Bài 1. Tìm các giới hạn sau:
1)
x
x x
x
2
1
2
lim
1
→
− −
−
2)
x
x x
4
lim 2 3 12
→−∞
− +
3)
x
x
x
3
7 1
lim
3
+
→
−
−
4)
x
x
x
2
3
1 2
lim
9
→
+ −
−
Bài 2. 1) Xét tính liên tục của hàm số sau trên tập xác định của nó:
x x
khi x
f x
x
x khi x
2
5 6
3
( )
3
2 1 3
− +
>
=
−
+ ≤
2) Chứng minh rằng phương trình sau có ít nhất hai nghiệm :
x x x
3 2
2 5 1 0
− + + =
.
Bài 3. 1) Tìm đạo hàm của các hàm số sau:
a)
y x x
2
1
= +
b)
y
x
2
3
(2 5)
=
+
2) Cho hàm số
x
y
x
1
1
−
=
+
.
a) Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x = – 2.
b) Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến song song với d:
x
y
2
2
−
=
.
Bài 4. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, SA
=
a 2
.
1) Chứng minh rằng các mặt bên hình chóp là những tam giác vuông.
2) Chứng minh rằng: (SAC)
⊥
(SBD) .
3) Tính góc giữa SC và mp (SAB) .
4) Tính góc giữa hai mặt phẳng (SBD) và (ABCD) .
Bài 5a. Tính
x
x
x x
3
2
2
8
lim
11 18
→−
+
+ +
.
Bài 6a. Cho
y x x x
3 2
1
2 6 8
3
= − − −
. Giải bất phương trình
y
/
0≤
.
Bài 5b. Tính
x
x x
x x
2
1
2 1
lim
12 11
→
− −
− +
.
Bài 6b. Cho
x x
y
x
2
3 3
1
− +
=
−
. Giải bất phương trình
y
/
0
>