ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010.
Môn thi : TOÁN (ĐỀ 41-k )
I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm)
Câu I (2 điểm) Cho hàm số y = x
3
+ 3x
2
+ mx + 1 có đồ thị là (C
m
); ( m là tham số)
1. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 3.
2. Xác định m để (C
m
) cắt đường thẳng y = 1 tại ba điểm phân biệt C(0;1), D, E sao cho các tiếp tuyến của
(C
m
) tại D và E vuông góc với nhau.
Câu II (2 điểm)
1.Giải phương trình sau: sin(
2
π
+ 2x)cot3x + sin(
π
+ 2x) –
2
cos5x = 0 .
2. Giải phương trình
2 2 2 2
2 1 3 2 2 2 3 2x x x x x x x− + − − = + + + − +
.
Câu III (1 điểm) Tính tích phân: I =
( )
1
2
0
4 d
4 5
x x
x x
+
+ +
∫
Câu IV(1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a,
·
0
60ABC =
;SD =a
3
và vuông góc
với đáy. Gọi I, H lần lượt là trực tâm của các tam giác ACD và SAC. Tính thể tích khối tứ diện HIAC.
Câu V (1 điểm) Cho x, y, z là các số thực dương thoả mãn: x + y + z = xyz.
Tìm GTNN của A =
)1()1()1( zxy
zx
yzx
yz
xyz
xy
+
+
+
+
+
.
II. PHẦN RIÊNG (3 điểm) Thí sinh chỉ được làm một trong hai phần (phần 1 hoặc 2)
1.Theo chương trình Chuẩn
Câu VIa.( 2 điểm)
1. Trong mặt phẳng Oxy , cho ΔABC biết A(5; 2). Phương trình đường trung trực cạnh BC, đường trung tuyến
CC’ lần lượt là x + y – 6 = 0 và 2x – y + 3 = 0. Tìm tọa độ các đỉnh của ΔABC.
2. Trong không gian Oxyz cho hai đường thẳng: (d
1
):
=
=
=
4z
ty
t2x
và ( d
2
) :
3
0
x t
y t
z
= −
=
=
.Chứng minh rằng (d
1
) và
( d
2
) chéo nhau. Viết phương trình mặt cầu (S) có đường kính là đoạn vuông góc chung của (d
1
) và ( d
2
).
Câu VII.a (1 điểm) Giải phương trình sau trên tập hợp số phức:
2 2
( )( ) 0z i z z+ − =
.
2. Theo chương trình Nâng cao.
Câu VIb.(2điểm)
1. Trong mpOxy, cho đường tròn (C): x
2
+ y
2
– 6x + 5 = 0. Tìm M thuộc trục tung sao cho qua M kẻ được hai
tiếp tuyến của (C) mà góc giữa hai tiếp tuyến đó bằng 60
0
.
2.Trong không gian với hệ tọa độ Oxyz, cho điểm M(2 ; 1 ; 0) và đường thẳng d có phương trình:
x 1 y 1 z
2 1 1
− +
= =
−
.Viết phương trình chính tắc của đường thẳng đi qua điểm M, cắt và vuông góc với đường thẳng
d.
Câu VIIb. (1 điểm) Giải hệ phương trình
3 3
log log 2
2 2
4 4 4
4 2 ( )
log ( ) 1 log 2 log ( 3 )
xy
xy
x y x x y
= +
+ + = + +
.
Hết (kda)