1
5 25
log 5 1 .log 5 5 1


  

286.
 
48
64
2.log x x log x

287.




2
22
2 3 2 3
log x 1 x log x 1 x 6

     

288.
 
22
x
log 2 log 4x 3
289.
 
34
13

3
3
log x log x log 3x 3  

290.
x
7
log 2 log 4x 0
6
  
291.
5 3 5 9
log x log x log 3.log 225

292.
   
22
x3
1
log 3x 1 2 log x 1
log 2

    

293.
   
x x 1
21
2
log 4 4 x log 2 3


   
294.
2 7 2 7
log x 2log x 2 log x.log x  

295.






2 2 2
4 5 20
log x x 1 .log x x 1 log x x 1      

296.
 
xx
2
log 9 5.3 4
297.
x 1 x
x
log 9 4.3 2 3x 1


   



298.
 
x
x3
log log 9 6 1



299.
   
xx
22
log 2 4 x log 2 12 1    

300.
 
2 x 1
log x 1 log 16



301.
   
log x log x
22
2
2 2 x 2 2 1 x    
302.
 

 
2
21
2
log x 1 log x 1  

303.
 
 
2 3 2
log log log x 1
304.
       
2 2 2 2 2
x 1 lg x 1 4 2 x 1 .lg x 1 0     

305.
     
2
33
log x 1 x 5 log x 1 2x 6 0      

306.






2 2 2

2 3 6
log x x 1 .log x x 1 log x x 1      

307.
3
4 1 8
16
log x log x log x 5  
308.
   
x x 1
5 25
log 5 1 .log 5 5 1

  

309.
5 3 5 9
log x log x log 3.log 225
310.
   
93
log x 8 log x 26 2 0    

Phương trình mũ và Logarit

Hoàng Ngọc Phú Page 10

311.
2

x9
x .log 27.log x x 4
312.
 
2
2
33
log x 2 log x 4x 4 9    

313.
   
22
1 2x 1 3x
log 6x 5x 1 log 4x 4x 1 2 0

      

314.
       
2 2 2 2 2
x 1 lg x 1 4 2 x 1 lg x 1 0     

315.
 
   
2
5 1 5 1
5 25
log x 1 log 5 log x 2 2log x 2     


316.
       
2
33
x 2 log x 1 4 x 1 log x 1 16 0      

317.
     
2 3 3
1 1 1
4 4 4
3
log x 2 3 log 4 x log x 6
2
     

318.
3
3 2 3 2
3 x 1
log .log x log log x
x2
3
  

319.
   
22
3x 7 2x 5
log 9 12x 4x log 6x 23x 21 4


     

320.
 
2 2 2 2
61
6
x .log 5x 2x 3 xlog 5x 2x 3 x 2x      

321.
3
2 3 3 2
log x.log x log x log x 3  

322.
     
22
2 x 1 x 1 2
x 3 .log x 1 2log 2 x 3 .log 2 2log x 1

      

323.
   
2
2 7 7 2
x
log x x log x 3 2 log x 3 log x
2


    



324.
21
1
xx
11
3 12
33

   

   
   
325.
 
x 4 x
1x
lg 3 2 2 lg16 lg 4
42

   

326.
1
x
1

2 lg2 1 lg3 lg 3 27 0
2x



    




327.
   
x x 3
22
log 4 1 x log 2 6

   

328.
   
x 1 x
2 2 1
2
1
log 4 4 .log 4 1 log
8

  
329.
 

 
2
log 1 7x 2.x
1
4
1
2x 1
2x 1




330.
 
 
4 3 2 3
1
log 2 log 1 log 1 3log x
2

  

331.
 
2
9 3 3
2log x log x.log 2x 1 1  

332.



2
x3
1
log 3 1 2x x
2

   

Phương trình mũ và Logarit

Hoàng Ngọc Phú Page 11

333. Tìm x biết
   
xx
lg2,lg 2 1 ,lg 2 3
, theo thứ tự lập thành một cấp số cộng.
334.
   
x x 1
5 25
log 5 1 .log 5 5 1

  
335.
   
23
48
2

log x 1 2 log 4 x log 4 x     

336.
       
2 2 4 2 4 2
2 2 2 2
log x x 1 log x x 1 log x x 1 log x x 1          

337.
 
 
3
2
2
27 9
3
1 x 3
log x 5x 6 .log log x 3
22

    

338.
3
3log 4
log x 3log x
22
33
x 3 8




339.
 
log x 3
5
2x



340.
 
 
1
log x
3
log x
3
3
2
log x
3
3
x
x


341.
 
23

log 1 x log x

342.
 
4
64
2log x x log x
342.
 
xx
57
log2log 

344.
   
2 3 3 2
log log x log log x
346.
3
2 l ogx 1 logx 1   

345.






2 2 2
2 3 6

log x x 1 .log x x 1 log x x 1      

347.
   
22
22
3 log x 4x 5 2. 5 log x 4x 5 6       

348.
 
 
 
22
x3
1
log 3x 1 2 log x 1
log 2

    

349.
23
x 16x 4x
2
log x 14.log x 40.log x 0  
350.
 
2
2x
x

log 2 x log x 2

  

351. Cho
x 0,y 0
và x+y = 1.Tìm giá trị nhỏ nhất của:
xy
P 3 9

352.
2 2 4 2 4 2
2 2 2 2
log (x x 1) log (x x 1) log (x x 1) log (x x 1)          

353.
22
2 2 2
log (x 3x 2) log (x 7x 12) 3 log 3      

354.
2
9 3 3
2(log x) log x.log ( 2x 1 1)  

355.
   
xx
2
22

3
log 4.3 6 log 9 6 1
2
   

356.
32
1
log(x 8) log(x 58) log(x 4x 4)
2
     
357.
   
4 2 2 4
log log x log log x 2

Phương trình mũ và Logarit

Hoàng Ngọc Phú Page 12

358.
 
22
(x 3)
1
log 3x 1 2 log (x 1)
log 2

    


359.
   
23
48
2
log x 1 2 log 4 x log 4 x     

360.
   
x 1 x
5 5 5
(x 1).log 3 log 3 3 log 11.3 9

    

361.
5 25 0,2
log x log x log 3
362.
2
x3
log(x 2x 3) log 0
x1

   


363.
1
.log(5x 4) log x 1 2 log0,18

2
    

364.
 




x 1 x
2 log2 1 log 5 1 log 5 5

    

365.
 
 
2
22
log x 4 x log 8 x 2

   

366.
12
1
4 logx 2 logx




367.
0,04 0,2
log x 1 log x 3 1   
368.
x4
7
log 2 log x 0
6
  

369.
 
2 x 1
1 log x 1 log 4

  
370.
x 16 2
3log 16 4log x 2log x

371.
2 2x
x
log 16 log 64 3
372.
22
2x
log (2x ).log 2 1

373.

 
15log.5log
22
5

x
x
374.
xx
log 5x log 5

375.
sinx 2
sin x
log 4.log 2 4
376.
cosx 2
cos x
log 4.log 2 1

377.
2(x 1) x 1
2
log 4(x 1) 2 log (x 1) 2

   
378.
 
2
2x

x
log 2 x log x 2

  

379.
 
22
x
log 2 log 4x 3
380.
23
x 16x 4x
2
log x 14log x 40log x 0  

381.
   
a x 2
a
1
log ax .log ax log
a




với
 
a 0 ; a 1


382.
xx
22
log (3 1).log (2.3 2) 2  
383.
3
log(logx) log(logx 2) 0  

384.
   
23
42
log x 1 l og x 1 25   
385.
2 2 2 2 2
log (x 1) (x 5).log(x 1) 5x 0     

386.
logx log5
5 50 x
387.
 
log x 3
5
2x



388.

2
33
(log x) (x 4)log x x 3 0    
389.
x
2
log x 2 2 2  

Phương trình mũ và Logarit

Hoàng Ngọc Phú Page 13

390.
x
2
3
1
2 1 log x



391.
 
2
2
2 2 2
log x x 1 log x.log (x x) 2 0

    



392.
 
 
32
13
3
log 2 x x 2 log 2x 2 0

    


393.
 
 
4 3 2 2
1
log 2log 1 log 1 3log x
2

  


394.
 
 
2
21
2
log x 1 log x-1 

395.
 
2
x
log x 4x 4 3  

396.
cosx 2
cos x
log 4.log 2 1 
397.
 
 
2
3
22
log x-1 2log x x 1  

398.
3 4 5
log x log x log x
399.
 
 
 
32
1
log x 8 log x 58 log x 4x 4
2
     


400.
     
2 3 3
1 1 1
4 4 4
3
log x 2 -3 log 4-x log x 6
2
   

401.
       
1log1log1log1log
24
2
24
2
2
2
2
2
 xxxxxxxx

402.
 
 
112log.loglog2
33
2

9
 xxx

403.
   
3log3127log23log
2
2
2
2
2
 xxxx

404.
xxxx
10432
loglogloglog 
405.
 
36log x
x

406.
12
32
log
3









x
x

407.
   
3
8
2
2
4
4log4log21log xxx 

408.
 
   
93.11log33log3log1
5
1
55

 xx
x

409.







2 2 2
2 3 6
log x- x 1 .log x x 1 log x- x 1    

410.
     
2 2 2 2 2
lg x 1 x 5 lg x 1 -5x 0     
411.
 
 
2
2
22
log x x-1 log x x -2 0

  


412.
   
22
22
3 log x 4x 5 2 5-log x 4x 5 6       


Phương trình mũ và Logarit

Hoàng Ngọc Phú Page 14

413.
9
22
lg x 3lgx
2lgx
2
x 10



414.
 
 
 
log 9 x 2 3
3
x-2 9 x-2





415.
   
xx
22

log 3 1 .log 2.3 2 2   
416.
 
x
x lg 1 2 xlg5 lg6   

417.
2
22
log x log x 1 1   
418.
 
xxx
4
8
4
6
loglog2 

419.
 
2loglog
37
 xx

420.
5loglog2
22
3 xx
x



421.
x
2
log x 2 2 2  
422.
x
2
3
1
2 1 log x



423.
 
log x 1
2
2 x


424.
x x 1
5 25
log (5 1).log (5 5) 1

  

425.

 
 
 
 
314log
181
2


xx
x

426.
   
225.2log.15log
22

xx

427.
63
3loglog
22
 x
x


428.
22
x

log 2 log 4x 3

429.
 
0562log12log
2
2
2
2
 xxxxx

430.
09lg9lg2lglg
234
 xxxx

431.
 
 
2
l g 6 l g 2 4o x x x o x     
432.
 
x
x

3log
5
2


433.
   
1log2log
23
 xx

434.
 
1loglog
23
 xx

435.
 
xx
7
3
2
log1log 

436.
       
0162log242log3
3
2
3
 xxxx

437.
   

32log22log
2
2
2
5
4
 xxxx

438.
 
03log4log
3
2
3
 xxxx

439.
 
 
2
22
log x 4 x log 8 x 2

   


440.
 
2
22

log x x-5 log x-2x 6 0  
441.
 
log x
6
26
log x 3 log x

442.
 
016log4log1
3
2
3
 xxxx

443.
0141loglog
2
3
2
3
 xx
444.
322
22
2

 xxxx


445. 3.8
x
+ 4.12
x
- 18
x
- 2.27
x
= 0 446.
22
2
2 4.2 2 4 0
x x x x x
   

Phương trình mũ và Logarit

Hoàng Ngọc Phú Page 15

447.
     
xxx 4log1log
4
1
3log
2
1
2
8
4

2

448.
0log3log16
2
3
27
3
 xx
x
x

449.
 
x
x
 145log
5
450.
082.124
515
22

 xxxx

451.
   
2loglogloglog
4224
 xx

452.
   
6223223 
tgxtgx

453.
 
016log4log1
3
2
3
 xxxx
454.
xxx
4.269 

455.
093.283
22
122

 xxxx
456.
033.23
22
224

 xx

457.

 
16log1log
12 

x
x

458. CMR:
 
 
yx
xyyx
loglogloglog 
thì x = y.
459.
 
2
1
122
2


x
xxx
460.
1cossin
20002000
 xx

461. 3

x
+ 5
x
= 6x + 2 462. 8.3
x
+ 3.2
x
= 24 + 6
x

463. 8.3
x
+ 3.2
x
= 24 + 6
x
464.
 
2log2log
2
2


xx
x
x

465.
1444
7325623

222

 xxxxxx
466.
4347347
sinsin















xx

467.


2
1
213log
2

3


xx
x
468.
 
   
93.11log33log3log1
5
1
55

 xx
x

469.
   
2 1 2 1 2 2 0
xx
    
470.
5(7 2) 6 5(7 2 7
xx

471.
3 9 27
11
log log log
2

x x x
472.
3 4 5 6
x x x x

473.
tan tan
3 2 2 3 2 2 6.
xx
474.
22
32
log ( 2 1) log ( 2 )x x x x

475.
1
2
12
2
1
2.62
)1(3
3

 xx
xx
477.
)2(loglog
37
 xx


476.
)4(log4log2)1(log
3
8
2
2
4
xxx 

478.
)2(loglog
75
 xx
479.
072.32.5
35
13



x
x

480.
3
28
12
2
1

log4log232log 

x
x
481.
x
xx
x
1
3
2
2
log
3
2
log



482.
05
8
log3
2
2
log
2 


x

x
x
x
483.
xxxx 26log)1(log
2
2
2


484.
x
x
x
4
4
log
2
)10(log.2log21 

Phương trình mũ và Logarit

Hoàng Ngọc Phú Page 16

485.
1 1 1
2 2 2
log x 1 log x 1 log 7 x 1 (1)

486.

2 3 3
1 1 1
4 4 4
3
log x 2 3 log 4 x +log x 6 (1)
2

487.
2
1
24
2
log x 2 log x 5 log 8 0 (1)

488.
1
22
2
log x 2 log x 5 log 8 0

489.
42
2x 1
11
log x 1 log x 2
log 4 2
490.
2
2 2 2
log 2x log 6 log 4x

4 x 2.3

491.
3 9x
3
4
2 log x .log 3 1
1 log x

492.
 
 
x x+1
33
log 3 -1 .log 3 - 3 = 6
493.

x7
log 7x.log x 1

494.
 
 

    
2
2
2x 1 x 1
log 2x x 1 log 2x 1 4
495.


  


x
3
16
3 log 9x
log x x

496.
   
   
1
2
2
2log 2x 2 log 9x 1 1

498.
)4(log)3(log)542(log
3
3
1
2
3
 xxx
499.
1
2
log

10
2
log
55



x
x

500.
01lg20lg
32
 xx
501.
2
2
log4log
4
4
2

x
x

502.
1
2
log
10

2
log
55



x
x
503.
09log42log
2
4
 x
x

504.
3
4
1
3
4
1
2
4
1
)6(log)4(log3)2(log
2
3
 xxx


505.
)1(log)1(log)1(log
2
6
2
3
2
2
 xxxxxx

506.
)1(log)1(log)1(log
2
20
2
5
2
4
 xxxxxx

507.
0)1434(log
2
1
)1(log
33
 xxxx

508.
)344(log

4
2
2
2
cot
22



xx
xygxytg
509.
3loglog
2
9log
222
3. xxx
x


510.
xx
32
log)1(log 

511.
)2(log2)2(log5log)1(log
25
15
5

1
2
5
 xxx

Phương trình mũ và Logarit

Hoàng Ngọc Phú Page 17

512.
016)1(log)1(4)1(log)2(
3
2
3
 xxxx

513.
5,1lg)1(log x
x
514.
2
1
)213(log
2
3


xx
x


515.
x
x
 3)29(log
2
516.
x
x
x
x
2
3
323
log
2
1
3
loglog
3
log 

517. log
2
x + 2log
7
x = 2 + log
2
xlog
7
x 518.

2log)2(log
2
2


xx
x
x

519.
)32(log)44(log
1
2
12

xx
x

520.
4)21236(log)4129(log
2
32
2
73


xxxx
xx

521.

)1(log2
2log
1
)13(log
2
3
2


xx
x
522.
1)69(loglog
3

x
x

523.
13)23.49(log
1
3


x
xx
524.
2
22
4log6log

2
3.22log4
x
xx 

525.
2
9
3
32
27
)3(log
2
1
log
2
1
)65(log 

 x
x
xx

526.
3
8
2
2
4
)4(log4log2)1(log xxx 

527.
)2(loglog
37
 xx

528.
2
3
2
3
2log)1(log xxxxx 

529. log
2
(x
2
+x+1)+log
2
(x
2
-x+1)=log
2
(x
4
+x
2
+1)+log
2
(x
4

-x
2
+1)
530.
3)29(log
2

x
x
531.
)93.11(log)33(log3log)1(
5
1
55

 xx
x

532.
3log
2
1
log
2
1
)65(log
3
3
22
9



 x
x
xx

533.
)4ln()32ln()4ln()32ln(
22
xxxx 

534.
0log40log14log
4
3
16
2
2
 xxx
xxx

535.
2log)
2
log
2
(loglog)2log2(log
2
442
2

242
 x
x
x
xxx

536.
0)2cos
2
(sinlog)sin
2
(sinlog
3
13
 x
x
x
x
537.
1
12
2
log
4
12




x

x
x

538.
2
1
)213(log
2
3


xx
x
539.
xxx
2
3
3
log2)1(log3 

540.
1)3(log
2
3


x
xx
541.
)13(log)11(log

2
xx
a
a


542. log
3
(2x+1)+log
5
(4x+1)+log
7
(6x+1)=3x 543.
19log)148(log
44
2
3
2

 xx
xx

Phương trình mũ và Logarit

Hoàng Ngọc Phú Page 18

544.
21lg1lg31lg
22
 xxx

545.
)22(
4
1
log
2
1
 xxx

546.
8
1
)2lg(
2
1
 x
x
547.
)32(log)22(log
2
32
2
322



xxxx

548.
2log

cos2sin
sin22sin3
log
22
77 xx
xx
xx



550. (x+1)
lg(x+1)
=100(x+1)
549.
9
11
)22(log
1
2
1
1
2
1
1
2
1
1
2
1
2

22
22









xx
x
x
x
x
x
x
x
x

551.
5log3log
22
xxx 
(x>0) 552.
642.3
55
log2log


x
x

553.
)52(log
2
25
1
)53(
53
1
xx
x
x



554.
)271(log
2
4
1
)12(
12
1
xx
x
x





555.
11659
2
)21(log
3


x
x
556. log
3
(3
x
-8)=2 – x
557. log
7
(7
-x
+6)=1 + x 558.
0222
1loglog1log
55
2
5

 xxx

559.

243log
27log
)
27
125
()
5
3
(
5
5
)1(log
)1(log2
27
1
9



x
x
560.
5
7
3log
36
6
xx
x



561.
2
loglog
1)22()22(
22
xx
xx

562.
2
6log
2
log
2
2
9.2 xx
x


563.
12)12.3(log
2
 x
x
564.
11
1
11
1

2
3lglg
32





xx
x
xx

565.
4)2(log)2(log)2(log
2,0
3
5
5
 xxx

566.
5,0log3loglog3log
33
 xx
x
x

567.
01222
1loglog1log

55
2
5

 xxx
568.
)112(logloglog2
33
2
9
 xxx

569.
04log34log24log3
164

xxx
570. log
5
x+log
3
x=log
5
3log
9
225
571.
5,2)
5
2

(
)85(log
2
25,0

 xx
572.
0)2cos(coslog)sin(coslog
1
 xxxx
x
x

573.
xxx
4
8
4
6
log)(log2 
574. log
2
(6
x
+2.3
2x+2
)=2x+2
574. (2
xx 
2

)1
. Nghiệm x thộc miền xác định của hàm số y= lg(4x-1)
575. (2
xx 
2
)1
. Nghiệm x thộc miền xác định của hàm số y= ln(x
2
- x-2)
Phương trình mũ và Logarit

Hoàng Ngọc Phú Page 19

576. log
a
axlog
x
ax=
a
a
1
log
2
với 0<a

1 577. 9
x
+ 6
x
= 2.4

x

578.
43
64
255



x
x
579.
22
43
93



x
x
580. 2
2x-3
- 3.2
x-2
+ 1 = 0
581.
2442
)
2
5

()
5
2
(


xx
582.
033.43
24

xx

583. 5
2x
- 7
x
- 5
2x
.35 + 7
x
.35 = 0 584.
4
410
2
9
2
2
x
x





585.
33,0.2
100
3
2

x
x
x
586.
x
x
1001,0.1000 
587.
73
3
1
3
13
82





x

x
x
x

588. 2
x
.5
x
=0,1(10
x-1
)
5
589.
363.2 
xx
590.
4
2
1
)1(
39 
xx

591.
431
)
3
4
(
2

1
3
4
.)
4
3
(


xx
592. 3
x
+3
x+1
+3
x+2
=5
x
+5
x+1
+5
x+2

593. 2
x
+2
x-1
+2
x-2
=7

x
+7
x-1
+7
x-2
594.
4
4
xx
xx 

595.
161
42.2


xx
596.
4)32()32( 
xx

597.
10)625()625( 
xx


598.
xxx
)22()154()154( 



599.
xxx
)5()23()23( 
600.
3
2)125(7)215(


xxx

601.
2)625()625(
sinsin

xx
602.
2653  x
xx

603.
21
)1(22
2


x
xxx
604.
093.613.73.5

1112

 xxxx

605.
112
323


xx
606.
11
34
2

 xx
x

607.
xxx
6242.33.8 
608.
x
x
231
2


609.
022.92

2212
22

 xxxx
610.
8444)24(2
22
1
 xxxx
x

611. 4x
2
+ x.3
x
+ 3
x+1
=2x
2
.3
x
+ 2x + 6 612. 4
sinx
-2
1+sinx
.cosxy+
y
2
=0
613.

11
2
1
9



xx
x
614.
1
2
12
33
1
2.62
3



x
xx
x

615.
12122
11
2




xx
x
616.
1)1(
34
2

 xx
x

617.
1313)1(3)4(
1
11



xx
x
xxx
618.
xx
xx 

619.
232
14231

 yxyx

620.
2 2 4 2 1
3 3 6 7 1 2.3
xx
xx

    

Phương trình mũ và Logarit

Hoàng Ngọc Phú Page 20

621.
)32(10
101
)32()32(
1212
22


 xxxx
622.
033.369
31
22

 xx

623. 27
x

+13.9
x
+ 13.3
x+1
+ 27 = 0 624.
3133
)10.(01,05.2
22


xxx

625. 5
2x+1
-3.5
2x-1
=110 626.
308181
22
cossin

xx

627.
1
32
2


xx

628. 5
2x+1
-3.5
2x-1
=110
629. 5
x-1
+2
x
-5
x
+2
x+2
=0 630. 3
2 + x
+ 3
2- x
= 30
631. 3.25
x – 2
+ (3x - 10)5
x-2
+ 3 - x = 0 632. 2
x
.3
x-1
.5
x-2
=12
633. 3.4

x
+(3x-10).2
x
+3-x=0 634.
222
)1(1
224


xxxx

635.
2
2)53()53(3


xxx
636.
x
x
cos
sin



637.
5008.5
1



x
x
x
638.
222
18
22
2
2
8
111




 xxx
x
x

639.
6)83()83(
33

xx
640. 3
x
+ 4
x
= 5
x


641. 7
6-x
=x + 2 642. 5
x-2
=3 - x
643.
132
2

x
x
644. 8
x
- 3.4
x
- 3.2
x + 1
+ 8 = 0
645.
xxxxxx
2332
52623
22


646. 4
x
+ 4
-x

+ 2
x
+ 2
-x
= 10
647. 4
x
= 2.14
x
+ 3.49
x

648.
03
2
77
7)
2
77
.(2
2




 xxxx
649.
34)1132()1132(
1212


 xx

650.
5,13.2
2
2

 xxx
651. x
x+3
= 1
652. 8
x
+ 18
x
=2.27
x
653. 27
x
+ 12
x
= 2.8
x
654. 3
x-1
+ 5
x-1
= 34 655.
161
422



xx
656.
xxxx 23231
22
2.924



657.
10100010
15
15
5




x
x
x
658.
16
9
)
3
4
.()
4

3
(
1
1


x
x

659. 25
x
- 2(3 - x)5
x
+ 2x - 7 = 0 660. 9
x
+ 2(x - 2)3
x
+ 2x - 5 = 0
661.
03.49
22


a
xx
Với -3<a<0
662.
)4(log)3(log)542(log
3
3

1
2
3
 xxx
663. 4
2x + 1

. 5
4x + 3

= 5. 10
2x
2

+ 3x - 78


Phương trình mũ và Logarit

Hoàng Ngọc Phú Page 21

664.
4
3. 243
2x + 3
x + 8

= 3
-2


.9
x + 8
x + 2

665. log

2
(3x - 1) +
1
log

(x + 3)
2
= 2 + log

2
(x + 1)
666. 2log

9
(x
2

- 5x + 6)
2

= log

3





x - 1
2



+ log

3
(x - 3)
2

668. 2
x
2

- 3

.5
x
2

- 3

= 0,01.(10
x - 1

)

3


667.
3
2
log

1
4
(x + 2)
2

- 3 = log

1
4
(4 - x)
3

+ log

1
4
(x + 6)
3

669. (0,6)
x






25
9



x
2

- 12

= (0,216)
3


670. 2
x

.3
x - 1

.5
x - 2

= 12 671. 2
x


+ 2
x - 1

+ 2
x - 2

= 3
x

+ 3
x - 1

+ 3
x - 2


672. 2
x
2

+ 3x - 4

= 4
x - 1

673. 2
x
2

- 6x -

5
2

= 16 2
674. 32
x + 5
x - 7

=
1
4
.128
x + 17
x - 3

675. 16
x + 10
x - 10

= 0,125.8
x + 5
x - 15


676. 5
x + 1

+ 6.5
x


- 3.5
x + 1

= 52 677. 3
|3x - 4|

= 9
2x - 2


678. (x
2

- 2x + 2)
4 - x
2


= 1 679. 2
x + 1

.3
x - 2

.5
x

= 200
680. 4.9
x - 1


= 3 2
2x + 1

681. 3
x
2

+ 3x +
1
2

=
1
3 3

682. log

5
(x - 2) + log

5
(x
3

- 2) + log

0,2
(x - 2) = 4
683. log


2




x
2

+ 3
5



= 2log

1
4
(x - 1) - log

2
(x + 1) 684. log

2
(x - 2) - 2 = 6log

1
8
3x - 5
685. log


1
3

[
2(x
3

+ x
2

) - 2
]
+ log

3
(2x + 2) = 0 686. log

x
(x
2

+ 4x - 4) = 3
687. log

2
(x - 1)
2

= 2log


2
(x
3

+ x + 1)
688. log

2
(x
2

+ 3x + 2) + log

2
(x
2

+ 7x + 12) = 3 + log

2
3
689.
3
2
log

1
4
(x + 2)

2

- 3 = log

1
4
(4 - x)
3

+ log

1
4
(x + 6)
3


690. log

4
(x + 1)
2

+ 2 = log

2
4 - x + log

8
(4 + x)

3

694. 25
x

= 9
x

+ 2.5
x

+ 2.3
x


Phương trình mũ và Logarit

Hoàng Ngọc Phú Page 22

691. log

2
x + 1 - log

1
2
(3 - x) - log

8
(x - 1)

3

= 0
692. log

2
(x
2

+ 3x + 2) - log

1
4
(x
2

+ 7x + 12)
2

= 2 + log

4
3
693. log

x + 1
(2x
3

+ 2x

2

- 3x + 1) = 3
695. 4
x
2

- 3x + 2

+ 4
x
2

+ 6x + 5

= 4
2x
2

+ 3x + 7

+ 1
696. 12.3
x

+ 3.15
x

- 5
x + 1


= 20 697. 9
x

+ 2(x - 2)3
x

+ 2x - 5 = 0
698. log

2
x + log

3
x = 1 + log

2
x.log

3
x 699. (x + 1)[log

2
x]
2

+ (2x + 5)log

2
x + 6 = 0

700. 2
x
2

- 5x + 6

+ 2
1 - x
2


= 2.2
6 - 5x

+ 1
701. x
2

.2
x

+ 6x + 12 = 6x
2

+ x.2
x

+ 2
x + 1


702. 2
x + 1

+ 3
x

= 6
x

+ 2
703. 4
x
2


+ x.3
x

+ 3
x + 1

= 2x
2

.3
x

+ 2x + 6 704. x.2
x


= x(3 - x) + 2(2
x

- 1)
705. 2[log

2
x]
2

+ xlog

2
x + 2x - 8 = 0 706. 3.25
x - 2

+ (3x - 10).5
x - 2

+ 3 - x = 0
708. (x + 2)[log

3
(x + 1)]
2

+ 4(x + 1)log

3
(x + 1) - 16 = 0

709. 8 - x.2
x

+ 2
3 - x

- x = 0 710. x
2

.3
x

+ 3
x

(12 - 7x) = - x
3

+8x
2

- 19x + 12
711. 25
x

- 2(3 - x).5
x

+ 2x - 7 = 0 712. log
2

2
x + (x - 1)log

2
x = 6 - 2x
713. x
2

+ (2
x

- 3)x + 2(1 - 2
x

) = 0 714. lg
2

(x
2

+ 1) + (x
2

- 5)lg(x
2

+ 1) - 5x
2

= 0

715. log

4
x. log

x
5 - 1 = log

4
x - log

x
5 716. log

3
x + 5log

5
x = 5 + log

3
x.log

5
x
717. 2
x

+ 2
3 - x


= 9 718.
(
6 - 35
)
x
+
(
6 + 35
)
x
= 12
719. 3
2x
2

+ 2x + 1

- 28.3
x
2

+ x

+ 9 = 0 720. (3 - 5)
2x + 1

+ (3 + 5)
2x + 1


= 6.2
2x


721. 125
x

- 4.50
x

+ 20
x

+ 6.8
x

= 0 722. log

2
(4
x + 1

+ 4).log

2
(4
x

+ 1) = 3
723. 1 + log


2
(x - 1) = log

(x - 1)
4 724. log
2
2
(x - 1)
4

- 5log

2
(x - 1)
2

+ 1 = 0
725. log

2 + 3
x
2

- 3x + 2 + log

2 - 3
x - 1 = log

7 - 4 3

(x + 2)
726. log

3x + 7
(4x
2

+ 12x + 9) = 4 - log

2x + 3
(6x
2

+ 23x + 21)
727. 3
x + 2

+ 3
2 - x

= 30 728. 2
2x + 6

+ 2
x + 7

- 17 = 0
Phương trình mũ và Logarit

Hoàng Ngọc Phú Page 23


729. 9
x
2

+ x + 1

- 10.3
x
2

+ x - 2

+ 1 = 0 730. 64.9
x

- 84.12
x

+ 27.16
x

= 0
731. 4
1 + 3x
2

- 2x

- 9.2

3x
2

- 2x

+ 2 = 0 732.
22
2 1 2
4 5.2 6 0
x x x x    
  

733. 3.3
x - 4
x - 2

- 10.3
x - 2
2

+ 3 = 0 734. 3.2
x - 1
x + 1

- 8.2
x - 1
2

+ 4 = 0
735. 2

2x
2

+ 1

- 9.2
x
2

+ x

+ 2
2x + 2

= 0 736. 25
x

= 25
x + 1

+ 24.5
x + x


737. (2 - 3)
x

+ (2 + 3)
x


= 14 738.




4 15 4 15 8
xx
   

739. 8
x

- 3.4
x

- 3.2
x + 1

+ 8 = 0 740. 2
3x

- 6.2
x

-
1
2
3(x - 1)

+

12
2
x

= 1
741. ( 5 + 1)
x

+ 2( 5 - 1)
x

= 3.2
x

742.
(
5 + 2 6
)
x
+
(
5 - 2 6
)
x
= 10
743. (5 - 21)
x

+ 7(5 + 21)
x


= 2
x + 3

744.



3
3 + 8



x
+



3
3 - 8



x
= 6
745. 3.4
x

+ 2.9
x


= 5.6
x


746. (7 + 5 2)
x

+ ( 2 - 5)(3 + 2 2)
x

+ 3(1 + 2)
x

+ 1 - 2 = 0
747. (2 + 3)
(x -1)
2


+ (2 - 3)
x
2

- 2x - 1

=
4
2 - 3


748. (2 + 3)
x

+ (7 + 4 3)(2 - 3)
x

= 4(2 + 3) 749. ( 2 - 1)
x

+ ( 2 + 1)
x

- 2 2 = 0 750.
3.8
x

+ 4.12
x

- 18
x

- 2.27
x

= 0 751. 3
2x
2



- 2.3
x
2

+ x + 6

+ 3
2(x + 6)

= 0
752. (7 + 4 3)
x

- 3(2 - 3)
x

+ 2 = 0 753. log

x
2 + log

8
x =
7
6

754. log

3
x

9

- 4log

9
3x = 1 755. 2log

8
(-x) - log

8
x
2

= 0
756.
1
2
log

x - 1
(x
2

- 8x + 16) + log

4 - x
(-x
2


+ 5x - 4) = 3
757. 1 +
1
4
-log

2




1
x
4




= log

2
x 758.



log

3

3

x



.log

2
x - log

3

x
3

3
=
1
2
+ log

2
x
759. log
2

(-x) - 2logx
2

+ 4 = 0 760. log
2


x - log x
2

= log
2

3 - 1
Phương trình mũ và Logarit

Hoàng Ngọc Phú Page 24

761. log

2
(5
x

- 1).log(2.5
x

- 2) = 2 762. 5log

x
9
x + log

9
x
x

3

+ 8log

9x
2

x
2

= 2
763. log

2
(4
x

+ 15.2
x

+ 27) + 2log
1
4.2
x

- 3
= 0
764. log

x

5 + log

x
5x - 2,25 = log
2
x
5 765. 3log

x
6 - 4log

16
x = 2log

2
x
766. log

x
2.log

2x
2 = log

4x
2
767. log

2
(lgx + 2 lgx + 1) - 2log


4
( lgx + 1) = 1
768. log

0,04
x + 1 + log

0,2
x + 1 = 1 769. lg
2

x - lgx
3

+ 2 = 0
770. log

x
2
x
2

+ 40log

4x
x = 14.log

16x
x

3

771. log
4

(x - 1)
2

- 5log
2

(x - 1)
3

- 3376 = 0
773. log

x
2

(2 + x) + log

x + 2
x = 2
774. log

3 - 2x
(2x
2


- 9x + 9) + log

3 - x
(4x
2

- 12x + 9) = 4
775. log(9
x - 1

+ 7) = 2 + log

2
(3
x - 1

+ 1) 776. lg
4

(x - 1)
2

+ lg
2

(x - 1)
3

= 25
777. 3 +

1
log

3
x
= log

x




9x -
6
x



778. log

2x - 1
(2x
2

+ x - 1) + log

x + 1
(2x - 1)
2


= 4
779. 4
2x + x + 2

+ 2
x
3


= 4
2 + x + 2

+ 2
x
3

+ 4x - 4


780. 4
x

- 3.2
x + x
2

- 2x - 3

- 4
1 + x

2

- 2x - 3

= 0
781. log
2
2
(x + 1) - 6log

2
x + 1 + 2 = 0 782. (3 + 2 2)
x

= ( 2 - 1)
x

+ 3
783.
3
2x

100
x

= 2(0,3)
x

+ 3 784.
7

2x

100
x

= 6.(0,7)
x

+ 7
785. 3.16
x - 1

+ 2.81
x - 1

= 5.36
x - 1

786. 3
2x

- 8.3
x + x + 4

- 9.9
x + 4

= 0
787. 5.3
2x - 1


- 7.3
x - 1

+ 1 - 6.3
x

+ 9
x + 1

= 0 788. 8.3
x +
4
x

+ 9
1 +
4
x

= 9
x


789. (26 + 15 3)
x

+ 2(7 + 4 3)
x


- 2(2 - 3)
x

= 1 790. 4
x
2

+ x

+ 2
1 - x
2


= 2
(x + 1)
2


+ 1
791. lg
2

x
9

- 20lg x +
1
9
= 0 792. 3

2x

+ 3
x

+ 5 = 5
793. 9
x
2

- 2x +
3
2

- 3
x
2


= 3
(x - 2)
2


- 1 794. 2
2x

- 2
x


+ 6 = 6
Phương trình mũ và Logarit

Hoàng Ngọc Phú Page 25

795. 2
2x
2

- 5x + 2

+ 2
4x
2

- 8x + 3

= 1 + 2
6x
2

- 13x + 5


796. log

9x
27 - log

3x

3 + log

9
243 = 0 797. 8
x

+ 1 = 2.
3
2
x - 1

- 1
798. 2
3x

- 2
3 - 3x

- 6(2
x

- 2.2
-x

) = 1 799. 5
x

.8
x - 1
x


= 500
800. x
lgx

= 1000x
2

801. log

3
(log

9
x +
1
2
+ 9
x

) = 2x
802. log

5
log

2
x = log

2

log

5
x 803. 3log

3
(1 + x +
3
x) = 2log

2
x
804. 3
x

. 2
3(2x - 1)
x + 1

= 72 805. 2
x
2


= 3
x - 1

806. 2
log


2
(x + 1)

= x
807. 8
x
x + 2

= 36.3
2 - x

808. 5
x
2

- 5x + 6

= 2
x - 3

809. 3
x

.8
x
x + 1

= 36
810. 5
x


.2
2x - 1
x + 1

= 50 811. 3
x
2

- 4x

= 2
x - 4

812. x
2 + log
2
2
x

= 8
813. 5
2 - x

.3
3x
x + 1

= 4 814. 2
x

2

- 2x

.3
x

=
1
2
815. x
log x + 7
7

= 10
log x + 1


816. 2
log

5
(x + 3)

= x 817. log

3
(x
2


- 3x - 13) = log

2
x
818. log

2
(1 + x) = log

3
x 819. 2log

6
( x +
4
x) = log

4
x
820. log

7
(x + 2) = log

5
x 821. log

3
(x
2


+ 2x + 1) = log

2
(x
2

+ 2x)
822. log

2
(log

3
x) = log

3
(log

2
x) 823. 3log

3
(x + 2) = 2log

2
(x + 1)
824. log

3

(76 +
4
x) = log

5
x 825. log

2
(1 +
3
x) = log

7
x
826. log

3
(x + 1) + log

5
(2x + 1) = 2 827. 2
x
2

- 2x

. 3
x

= 1,5

828. log

4
[2log

3
(1 + 3log

2
x)] =
1
2
829. log

x
(x + 2) = log

3
5
830. 3
x + 1

.2
x
2


= 8.4
x


831. 9
x

= 5
x

+ 4
x

+ 2. 20
x


832. 3
x

+ 5
x

= 6x + 2 833. (2 - 3)
x

+ (2 + 3)
x

= 4
x


834. 7

x - 1

= 1 + 2log

7
(6x - 5)
3

835. log

2
x + log

3
(2x - 1) + log

5
(7x - 9) = 3
836. x
3

.log

3
x = 27 837. 2
x
2

+ x


+ log

2
x = 2
x + 1


×