( Thi gian 120 pht không k thi gian giao đ)
!":(2 đim)
2
1 1 2 5 1
: :
2 2 3 3 2
− +
÷
!"#$%&'(!)*+,-+./01 !"#
234!56/
!"#2 đim$4!x7
/
( )
8 9 ,
:;,
: < <
x
− + = − +
/4!
x
7
, 8
, /: /< 8=.==
+ +
=
x x x
!"(2 đim)/#56 :"#>?@A
, : 8
< 9 B
/C7DEFGF
45HFI"#JEF,9:=K/4!"#/
/ LA
a c
c b
=
/LMF!DEF
, ,
, ,
a c a
b c b
+
=
+
#0N7(MO(
JFP
!"(3 đim)LA!FCLJ
µ
0
A 90=
;C%L/Q(215RFSFT
"AAC2 LE!UF#2N5RFSFT/VWC2 LV2(XFFJ2NT/
LMF!DEF
/%LV
/V%CYLV
!"%(1 đim)LMF!DEF
2 2 2 2 2 2 2 2
3 5 7 19
A 1
1 .2 2 .3 3 .4 9 .10
= + + +×××+ <
&'(
( Lưu : Cn b coi thi không gii thch g thêm)
)*+
!" , -/ 012
2
1 1 2 5 1 1 9 13 8 13 16 39 23
: : :
2 2 3 3 2 2 16 6 9 6 18 18
− −
− + = − = − = =
÷
8;=
04'(!)*+,-+.ZJ+.%/*+,
⇒
%9
0[$ !"#\A? -$%9&/
L]*8-9/#^J !"#$%9&/
=;<
=/<
( )
8
,
:
8
,
:
8 _
&%,Y %
: :
8 +<
&%+,Y %
: :
8 9 , 8 9 8B ,
:;,
: < < : < < <
8 9 89
: < <
8
,
:
− =
− =−
−
− + = − + ⇔ − + = +
⇔ − + =
⇔ − = ⇔
⇔
x
x
x x
x
x
=/,<
=/,<
=/,<
=/,<
,
, 8
, /: /< 8=.==
, /9/: /:/< 8=.==
:= 8=.==8, K==
:= :=
,
+ +
=
⇔ =
⇔ = =
⇔ =
⇒ =
x x x
x
x
x x x
x
=;,<
=;,<
=;,<
=;,<
];;? "#56D3"#/
@AO J%
, : 8
< 9 B
*8
2
,
Y
,
Y
,
%,9:=K*,
=;,<
4
2
-2
-4
-5
5
A
3*8
⇒
, : 8
< 9 B
a b c
= =
%`
⇒
, :
- -
< 9 B
k
a k b k c
= = =
AJ*,
⇔
,
9 K 8
* ,9:=K
,< 8B :B
k
+ + =
⇒
`%8.=2 `%
8.=
−
Y0N`%8.=;56%_,-%8:<-%:=/
VJJ%YY%,:_/
Y0N`%
8.=
−
;56%
_,
−
-%
8:<
−
-%
:=
−
VJJ%
_,
−
Y*
8:<
−
Y*
:=
−
%
,:_
−
/
=;,<
=;,<
=;,<
3
a c
c b
=
"($D
,
/c a b
=
VJ
, , ,
, , ,
/ *
/ *
+ + +
= = =
+ + +
a c a a b a a b a
b c b a b b b a b
=/<
=;<
AHK∆
2
CKH∆
J
µ
µ
0
90H K= =
C%L*F
·
·
HAB KCA=
*LUFa2N
·
KAC
⇒
AHK = CKA∆ ∆
*F//F
($D%LV*Lbc5HFMF
8;=
3d(
AHK = CKA∆ ∆
"($DC%V*Lbc5HFMF
0[$V%YV%CYLV
=;<
=;<
% J
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2
3 5 7 19
A
1 .2 2 .3 3 .4 9 .10
2 1 3 2 4 3 10 9
=
1 .2 2 .3 3 .4 9 .10
1 1 1 1 1 1 1 1
=
1 2 2 3 3 4 9 10
1
= 1- 1
10
= + + +×××+ =
− − − −
+ + +×××+
− + − + − +×××+ −
<
=;<
=;<
( Lưu : Hc sinh c cch gii khc m đ!ng th v#n cho đi$m t%i đa)
A
B
C
H
K