Tải bản đầy đủ (.doc) (2 trang)

đề ôn thi tốt nghiệp thpt môn toán, đề tham khảo số 10

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (53.29 KB, 2 trang )

ĐỀ 10
Câu 1: Cho hàm số:
1
12
)(

+
==
x
x
xfy
(C)
1) Khảo sát hàm số. Từ (C) vẽ đồ thị (C’) của hàm số
1
12
)(

+
==
x
x
xgy
2) Gọi (D) là đường thẳng có phương trình: y=x+m (m là tham số). Tìm
các giá trị của tham số m sao cho (D) cắt (C) tại 2 điểm phân biệt
M,N. Khi đó tính diện tích tam giác IMN theo m (I là tâm đối xứng của
(C)) và tìm m sao cho S
IMN
=4
Câu 2: Giải các bất phương trình sau:
1)
1)12(log


2
1
>−−
+
xx
x
2)
)243(log1)243(log
2
3
2
9
++>+++ xxxx
Câu 3: Giải các bất phương trình và hệ phương trình sau :
1)
),0(,
2
sin1
sin
sin1
2
cos
2
sin
22
44
π
∈+
+
=−


+
xxtg
x
xxtg
x
xx
2)





=
=
3.
4
3
sin.sin
ytgxtg
yx
ππ
ππ
Câu 4: Trong mặt phẳng Oxy, cho (E):
1
4
2
2
=+ y
x

, (D) là 1 tiếp tuyến của (E),
(D) cắt hai trục toạ độ Ox,Oy lần lượt tại M,N. Tìm phương trình (D) biết:
1) Tam giác OMN có diện tích nhỏ nhất
2) Đoạn MN có độ dài nhỏ nhất
Câu 5: Trong không gian Oxyz, cho 2 mặt cầu:
(S
1
):
01562
222
=−−−++ zyzyx
(S
2
):
01143
222
=−−−+++ zyxzyx
Cho biết rằng (S
1
) và (S
2
) cắt nhai. Tìm tâm và bán kính đừơng tròn (C) là phần
giao của (S
1
) và (S
2
)
Câu 6: Cho hình chóp S.ABCD đáy ABCD là hình vuông cạnh a, SA vuông góc với
mặt phẳng (ABCD) và
2aSA =

. Mặt phẳng (P) qua A và vuông góc SC, (P) cắt
các cạnh SB,SC,SD lần lựơt tại M,N,K. Tính diện tích tứ giác AMNK
Câu 7: Tìm 1 nguyên hàm F(x) của hàm số
0,
)1(
1
)(
7
573
>
+
= x
xx
xf
biết F(x) có
giá trị nhỏ nhất trên đoạn [1;2] bằng 4
Câu 8: Cho hai số tự nhiên n,k thỏa:
nk
≤≤
6
. Chứng minh:
k
n
k
n
k
n
k
n
k

n
k
n
k
n
k
n
CCCCCCCCCCCCCCC
6
66
6
55
6
44
6
33
6
22
6
11
6
0
6

+
−−−−−−
=++++++
Câu 9: Cho 4 số a,b,c,d thuộc [1;2].CMR:
12
25

)(
))((
2
2222

+
++
bdac
dcba

×