Tải bản đầy đủ (.pdf) (11 trang)

Đề thi học sinh giỏi giải toán trên Máy tính cầm tay tỉnh Thừa Thiên Huế - Khối 11 (2009 - 2010)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (369.84 KB, 11 trang )


MTCT11THPT-Trang 1
S GIO DC V O TO K THI CHN HC SINH GII TNH
THA THIấN HU GII TON TRấN MY TNH CM TAY
THI CHNH THC KHI 11 THPT - NM HC 2009-2010

Thi gian lm bi: 150 phỳt
Ngy thi: 20/12/2009 - thi gm 5 trang
Điểm toàn bài thi
Các giám khảo
(Họ, tên và chữ ký)
Số phách
(Do Chủ tịch Hội đồng thi
ghi)
GK1

Bằng số

Bằng chữ
GK2


Qui nh: Hc sinh trỡnh by vn tt cỏch gii, cụng thc ỏp dng, kt qu tớnh toỏn vo ụ
trng lin k bi toỏn. Cỏc kt qu tớnh gn ỳng, nu khụng cú ch nh c th, c ngm
nh chớnh xỏc ti 4 ch s phn thp phõn sau du phy
Bi 1. (5 im) Tớnh giỏ tr ca hm s
( )
f x
ti
0,75
x



:

5
3
2 3 3
3 2
2 sin cos
( )
2
tan cot 3sin 1 1
3
x x
f x
x
x x











Túm tt cỏch gii: Kt qu:












Bi 2. (5 im)
Tỡm ta giao im ca ca th hai hm s
4 2
3 4
y x x

v
2
2
2 5
2
x x
y
x



.
Túm tt cỏch gii: Kt qu:








MTCT11THPT-Trang 2









Bài 3. (5 điểm)
Cho biết:
3 2
4tan 19tan 37tan 28 0
2
x x x x


 
     
 
 

3
3sin 5cos 4

2
y y y


 
   
 
 
.
Tính:




   
3 2
3 2 4 3
2 3
3 2 2 3
cos cot sin cos
sin 2sin cot 3cos
x y x y
M
y x y x
 

 


Tóm tắt cách giải: Kết quả:















Bài 4. (5 điểm) Cho dãy hai số
n
u
xác định như sau:
2
1 1 1
1; 5 8 ( 2,3,4, )
n n n
u u u ku n
 
     ,
k
là số nguyên dương cho trước.
a) Chứng tỏ rằng chỉ có một giá trị
k
bé hơn 30 để cho các giá trị của dãy số đều nguyên.

Khi đó tính chính xác các giá trị
10; 11 12 13
; ; .
u u u u

b) Với giá trị
k
tìm được ở câu a), lập công thức truy hồi tính
2
n
u

theo
1
n
u


n
u
. Chứng
minh.
Tóm tắt cách giải: Kết quả:









MTCT11THPT-Trang 3







Bài 5. (5 điểm) Tìm các chữ số hàng đơn vị, hàng chục và hàng trăm của số tự nhiên:
2010
9
2
A


Tóm tắt cách giải: Kết quả:















Bài 6. (5 điểm)
Bác An gửi tiết kiệm số tiền ban đầu là 20 triệu đồng theo kỳ hạn 3 tháng với lãi suất
0,72%/tháng. Sau một năm, bác An rút cả vốn lẫn lãi và gửi lại theo kỳ hạn 6 tháng với lãi suất
0,78%/tháng. Gửi đúng một số kỳ hạn 6 tháng và thêm một số tháng nữa thì bác An phải rút
tiền trước kỳ hạn để sửa chữa nhà được số tiền là 29451583,0849007 đồng (chưa làm tròn).
Hỏi bác An gửi bao nhiêu kỳ hạn 6 tháng, bao nhiêu tháng chưa tới kỳ hạn và lãi suất không
kỳ hạn mỗi tháng là bao nhiêu tại thời điểm rút tiền ? Biết rằng gửi tiết kiệm có kỳ hạn thì cuối
kỳ hạn mới tính lãi và gộp vào vốn để tính kỳ hạn sau, còn nếu rút tiền trước kỳ hạn, thì lãi
suất tính từng tháng và gộp vào vốn để tính tháng sau. Nêu sơ lược quy trình bấm phím trên
máy tính để giải.
Tóm tắt cách giải: Kết quả:










MTCT11THPT-Trang 4

Bài 7. (5 điểm) Cho đa thức
       
2 3 20
( ) 2 3 2 3 2 3 2 3
P x x x x x       
a) Tính gần đúng

2
3
P
 

 
 

b) Tìm hệ số chính xác của số hạng chứa
5
x
trong khai triển và rút gọn đa thức P(x).
Tóm tắt cách giải: Kết quả:














Bài 8. (5 điểm)
Trong ngày thi giải toán trên máy tính cầm tay (20/12/2009), bạn Bình đố bạn Châu tìm
số nguyên x nhỏ nhất sao cho khi bình phương lên thì được một số nguyên có 4 chữ số đầu là

2012 và 4 chữ số cuối là 2009. Em hãy giúp bạn Bình tìm số x này và viết chính xác số
2
x
.
Nêu sơ lược cách giải.
Tóm tắt cách giải: Kết quả:













Bài 9. (5 điểm)
Cho tứ diện ABCD có AB = 12 dm; AB vuông góc với mặt (BCD); BC = 7 dm; CD = 9
dm và góc CBD = 52
0
.
a) Tính gần đúng thể tích và diện tích toàn phần của tứ diện ABCD.

MTCT11THPT-Trang 5
b) Tính gần đúng bán kính mặt cầu ngoại tiếp tứ diện ABCD và số đo (độ, phút, giây) của
góc giữa hai mặt phẳng (SCD) và (BCD). Cho biết: Mặt cầu ngoại tiếp tứ diện là mặt
cầu có tâm cách đều 4 đỉnh của tứ diện đó một đoạn bằng bán kính.


Tóm tắt cách giải: Kết quả:











Bài 10. (5 điểm) Một chậu nước hình bán cầu bằng nhôm có bán kính
10
R cm

, đặt trong một
khung hình hộp chữ nhật (hình 1). Trong chậu có chứa sẵn một khối nước hình chỏm cầu có
chiều cao
4
h cm

. Người ta bỏ vào chậu một viên bi hình cầu bằng kim loại thì mặt nước
dâng lên vừa phủ kín viên bi (hình 2). Tính bán kính của viên bi (kết quả làm tròn đến 2 chữ số
lẻ thập phân)
Cho biết công thức tính thể tích khối chỏm cầu của hình cầu (O, R), có chiều cao
h
là:
2

hom
3
c cau
h
V h R

 
 
 
 


Hình 1 Hình 2
Tóm tắt cách giải: Kết quả:











MTCT11THPT-Trang 6
HẾT

MTCT11THPT-Trang 7
Sở Giáo dục và Đào tạo Kỳ thi chọn học sinh giỏi tỉnh

Thừa Thiên Huế Giải toán trên máy tính CầM TAY
Đề thi chính thức Khối 11 THPT - Năm học 2009-2010

ỏp ỏn v biu im
Bài

Cách giải
Điểm
TP
Điểm
toàn
bài
1
(0,75) 125,4511
f



5

2
Phng trỡnh cho honh giao im ca th hai hm s:
4 2
3 4
y x x

v
2
2
2 5

2
x x
y
x



l:

2 2
4 2 4 2
2 2
2 5 2 5
3 4 3 4 0
2 2
x x x x
x x x x
x x



.
Dựng chc nng SOLVE ta tỡm c hai nghim (khi ly giỏ tr u
l 0 v 1):
1
0,701149664
x
v
2
1,518991639

x
.
Dựng chc nng CALC tớnh cỏc giỏ tr tung giao im:
1
2,7668
y
v
2
2,4018
y
.
Vy: Hai th ca hai hm s ó cho ct nhau ti hai im


0,7011; 2,7668 , (1,519; 2,4018)
A B


3
tan 1,75
2
x x






, nờn



1 0 0
tan 1.75 180 119 44'42"
x


lu
vo bin nh A
Gii phng trỡnh:
3
3sin 5cos 4
2
y y y






, ta c:

0 0 0 0
102 21' 360 ; 195 43'20" 360
y k y k
. Theo iu kin bi toỏn
cho thỡ
0
195 43'20"
y (trong quỏ trỡnh tỡm nghim, ta lu kt qu ú
vo bin nh B)

Tớnh t s v lu vo bin X, tớnh mu v lu vo bin Y. Tớnh
0,0400
X
M
Y



4
2
1 1 1
1; 5 8 ( 2,3,4, )
n n n
u u u ku n


a)
2
1 2 1 1
1; 5 8 5 8
u u u ku k

.

2
u

N
thỡ
8 0, 1, 4, 9, 16 8, 9, 12, 17,24

k k

(k < 30).
Th vi
8, 9, 12, 17
k

: ch cú
1 2
,
u u
l s nguyờn, cũn
3
u

Z




MTCT11THPT-Trang 8

Với
24
k

: Ta có:
1 2 3 4 5 6 7
1, 9, 89; 881; 8721; 86329; 854569;
u u u u u u u      


8 9 10
8459361; 83739041; 828931049.
u u u  
11 12 13
8205571449; 81226783441; 804062262961;
u u u  

Công thức truy hồi của u
n+2
có dạng:
2 1 2
n n n
u au bu
  
  . Ta có hệ
phương trình:
3 2 1
4 3 2
9 89
10; 1
89 9 881
u au bu
a b
a b
u au bu a b
 
 
 
    

 
   



Do đó:
2 1
10
n n n
u u u
 
 

Chứng minh sơ lược:
Ta có:
2 2 2 2
1 1 1 1 1 1
5 24 24 5 24 24 10 24 0
n n n n n n n n n n
u u u u u u u u u u
     
           
(1)
Thay n bởi n +1:
2 2
1 1
10 24 0
n n n n
u u u u
 

   
(2).
Trừ (1) cho (2) ta có:






2 2
1 1 1 1 1 1 1 1
10 0 10 0
n n n n n n n n n n
u u u u u u u u u u
       
        

Dãy số đơn điệu tăng, nên:
1 1 1 1
10 10
n n n n n n
u u u u u u
   
    
Hay:
2 1
10
n n n
u u u
 

 



5
Ta có:
 
1
9 9
2 2 512 mod1000
 


2
9
9 9 9 9 9 5 4
2 2 2 512 512 512 352 (mod1000)

     


3 2 2
9
9 9 9 9 9
2 2 2 352 912 (mod1000)

   




4 3 3
9
9 9 9 9 9
2 2 2 912 952 (mod1000)

   





5 4 6 5
9 9
9 9 9 9 9 9
2 2 952 312 (mod1000);2 2 312 552 (mod1000);
     




6 5 7 6
9 9
9 9 9 9 9 9
2 2 312 552 (mod1000);2 2 552 712 (mod1000);
     




8 7 9 8

9 9
9 9 9 9 9 9
2 2 712 152 (mod1000);2 2 152 112 (mod1000);
     





9 8 10 9
9 9
9 9 9 9 9 9
2 2 152 112 (mod1000);2 2 112 752 (mod1000);
     



11 10
9
9 9 9
2 2 752 512 (mod1000);
  

Do đó chu kỳ lặp lại là 10, nên
Vậy:
2010
9
2
A


có ba chứ số cuối là: 752


6
Số tiền nhận được cả vốn lẫn lãi sau 4 kỳ hạn 3 tháng và sau 1; 2; 3 ;
4; 5; 6; 7 kỳ hạn 6 tháng lần lượt là:
   
4
20000000 1 0,72 3 100 1 0,78 6 100
A
      . Dùng phím CALC lần



MTCT11THPT-Trang 9
lượt nhập giá tri của A là 1; 2; 3; 4; 5; 6 ta đư
ợc: 22804326,3 đồng;
232871568,78 đồng; 24988758,19 đồng; 26158232,06 đồng;
27382437,34 đồng ; 28663935,38 đồng; 30005407,56 đồng
Ta có: 28663935,38 < 29451583,0849007< 30005407,56,
Nên số kỳ hạn gửi sáu tháng đủ là: 6 kỳ hạn.
Giải phương trình sau, bằng dùng chức năng SOLVE và nhập cho A
lần lượt là 1 ; 2; 3 ; 4; 5, nhập giá trị đầu cho X là 0,6 (vì lãi suất
không kỳ hạn bao giờ cũng thấp hơn có kỳ hạn)
     
4 6
20000000 1 0,72 3 100 1 0,78 6 100 1 100 29451583.0
849007 0
A
X

         
X = 0,68% khi A = 4.
Vậy số kỳ hạn 6 tháng bác An gửi tiết kiệm là: 6 kỳ hạn ; số tháng
gửi không kỳ hạn là: 4 tháng và lãi suất tháng gửi không kỳ hạn là
0,68%
7
a)
2
68375,2807
3
P
 
 
 
 

b) Hệ số của số hạng chứa
5
x
là:

20
5 5 5 5
5
2 3 2 296031627712=9473012086784
k
k
k
C



  




8
Các số có 4 chữ số khi bình phương lên có 4 chữ số cuối là 2009 là:
2003, 7003, 3253, 8253, 1747, 6747, 2997, 7997.
4485 2012 4487; 14184 2012 14189
abcd abcde   
44855 2012 44866; 141844 2012 141880
abcdef abcdefg   


Số cần tìm là: x = 14186747
2
201263790442009
x 


9
a)

Xét tam giác BCD, ta có:
2 2 2 0
2 cos52
CD BC BD BC BD   




2 0 2 2
14cos52 7 9 0
BD BD
    

Giải phương trình bậc hai theo BD, ta có hai
nghiệm:
1
2,801833204 0
x
  
(loại) và
2
11,42109386
x  .
Do đó: 11,42109386
BD dm

.
0 2
1
sin52 31,49980672
2
BCD
S BC BD dm
  

Thể tích của tứ diện ABCD:
3

1
125,9992
3
BCD
V S SA dm
  



MTCT11THPT-Trang 10
2 2
1 1
42 ; 68,52656315
2 2
ABC ABD
S BC AB dm S BD AB dm
     

Xét tam giác ACD:
2 2 2 2
7 12 193
AC BC AB     dm
2 2
16,56627251
AD AB BD dm
  
Nửa chu vi của tam giác ACD: 19,72935825
2
AC CD AD
p dm

 
 
   
2
62,51590057
ACD
S p p AC p AD p CD dm
    
Vậy diện tích toàn phần của tứ diện ABCD là:
2
204,5423
tp
S dm



b) Tâm I của mặt cầu ngoại tiếp tứ diện ABCD cách đều B, C, D nên
I ở trên trục Ox của đường tròn ngoại tiếp tam giác BCD (Ox


(BCD) tại tâm O của đường tròn (BCD), nên Ox//AB). Trong mặt
phẳng (SA, Ox), trung trực đoạn AB cắt Ox tại I. I là tâm mặt cầu
ngoại tiếp tứ diện ABCD và bán kính của mặt cầu là:
2 2 2 2
6
R IO OB r
   
(
r
là bán kính đường tròn ngoại tiếp tam

giác BCD):
0
9
2 5,710581968
sin 2sin52
CD
r r
B
   
2 2
6 8,2832
R r dm
   .
Ta có: cos cos
BCD
BCD ACD
ACD
S
S S
S
 

 

   
0,5038687188 (

là góc
giữa 2 mặt phẳng (ACD) và (BCD))


1 0
cos 59 44'37"
BCD
ACD
S
S




 
 
 
 



10
Gọi
x
là bán kính viên bi hình cầu. Điều kiện:
0 2 10 0 5
x x
    

Thể tích khối nước hình chỏm cầu khi chưa thả viên bi vào:
2
1
4 416
16 10

3 3 3
h
V h R

 
   
    
   
   

Khi thả viên bi vào thì khối chỏm cầu gồm khối nước và viên bi có
thể tích là:
 


2
2
2
4 30 2
2
2
3 3
x x
x
V x R



 
  

 
 

Ta có phương trình:
 
3 2 3
2 1
4
4 30 2 416 4
3
V V x x x x
   
     
3 2
3 30 104 0
x x
   
.
Giải phương trình ta có các nghiệm:
1
9,6257 5
x
 
(loại);
2
2,0940 5
x
 

3

1,7197 0
x
  
(loại).
Vậy: Bán kính viên bi là
2,09
r cm






MTCT11THPT-Trang 11

:

×