Tải bản đầy đủ (.doc) (4 trang)

Đề tuyển sinh vào 10 môn toán có đáp án số 57

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (94.55 KB, 4 trang )

ĐỀ 57
Câu 1 (2,0 điểm):
1. Rút gọn các biểu thức
a)
A 2 8= +
b)
( )
a b
B + . a b - b a
ab-b ab-a
 
=
 ÷
 ÷
 
với
0, 0,a b a b> > ≠
2. Giải hệ phương trình sau:
2x + y = 9
x - y = 24



Câu 2 (3,0 điểm):
1. Cho phương trình
2 2
x - 2m - (m + 4) = 0
(1), trong đó m là tham số.
a) Chứng minh với mọi m phương trình (1) luôn có 2 nghiệm phân biệt:
b) Gọi x
1


, x
2
là hai nghiệm của phương trình (1). Tìm m để
2 2
1 2
x + x 20=
.
2. Cho hàm số: y = mx + 1 (1), trong đó m là tham số.
a) Tìm m để đồ thị hàm số (1) đi qua điểm A (1;4). Với giá trị m vừa tìm được, hàm số (1)
đồng biến hay nghịch biến trên R?
b) Tìm m để đồ thị hàm số (1) song song với đường thẳng (d) có phương trình: x + y + 3 =
0
Câu 3 (1,5 điểm):
Một người đi xe đạp từ địa điểm A đến địa điểm B dài 30 km. Khi đi ngược trở lại từ B về
A người đó tăng vận tốc thêm 3 (km/h) nên thời gia về ít hơn thời gian đi là 30 phút. Tính vận
tốc của người đi xe đạp lúc đi từ A đến B.
Câu 4 (2,5 điểm):
Cho đường tròn tâm O, bán kính R. Từ điểm A bên ngoài đường tròn, kẻ 2 tiếp tuyến AB,
AC với đường tròn (B, C là các tiếp điểm). Từ B, kẻ đường thẳng song song với AC cắt đường
tròn tại D (D khác B). Nối AD cắt đường tròn (O) tại điểm thứ hai là K. Nối BK cắt AC tại I.
1. Chứng minh tứ giác ABOC nội tiếp đường tròn.
2. Chứng minh rằng : IC
2
= IK.IB.
3. Cho
·
0
BAC 60=
chứng minh ba điểm A, O, D thẳng hàng.
Câu 5 (1,0 điểm):

Cho ba số x, y, z thỏa mãn
[ ]
x, y, z 1:3
x + y + z 3

∈ −


=


. Chứng minh rằng:
2 2 2
x + y + z 11≤
HẾT
1
Hướng dẫn và đáp án
câu nội dung điểm
1 1.
a) A=
232)21(222 =+=+
0,5
b) B=
( )
abba
baa
b
bab
a












− )()(
=
babaab
baab
ba
−=−










)(
)(
0,5
2.




=
−=




=
=+




=
=+




=−
=+
11
13
11
911.2
333
92
24

92
x
y
x
y
x
yx
yx
yx
Vậy hpt có nghiệm (x;y) = (11;-13)
0,75
0,25
2 1.
a)
[ ]
5)4(.1)1('
222
+=+−−−=∆ mm

mmm ∀>∆⇒∀≥ ,0',0
2
.
Vậy pt (1) luôn có 2 nghiệm phân biệt với mọi m
0,5
0,5
b) Áp dụng định lý Vi –ét



+−=

=+
)4(
2
2
21
21
mxx
xx
( )
28220822
20220
222
21
2
21
2
2
2
1
±=⇔=⇔=++⇒
=−+⇔=+
mmm
xxxxxx
vậy m=

0,5
2.
a) Vì đồ thị của hàm số (1) đi qua A(1;4)

4= m.1+1

3=⇔ m
Với m = 3 hàm số (1) có dạng y = 3x +1; vì 3>0 nên hàm số (1) đồng
biến trên R.
0,5
0,5
b) (d) : y = - x – 3
Vì đồ thị của hàm số (1) song song với (d)



−≠
−=

31
1m
Vậy m = -1 thì đồ thị của hàm số (1) song song với (d)
0,5
3 Gọi vận tốc của người đi xe đạp khi đi từ A đến B là x (km/h, x>0)
Khi đi từ B về A vận tốc của người đó là x + 3 (km/h)
thời gian đi từ A đến B là
)(
30
h
x
thời gian đi từ B về A là
)(
3
30
h
x +

vì thời gian về ít hơn thời gian đi là 30 phút =
)(
2
1
h
nên ta có pt
0,25
0,25
0,25
0,25
2
)(15
)(12
07297209
01803
36018060
2
1
3
3030
2
1
2
2
KTMx
TMx
xx
xxxx
xx
−=

=⇒
>∆⇒=+=∆
=−+⇔
+=−+⇒
=
+

Vậy vận tốc của người đi xe đạp khi đi từ A đến B là 12km/h
0,25
0,25
4
a) Ta có





COAC
BOAB
( t/c tiếp tuyến)
000
0
0
1809090
90
90
=+=∠+∠⇒






=∠
=∠
⇒ ACOABO
ACO
ABO
Vậy tứ giác ABOC nội tiếp ( định lý đảo về tứ giác nội tiếp)
0,25
0,5
0,25
b) xét

IKC và

IC B có
IBCICKIchung ∠=∠∠ ;
( góc tạo bởi tia tiếp
tuyến và dây cung và góc nội tiếp cùng chắn cung CK)
IBIKIC
IC
IK
IB
IC
ggICBIKC .)(
2
=⇒=⇒−∆∞∆⇒
0,5
0,5
c)

0
00
60
2
1
120360
=∠=∠
=∠−∠−∠−=∠
BOCBDC
BACACOABOBOC
(góc nội tiếp và góc ở tâm cùng chắn cung BC)
Mà BD//AC (gt)
0
1
60=∠=∠⇒ BDCC
( so le trong)
000
306090 =−=∠=∠⇒ OCDODC
0
30=∠=∠⇒ CDOBDO
0
120=∠=∠⇒ CODBOD
CDBD
cgcCODBOD
=⇒
−−∆=∆⇒ )(
Mà AB = AC (t/c 2tt cắt nhau); OB = OC = R
0,25
0,25
3

B
D
C
O
A
K
I
1
Do đó 3 điểm A, O, D cùng thuộc đường trung trực của BC
Vậy 3 điểm A, O, D thẳng hàng.
5

[ ]
3;1,, −∈zyx

1 3
( 1)( 1)( 1) 0
1 3
(3 )(3 )(3 ) 0
1 3
x
x y z
y
x y z
z
− ≤ ≤

+ + + ≥



⇒ − ≤ ≤ ⇒
 
− − − ≥


− ≤ ≤

1 0
2( ) 2
27 9( ) 3( ) 0
xyz xy yz xz x y z
xy yz xz
x y z xy yz xz xyz
+ + + + + + + ≥

⇒ ⇒ + + ≥ −

− + + + + + − ≥

2 2 2 2 2 2 2 2 2 2
2( ) 2 ( ) 2x y z xy yz xz x y z x y z x y z⇒ + + + + + ≥ + + − ⇒ + + ≥ + + −
2 2 2 2 2 2 2
3 2 11x y z x y z⇒ + ≥ + + ⇒ + + ≤
0,25
0,25
0,25
0,25
Cách2:.Không giảm tính tổng quát, đặt x = max
}{
zyx ,,



3 = x + y + z

3x nên 1

x

3


2 ( x -1 ) . (x - 3)

0 (1)
Lại có: x
2
+ y
2
+ z
2


x
2
+ y
2
+ z
2
+ 2(y +1) (z+1) = x
2

+ ( y + z )
2
+ 2
( y + z ) + 2
= x
2
+ ( 3 - x )
2
+ 2 ( 3- x) + 2 = 2 x
2
- 8x + 17 = 2 ( x -1 ) . (x - 3) + 11
(2)
Từ (1) và (2) suy ra x
2
+ y
2
+ z
2


11
Dấu đẳng thức xảy ra x = max
}{
zyx ,,

( x -1 ) . (x - 3) = 0
(y +1) (z+1) = 0

Không xảy ra dấu
đẳng thức

x + y + z = 3

4

×