Tải bản đầy đủ (.doc) (1 trang)

đề ôn thi tốt nghiệp thpt môn toán, đề tham khảo số 13

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (59.02 KB, 1 trang )

ĐỀ 13
Câu 1: Cho hàm số:
mx
mmxmmx
y
+
++++
=
24)2(
222
1) Tìm các giá trị của m để đồ thị hàm tương ứng có 1 điểm cực trị thuộc
góc phần tư thứ (II) và 1 điểm cực trị thuộc góc phần tư thứ (IV) của
mặt phẳng toạ độ.
2) Khảo sát và vẽ đồ thị (C) của hàm số khi m=-1. Dùng (C), biện luận
theo a số nghiệm thuộc
]3;0[
π
của phương trình:
04cos)1(cos
2
=−+−+ mxmx
Câu 2: Tìm m sao cho hệ bất phương trình sau có nghiệm:



≥+−+−
≤+−
03)1(2
067
2
2


mxmx
xx
Câu 3: Định a để hai phương trình sau là 2 phương trình tương đương
xxxxx 5sin
2
1
3cos.2sin2cos.s in −=
(1)
16cos4cos2cos =++ xxaxa
(2)
Câu 4: Trong mặt phẳng Oxy cho 3 điểm I(2;4); B(1;1); C(5;5). Tìm điểm A sao
cho I là tâm đường tròn nội tiếp tam giác ABC
Câu 5: Trong không gian Oxyz, cho tam giác ABC có A(1;1;2); B(4;1;2); C(1;4;2)
1) Chứng minh tam giác ABC vuông cân
2) Tìm tọa độ điểm S biết SA vuông góc với mặt phẳng (ABC) và mặt cầu
ngoại tiếp tứ diện S.ABC tiếp xúc với mặt phẳng (P): x+y+4=0
Câu 6: Cho hình nón có đỉnh S, đáy là đường tròn tâm O, SA và SB là hai đường
sinh biết SO=3, khoảng cách từ O đến mặt phẳng SAB bằng 1, diện tích tam giác
SAB bằng 18. Tính thể tích và diện tích xung quanh của hình nón đã cho
Câu 7: a) Tính tích phân
)2,()1(
2
1
32
≥Ν∈−=

nndxxxI
n
b) Chứng minh rằng :
)2,(

)1(3
7
33
18
)1(
0
11
≥Ν∈
+
=
+



=
++

nn
nk
C
n
k
nk
knk
n
Câu 8: Cho a,b,c là 3 số dương và
3≤++ cba
.CMR
33
11

1
11
1
11
1
222222
≥++++++++=
cabcba
P

×