1
1
2
kim
.
1.
gian .
v n.
-
[4-
nanotube [6], etc.
t -10]
1
ThS, T
2
laser B -
Kretschmann
2.
2.1.
(surface plasmon -
- -
-
[8, 10]
[1]
m
z - .
z
00
exp{ / }
z
V V z z
, (1)
V
0
0
-
2.2
z
0
22
/
0
2
( ) ( )
2
zz
z
d
V e z E z
m dz
, (2)
E
z
z
V-potential.
00
2V z z V
, (3)
V-z V
1/3
00
2
0
4
2
z
z m E V
xz
z
, (4)
( ) ( ) 0x x x
. (5)
( ) onst.Aix C x
, (6)
z=
z=0
1/3
00
2
0
4
2
z
n
z m E V
E Ai
z
. (7)
V (V-potential)
V-
V-
V-
-
-
parabol
-
3.
evanescent plasmon
z
-
V-potential.
.
z x, y
1. S. Al-Awfi, Theoretical Study of Surface Plasmons with Phase Singularities Generated by
Evanescent Bessel Beams, Sains Malaysiana, 41(11), pp.1461-1466, 2012.
2. G. M. Bruun and K. Burnett, Interacting Fermi gas in a harmonic trap, Phys. Rev. A 58,
pp.2427-2430, 1998.
3. A. Fioretti, D. Comparat, A. Crubellier, O. Dulieu, F. Masnou-Seeuws and P. Pillet,
Formation of Cold Cs Molecules through Photoassociation, Phys. Rev. Lett 80,
pp.4402-4405, 1998.
4. V. I. Balykin, K. Hakuta, Fam Le Kien, J. Q. Liang and M. Morinaga, Atom trapping and
guiding with a subwavelength-diameter optical fiber, Phys. Rev. A,70, 011401, 2004.
5. Wang Zheng-Ling et al., Nanoscale guiding for cold atoms based on surface plasmons
along tips of metallic wedges, Chin.Phys. B, 22(7), 073701, 2013.
6. C. T. Anh, D. T. Nga, T. T. Thao, N. V. Thanh, N. A. Viet, Trapping Cold Atoms by a
Carbon Nanotube, Mod. Phys. Lett. B, 25(12 & 13), pp.979-985.2011.
7. Lakowicz J. R., Radiative decay engineering 5: metal-enhanced fluorescence and plasmon
emission, Anal Biochem, 337(2), pp.171-194, 2005.
8. Barnes W. L., Dereux A. & Ebbesen T. W., Surface Plasmon subwavelength optics, Nature,
424, pp.824-830, 2003.
9. Yun C. S., Javier A., Jennings T., Fisher M., Hira S., Peterson S., Hopkins B., Reich N. O.,
and Strouse G. F., Nanometal Surface Energy Transfer in Optical Rulers, Breaking the
FRET Barrier, J. Am. Chem. Soc, 127(9), pp.3115-3119, 2005.
10. Plasmonic waveguides based on synthetic nanomembranes, SPIE Newsroom,
Nanotecnology, 2011.
11. Blinder S. M, Particle in an finite Vee-potential,
2010.
OPTICAL TRAPPING COLD NEUTRAL ATOMS BASED ON SURFACE
PLASMON MODES
Nguyen Thi Phuong Lan, Do Chi Nghia, Nguyen Ai Viet
Abstract
In this paper, we present a schema of trapping cold atoms based on the surface plasmon
modes. These plasmon modes can be created when a Bessel beam light is totally reflected
internally at the planar dielectric substrate on which a thin metallic film has been deposited.
By evanescent plasmon modes, the wave decays away from the thin film producing an
attractive optical potential for trapping neutral atom. We consider some possible boundary
conditions leading to the non-trivial bound state solution in the z-direction perpendicular to
the surface plane. Our model could be comparable with some recent trapping models.