Tải bản đầy đủ (.doc) (4 trang)

Đề thi tuyển sinh vào lớp 10 THPT (26)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (132.92 KB, 4 trang )

ĐỀ THI TUYỂN SINH LỚP 10 THPT
NĂM HỌC 2011 - 2012
Môn : TOÁN
Thời gian làm bài 120 phút (không kể thời gian giao đề)
Đề thi gồm 05 câu trên 01 trang
Câu 1 (2,0 điểm):
1. Rút gọn các biểu thức
a)
A 2 8= +
b)
( )
a b
B + . a b - b a
ab-b ab-a
 
=
 ÷
 ÷
 
với
0, 0,a b a b> > ≠
2. Giải hệ phương trình sau:
2x + y = 9
x - y = 24



Câu 2 (3,0 điểm):
1. Cho phương trình
2 2
x - 2m - (m + 4) = 0


(1), trong đó m là tham số.
a) Chứng minh với mọi m phương trình (1) luôn có 2 nghiệm phân biệt:
b) Gọi x
1
, x
2
là hai nghiệm của phương trình (1). Tìm m để
2 2
1 2
x + x 20=
.
2. Cho hàm số: y = mx + 1 (1), trong đó m là tham số.
a) Tìm m để đồ thị hàm số (1) đi qua điểm A (1;4). Với giá trị m vừa tìm được, hàm số (1) đồng biến
hay nghịch biến trên R?
b) Tìm m để đồ thị hàm số (1) song song với đường thẳng (d) có phương trình: x + y + 3 = 0
Câu 3 (1,5 điểm):
Một người đi xe đạp từ địa điểm A đến địa điểm B dài 30 km. Khi đi ngược trở lại từ B về A người
đó tăng vận tốc thêm 3 (km/h) nên thời gia về ít hơn thời gian đi là 30 phút. Tính vận tốc của người đi xe
đạp lúc đi từ A đến B.
Câu 4 (2,5 điểm):
Cho đường tròn tâm O, bán kính R. Từ điểm A bên ngoài đường tròn, kẻ 2 tiếp tuyến AB, AC với
đường tròn (B, C là các tiếp điểm). Từ B, kẻ đường thẳng song song với AC cắt đường tròn tại D (D khác
B). Nối AD cắt đường tròn (O) tại điểm thứ hai là K. Nối BK cắt AC tại I.
1. Chứng minh tứ giác ABOC nội tiếp đường tròn.
2. Chứng minh rằng : IC
2
= IK.IB.
3. Cho
·
0

BAC 60=
chứng minh ba điểm A, O, D thẳng hàng.
Câu 5 (1,0 điểm):
Cho ba số x, y, z thỏa mãn
[ ]
x, y, z 1:3
x + y + z 3

∈ −


=


. Chứng minh rằng:
2 2 2
x + y + z 11≤
HẾT
Hướng dẫn và đáp án
câu nội dung điểm
1 1.
a) A=
232)21(222 =+=+
0,5
b) B=
( )
abba
baa
b
bab

a











− )()(
=
babaab
baab
ba
−=−










)(
)(

0,5
2.



=
−=




=
=+




=
=+




=−
=+
11
13
11
911.2
333

92
24
92
x
y
x
y
x
yx
yx
yx
Vậy hpt có nghiệm (x;y) = (11;-13)
0,75
0,25
2 1.
a)
[ ]
5)4(.1)1('
222
+=+−−−=∆ mm

mmm ∀>∆⇒∀≥ ,0',0
2
.
Vậy pt (1) luôn có 2 nghiệm phân biệt với mọi m
0,5
0,5
b) Áp dụng định lý Vi –ét




+−=
=+
)4(
2
2
21
21
mxx
xx
0,5
( )
28220822
20220
222
21
2
21
2
2
2
1
±=⇔=⇔=++⇒
=−+⇔=+
mmm
xxxxxx
vậy m=

2.
a) Vì đồ thị của hàm số (1) đi qua A(1;4)


4= m.1+1
3
=⇔
m
Với m = 3 hàm số (1) có dạng y = 3x +1; vì 3>0 nên hàm số (1) đồng biến trên R.
0,5
0,5
b) (d) : y = - x – 3
Vì đồ thị của hàm số (1) song song với (d)



−≠
−=

31
1m
Vậy m = -1 thì đồ thị của hàm số (1) song song với (d)
0,5
3 Gọi vận tốc của người đi xe đạp khi đi từ A đến B là x (km/h, x>0)
Khi đi từ B về A vận tốc của người đó là x + 3 (km/h)
thời gian đi từ A đến B là
)(
30
h
x
thời gian đi từ B về A là
)(
3

30
h
x +
vì thời gian về ít hơn thời gian đi là 30 phút =
)(
2
1
h
nên ta có pt
)(15
)(12
07297209
01803
36018060
2
1
3
3030
2
1
2
2
KTMx
TMx
xx
xxxx
xx
−=
=⇒
>∆⇒=+=∆

=−+⇔
+=−+⇒
=
+

Vậy vận tốc của người đi xe đạp khi đi từ A đến B là 12km/h
0,25
0,25
0,25
0,25
0,25
0,25
4
a) Ta có





COAC
BOAB
( t/c tiếp tuyến)
0,25
0,5
B
D
C
O
A
K

I
1
000
0
0
1809090
90
90
=+=∠+∠⇒





=∠
=∠
⇒ ACOABO
ACO
ABO
Vậy tứ giác ABOC nội tiếp ( định lý đảo về tứ giác nội tiếp)
0,25
b) xét

IKC và

IC B có
IBCICKIchung ∠=∠∠ ;
( góc tạo bởi tia tiếp tuyến và dây cung và
góc nội tiếp cùng chắn cung CK)
IBIKIC

IC
IK
IB
IC
ggICBIKC .)(
2
=⇒=⇒−∆∞∆⇒
0,5
0,5
c)
0
00
60
2
1
120360
=∠=∠
=∠−∠−∠−=∠
BOCBDC
BACACOABOBOC
(góc nội tiếp và góc ở tâm cùng chắn cung BC)
Mà BD//AC (gt)
0
1
60=∠=∠⇒ BDCC
( so le trong)
000
306090 =−=∠=∠⇒ OCDODC
0
30=∠=∠⇒ CDOBDO

0
120=∠=∠⇒ CODBOD
CDBD
cgcCODBOD
=⇒
−−∆=∆⇒ )(
Mà AB = AC (t/c 2tt cắt nhau); OB = OC = R
Do đó 3 điểm A, O, D cùng thuộc đường trung trực của BC
Vậy 3 điểm A, O, D thẳng hàng.
0,25
0,25
5

[ ]
3;1,, −∈zyx

1 3
( 1)( 1)( 1) 0
1 3
(3 )(3 )(3 ) 0
1 3
x
x y z
y
x y z
z
− ≤ ≤

+ + + ≥



⇒ − ≤ ≤ ⇒
 
− − − ≥


− ≤ ≤

1 0
2( ) 2
27 9( ) 3( ) 0
xyz xy yz xz x y z
xy yz xz
x y z xy yz xz xyz
+ + + + + + + ≥

⇒ ⇒ + + ≥ −

− + + + + + − ≥

2 2 2 2 2 2 2 2 2 2
2( ) 2 ( ) 2x y z xy yz xz x y z x y z x y z⇒ + + + + + ≥ + + − ⇒ + + ≥ + + −
2 2 2 2 2 2 2
3 2 11x y z x y z⇒ + ≥ + + ⇒ + + ≤
0,25
0,25
0,25
0,25
Cách2:.Không giảm tính tổng quát, đặt x = max
}{

zyx ,,


3 = x + y + z

3x nên 1

x

3


2 ( x -1 ) . (x - 3)

0 (1)
Lại có: x
2
+ y
2
+ z
2


x
2
+ y
2
+ z
2
+ 2(y +1) (z+1) = x

2
+ ( y + z )
2
+ 2 ( y + z ) + 2
= x
2
+ ( 3 - x )
2
+ 2 ( 3- x) + 2 = 2 x
2
- 8x + 17 = 2 ( x -1 ) . (x - 3) + 11 (2)
Từ (1) và (2) suy ra x
2
+ y
2
+ z
2


11
Dấu đẳng thức xảy ra x = max
}{
zyx ,,

( x -1 ) . (x - 3) = 0
(y +1) (z+1) = 0

Không xảy ra dấu đẳng thức
x + y + z = 3


×