Tải bản đầy đủ (.doc) (4 trang)

Đề thi tuyển sinh vào lớp 10 THPT (27)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (131.08 KB, 4 trang )

K THI TUYN SINH VO LP 10 THPT
NM HC 2011 2012
Mụn: TON
Thi gian: 120 phỳt (khụng k thi gian giao )
Bi 1: (2,0 im)
( ) ( )
2
4 2
)9 3 2 0
) 7 18 0
2) 12 7 2 3
a x x
x x
m y x m y x m
+ =
+ =
= + = + +
1) Giải các ph ơng trình sau:

b
Với giá trị nào của thì đồ thị hai hàm số và cắt nhau tại một điểm
trên trục tung.
Bi 2: (2,0 im)
2 1
1)
1 2 3 2 2
1 1 1 2
2) 1 .
1
1 1
)


) 3.
x
x x x
a
b x
= +
+ +

= + +
ữ ữ

+

=
Rút gọn biểu thức: A
Cho biểu thức: B
Rút gọn biểu thức B
Tìm giá trị của để biểu thức B
.
Bi 3: (1,5 im)
( )
( )
( ) ( )
2 2
2 1
1
2 2
1) 1
2) ;
y x m

x y m
m
m x y x y
= +


=

=
= +
Cho hệ ph ơng trình:
Giải hệ ph ơng trình 1 khi
Tìm giá trị của đề hệ ph ơng trình 1 có nghiệm sao cho biểu thức P
đạt giá trị nhỏ nhất.
Bi 4: (3,5 im)
Cho tam giác ABC có ba góc nhọn và nội !ếp đường tròn
( )
O
. Hai đường cao BD và CE của tam
giác ABC cắt nhau tại điểm H. Đường thẳng BD cắt đường tròn
( )
O
tại điểm thứ hai P; đường thẳng
CE cắt đường tròn
( )
O
tại điểm thứ hai Q. Chứng minh:
1)BEDC lµ tø gi¸c néi tiÕp.
2) HQ.HC HP.HB
3) § êng th¼ng DE song song víi ® êng th¼ng PQ.

4) § êng th¼ng OA lµ ® êng trung trùc cña ®o¹n th¼ng PQ.
=
Bài 5: (1,0 điểm)
( )
( )
2 2 2
2 2 2 2 2 2 2
2
2
2
, , 4 3 7.
1 1 3 3
4 3 4 4 2. . 2. . 3 3 4 3
4 2 4 2
1 3
2 3 7 7, , ,
2 2
x y z x y z yz x y
x y z yz x y x x y y z z y y
x y z y x y z
+ + − − − ≥ −
 
 
+ + − − − = − + + − + + − + − −
 ÷
 ÷
 ÷
 
 
 

 
= − + − + − − ≥ − ∀ ∈
 ÷
 ÷
 ÷
 
 
¡
Cho lµ ba sè thùc tuú ý. Chøng minh:
Ta cã:
HƯỚNG DẪN GIẢI:
Câu 1:
1/ a/ 9x
2
+3x-2=0;

=81,phương trình có 2 nghiệm x
1
=
2
3

;x
2
=
1
3
b/ Đặt x
2
=t (t


0) pt đã cho viết được t
2
+7t-18=0 (*);
2
121 11∆ = =
pt (*) có t=-9 (loại);t=2
với t=2 pt đã cho có 2 nghiệm
2; 2x x= = −
2/Đồ thị y=12x+(7-m) cắt trục tung tại điểm A(0;7-m); đồ thị y=2x+(3+m) cắt trục tung tại điểm B(0;3+m)
theo yêu cầu bài toán A

B khi 7-m=3+m tức là m=2.
Câu 2:
1/
2 1 7 5 2 (7 5 2)(1 2)(3 2 2)
(3 2 2)(3 2 2) 1
1
1 2 3 2 (1 2)(3 2 2)
A
+ + − −
= + = = = − + =

+ + + +
2/ a/
1 1 1 2 1 2 2 2
( )( ) ( )( )
( 1)( 1) ( 1)( 1)
x x x x x
B

x x x x x x x
+ − + + − + −
= = =
+ − − +
b/
2 4
3 3
9
B x
x
= ⇔ = ⇔ =
(thoả mãn đk )
Câu 3:
1/ Khi m=1 ta có hệ pt:
2 2 (1)
2 1 (2)
y x
x y
− =


− = −

rút y từ (2) y=2x+1 thế vào pt (1) được x=0, suy ra y=1
Vậy hệ có nghiệm (0;1)
2/
2 2 2 2 2 2 2 2 2
2 1 1 1 1 1
( 1) 2 2 1 ( 2 ) 2. ( ) 1 ( ) ( 2 )
2 2

2 2 2 2
P x y m m m m m m m= + = − + = − + = − + + − == − + ≥


P đạt GTNN bằng
1
2
khi
1 1
2
2
2
m m= ⇔ =
Câu 4: Từ giả thiết ta có:
·
·
0
0
90
90
CEB
CDB

=


=


suy ra E,D nhìn B,C dưới 1 góc vuông

nên tứ giác BEDC nội !ếp được trong 1 đường tròn.
1) Vì tam giác HBC và HPQ đồng dạng (góc góc)nên HQ.HC=HP.HB
2) BEDC nội !ếp đường tròn suy ra
·
·
·
;BDE BCE BCQ= =

từ câu 1/ Ta có :
·
·
BPQ BCQ=
Suy ra
·
·
BDE BPQ=
(2 góc đồng vị suy ra đpcm)
3) OP=OQ (vì bằng bán kính đường tròn O) (1)
·
·
EBD ECD=
(góc nội !ếp cùng chắn cung ED)

QA=PA Vậy A và O cách đều P,Q nên suy ra đpcm.
Bài 5: (1,0 điểm)
H
E
Q
P
D

O
A
B
C
( )
( )
2 2 2 2 2 2 2
2
2
2
1 1 3 3
4 3 4 4 2. . 2. . 3 3 4 3
4 2 4 2
1 3
2 3 7 7, , ,
2 2
x y z yz x y x x y y z z y y
x y z y x y z
 
 
+ + − − − = − + + − + + − + − −
 ÷
 ÷
 ÷
 
 
 
 
= − + − + − − ≥ − ∀ ∈
 ÷

 ÷
 ÷
 
 
¡
Ta cã:

×