Tải bản đầy đủ (.pdf) (39 trang)

Hình học phi euclid mô hình nửa phẳng poincaré

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (440.3 KB, 39 trang )


LỜI CẢM ƠN

Tác giả xin được bày tỏ lòng biết ơn các thầy giáo, cô giáo khoa Toán, khoa
Sau đại học - Trường Đại học Vinh đã dành nhiều tâm huyết truyền đạt những kiến
thức quý báu, giúp đỡ tác giả hoàn thành khóa học và luận văn.
Đặc biệt, tác giả xin bày tỏ lòng biết ơn sâu sắc đến thầy giáo TS.Nguyễn Duy
Bình, người đã đặt bài toán và tận tình giúp đỡ tôi trong suốt quá trình học tập,
nghiên cứu và hướng dẫn, đóng góp ý kiến quý báu để tôi hoàn thành khoá luận
này.
Tác giả cũng xin được gửi lời cảm ơn các thầy giáo trong chuyên ngành Hình
học -Tôpô đã giảng dạy hướng dẫn, giúp đỡ trong học tập và viết luận văn.
Tôi cũng chân thành cảm ơn Ban Giám Hiệu, tổ toán Trường THPT Hồng Lĩnh
cùng các đồng nghiệp, bạn bè và gia đình đã động viên, tạo mọi điều kiện cho tôi
trong quá trình theo học chương trình cao học tại Trường Đại học Vinh cũng như
để hoàn thành luận văn tốt nghiệp.


Vinh, tháng 9 năm 2013
Tác giả luận văn







- 2 -
MỤC LỤC
Trang
MỞ ĐẦU 3


Chương 1: Nửa phẳng Poincare

4
1.1. Đa tạp Riemann 2 chiều 4
1.2. Nửa phẳng Poincare

7
1.3. Đường trắc địa trên nửa phẳng Poincare

9
Chương 2: Hình học trên nửa phẳng Poincare

13
2.1. Các yếu tố của hình học phi Euclid 13
2.2. Một số tính chất khác trên nửa phẳng Poincare

15
2.3. Hình lồi trên nửa phẳng Poincare

33
KẾT LUẬN 36
TÀI LIỆU THAM KHẢO 37















- 3 -
I. MỞ ĐẦU
Hình học phi Euclid là bộ môn hình học dựa trên cơ sở phủ nhận ít nhất một
trong số những tiên đề Euclid. Hình học phi Euclid được bắt đầu bằng những công
trình nghiên cứu của Lobachevsky (được Lobachevsky gọi là hình học trừu tượng)
và phát triển bởi Bolyai, Gauss, Riamann.
Hình học Riemann ra đời từ nửa thế kỉ XIX và đã có nhiều ứng dụng trong
cơ học, vật lý học và các ngành khác của kỹ thuật. Nó được xem như một sự mở
rộng tự nhiên của hình học Lobasepki. Nửa phẳng Poincaré là một ví dụ đáng chú
ý của đa tạp Riemann 2- chiều. Với mô hình nửa phẳng Poincaré không những
hình học Lobasepki được công nhận mà loài người đã tiến được từ “ hình học vật
lý ’’ lên “hình học toán học’’.
Nửa phẳng Poincaré đã được trình bày trong một số tài liệu, giáo trình hình học
như: “Hình học vi phân’’ của Đoàn Quỳnh(2003), “Mở đầu hình học Riemann’’
của Nguyễn Hữu Quang và nhiều tài liệu khác về hình học Riemann và hình học
Lobasépki
Trong luận văn này, chúng tôi tìm hiểu về các tính chất của đa tạp Riemann,
trên cơ sở đó nghiên cứu các tính chất hình học trên nửa phẳng Poincaré, dùng mô
hình nửa phẳng Poincaré nghiên cứu các hệ tiên đề của hình học Lobasepski, diện
tích tam giác, các điều kiện bằng nhau của hai tam giác Lobasepski và các công
thức lượng giác Lobasepki. Nghiên cứu tính chất của hình lồi trên nửa phẳng
Poincare

. Với mong muốn tìm hiểu một số yếu tố của hình học Euclid, chúng tôi

chọn đề tài: " Hình học phi Euclid: Mô hình nửa phẳng Poincare


Luận văn được trình bày trong 2 chương:
Chương 1: Nửa phẳng Poincare


Trong chương này, chúng tôi trình bày định nghĩa và các khái niệm cơ bản của
đa tạp Riemann 2- chiều, xây dựng nửa phẳng và các tính chất của nửa phẳng
- 4 -
Poincaré, các kết quả cơ bản về đường trắc trên nửa phẳng Poincare

, các kiến thức
đó là kiến thức cơ sở cho chương tiếp theo.
Chương 2: Hình học trên nửa phẳng Poincaré
Trong chương này, chúng tôi trình bày các nội dung hình học trên nửa phẳng
Poincaré. Đây chính là nội dung chính của luận văn, tác giả trình bày một số yếu tố
của hình học phi Euclid, các định nghĩa và mệnh đề của hình học Lobsepki, hệ
thức lượng giác, diện tích tam giác và điều kiện bằng nhau của các tam giác
Lobasepki, đưa ra liên hệ giữa hình học Lobasepki và hình học Ơclit, nêu định
nghĩa và tính chất của hình lồi trên nửa phẳng Poincare

.
Luận văn được hoàn thành vào tháng 9 năm 2013 tại trường Đại học Vinh.
















- 5 -
CHƯƠNG 1: NỬA PHẲNG POINCARE


1.1. Đa tạp Rieman 2-chiều
1.1.1. Định nghĩa: Cho M là đa tạp khả vi 2-chiều. Một cấu trúc Rieman trên M là
ánh xạ g: p
p
g
; p

M.
Trong đó
p
g
thỏa mãn :
i,
p
g
là tích vô hướng trong
MT

p
.
ii, g phụ thuộc khả vi vào p ( nghĩa là g(X,Y)(p)=


ppp
YXg ,
và g là hàm khả
vi theo p).
M cùng với cấu trúc g xác định ở trên được gọi là đa tạp Rieman 2-chiều, kí hiệu
là M hay (M,g).
1.1.2. Ví dụ:
- Giả sử S là một mặt trong
3
E
=Oxyz. Với mỗi p

S ta đặt:


ppp
YXg ,
=
pp
YX .
. Khi đó S là đa tạp Rieman 2-chiều (ở đây
pp
YX .
là tích vô
hướng thông thường của

pp
YX ,
trong
.
3
E

- Nửa phẳng Poincaré (mục 1.2).
1.1.3. Liên thông Lêvi- Sivita trên đa tạp
Định nghĩa : Cho M là đa tạp Rieman 2-chiều.
Ánh xạ






 
YYX
MBMBMB
X


,
:

là một liên thông tuyến tính trên đa tạp M nếu thỏa mãn:
+)



ZYZY
XXX


+)
ZZZ
YXYX



+)
YY
XX







F (M).
+)




;. YYXY
XX







F(M) (trong đó F (M) ={

|
RM :

là hàm
khả vi).
- 6 -
Liên thông tuyến tính

được gọi là liên thông Lêvi- Sivita trên đa tạp


thỏa
mãn


XYYX
YX
,

0 g
z
.
1.1.4. Đường trắc địa trên đa tạp Rieman 2- chiều
Xét cung tham số trên đa tạp Rieman 2- chiều M tức ánh xạ (khả vi)

MJ

:

,
t



t

, J là khoảng mở trong R. Trường véc tơ dọc

là ánh xạ X:
 
MTI
t


;


 
MTtXt
t


.
Giả sử



21
,UU
là trường mục tiêu khả vi trên tập mở U chứa


t

, khi đó trong lân
cận J

I của trường véc tơ X dọc

có thể biểu diễn bởi :















tUttUttX


2211

trong đó
RJ :,
21


X được gọi là khả vi tại t nếu
21
,

khả vi tại t, X được gọi là khả vi nếu X khả vi
tại
It


.
1.1.4.1. Định nghĩa: Giả sử X là trường véc tơ dọc cung tham số
MJ

:

,
t



t


, ta xác định trường véc tơ
dt
X

như sau:
Với mỗi
It 
0
ta lấy trường trực chuẩn


21
,UU
trong một lân cận của


0
t

, ta
viết
















tUttUttX

2211


Đặt:
        
 
  


01020
1
2010
.''' tUtttt
dt
X


















02010
2
102
.''' tUttt



trong đó
2
1
1
2


là dạng liên kết của (M,g) trong trường mục tiêu đã chọn. Khi đó
dt
X

được gọi là đạo hàm của trường véc tơ X dọc


.
1.1.4.2. Định nghĩa: Giả thiết đường cong

trên đa tạp Rieman M được cho bởi
tham số hóa
MJ

:

(J là khoảng mở trong R và

khả vi ),
- 7 -

được gọi là đường trắc địa trên M nếu và chỉ nếu
0
'


dt

hay trường véc tơ
tiếp tuyến

’ là trường véc tơ song song dọc

.
Ví dụ: Đường trắc địa trong
2
R

là đường thẳng.
Chứng minh:
Giả sử

cho bởi

:[a;b]
2
R

t









txtxt
21
,


là một đường trong
2
R
.



là đường trắc địa 0
'



dt

 
0'0
'
 tx
dt
D
i





aaa
21
,'0'' 


Suy ra :


 







tatx
tatx
222
111
.




R



Vậy:

là đường thẳng.(đpcm)
1.1.4.3. Chú ý :

là đường trắc địa thì
'

là hằng .
Chứng minh:



0
'
'.'.
'','





dt
dt
dt
d





const


''.




ct  '

.
1.1.4.4. Định lý: Trong bản đồ địa phương





,U
trên M, ta giả sử








ttt
21
,


. Khi đó

trắc địa khi và chỉ khi :

ji
ji
k
jik

'''
,

,


=0;
2,1k

Chứng minh:

trắc địa

0
'


dt





2
1
2
1
.'.'.'
i
ii
i
ii
UU









2
1
2
1
.''.'.'
i
iUji
i
ii
UU
i

]=0,


 
 

2
1
2
1

2
1
2
1
)].'('.['.'
i
k
j
k
k
ij
j
i
i
ii
UU

,
2,1k

- 8 -

 











2
1
''''
k
k
k
ijik
U


2,1k



ji
ji
k
jik

'''
,
,


=0
2,1k


1.1.4.5. Hệ quả:
 Cho
MTRtMp
p


,,
0
. Khi đó có khoảng mở J chứa t
0
có đường
trắc địa

với tham số hóa
MJ

:











00
',, tpttt 


 Nếu có tham số hóa
MJ :

trắc địa và t
0
JJ 












0000
'', tttt
thì
JI
JI


 '


Chứng minh:

Thật vậy: Từ Định lý 1.1.4.4, ta có:
0
,
2
2


dt
d
dt
d
dt
d
j
i
ji
k
ii
k



Hệ phương trình trên tương đương với hệ phương trình vi
phân:











ji
jiii
k
k
k
yy
dt
dy
y
dt
dx
,
(ở đây




kk
yyxx ,
)
Áp dụng lý thuyết hệ phương trình vi phân cấp 1 trong
n
R
2
ta có Hệ quả
1.1.4.5.

1.2. Nửa phẳng Poincaré
1.2.1. Xây dựng nửa phẳng Poincaré
Xét M=




0|,
22
 yRyxpH
là đa tạp khả vi. Ta đưa vào tích vô hướng :



ppppp
YX
y
YXgpg .
1
,:
2

trong đó


2
, Hyxp 

Khi đó g là tích vô hướng trên H
2

ta có g
p
là tích vô hướng trên T
p
H
2
.
Ta kiểm tra các điều kiện sau :
- 9 -
*


ppp
XXg ,
=
pP
XX
y
.
1
2

=
2
2
1
p
X
y


p





ppp
XXg ,
=0

0
2

p
X




p
X
p





X
.
*) g

p
có tính chất giao hoán


ppppp
YX
y
YXg .
1
,
2


=
pp
XY
y
.
1
2
=


ppp
XYg ,
.
*) g
p
song tuyến tính




pppp
ZYXg ,
=
ppp
ZYX
y
).(
1
2

,
=
) (
1
2
pppp
ZYZX
y

,
=
pppp
ZY
y
ZX
y
.
1

.
1
22

,
=


ppp
ZXg ,
+


ppp
ZYg ,
.
Vậy: g
p
là tích vô hướng trên T
p
H
2
.
*) g khả vi
Thật vậy g(X
p
,Y
p
)=
pP

YX
y
.
1
2
=

i
ii
YX
y
.
1
2
(ở đây
ii
YX ,
là tọa độ của X,Y). Do
X,Y khả vi nên
ii
YX ,
khả vi


i
ii
YX
y
2
1

khả vi => g khả vi.
Vậy (H
2
,g) là đa tạp Rieman 2-chiều và được gọi là nửa phẳng Poincaré.
- 10 -
1.2.1.1. Định lý: Nếu


gM , là đa tạp Riemann 2-chiều thì có một và chỉ một hàm
số khả vi K trên M sao cho với trường đối mục tiêu


21
,

của trường mục tiêu
trực chuẩn


21
,UU
tuỳ ý trên tập mở V của M ta có: d
211
2

 K
(trong đó
1
2



dạng liên kết của


gM ,
)
1.2.1.2. Định nghĩa: Hàm K nói trên được gọi là độ cong Gauss của đa tạp
Riemann 2-chiều.
1.2.1.3. Mệnh đề: H
2
có độ cong Gauss hằng K=-1.
Chứng minh
Gọi


21
, EE
là trường mục tiêu song song tương ứng với hệ tọa độ Oxy trên R
2
,
khi đó
11
yEU 
,
22
yEU 
thì


21

,UU
là trường mục tiêu trực chuẩn trên H
2



21
,

với
y
dx

1

,
y
dy

2

là trường đối với mục tiêu


21
,UU
.
Ta có :
21
22

1
11
.0











 dydx
y
dxdy
y
dxd


11
2
2
0
1
.0












 dydy
y
dxd

Suy ra dạng liên kết của H
2
ứng với trường mục tiêu trực chuẩn


21
,UU

1
2

=
1


. Khi đó
2111
2


 dd
.
Từ đó H
2
có độ cong Gauss K=-1.
1.3. Đường trắc địa trên nửa phẳng Poincaré
1.3.1. Mệnh đề: Các đường trắc địa của H
2
là các đường thẳng song song với
trục Oy và các nửa đường tròn có tâm thuộc trục Ox.
Chứng minh :
Giả sử
2
: HJ 

(J là khoảng mở trong R và

khả vi )













tvttutt 
21
,

.

là đường cong trên
2
H
cho bởi tham số

.
Khi đó














tEtvtEtut


21
''' 

- 11 -
=


 
  


 
  
tU
tv
tv
tU
tv
tu

21
''














(U
11
yE
, U
22
yE
)
 
 
 
 
 
     
tUt
tv
tv
tv
tu
t
dt

1
1
2
'

'
''
'



















 
 
 
 
     
tUt
tv
tu

tv
tv

2
2
1
'
'
''



















=
 

 
 
 
 
 
  
tU
tv
tu
tv
tv
tv
tu

1
'
'''


















 
 
 
 
 
 
  
tU
tv
tu
tv
tu
tv
tv

2
'
'
''




















là đường trắc địa trên H
2
nếu và chỉ nếu:

 
 
 
 
 
 
 
 
   
 
 


























0
.
'.''
0
'''
'
'
tvtv

tutu
tv
tv
tv
tu
tv
tv
tv
tu












 




 
      
 
  

 











)2(0
''"
)1(0
'.''.'."
2
2
2
2
22
tv
tu
tv
tvtvtv
tv
tutv
tv
tutvtvtu


Chia cả hai vế (1) ,(2)cho v(t) và nhân 2 vế của (2) với 2 ta được hệ phương trình
tương đương:



 




 
 
 
  
 
  
 









)'2(0
'22.'"2
)'1(0
'.'2"

3
2
3
2
2
32
tv
tv
tv
tu
tv
tv
tv
tutv
tv
tu

Đặt
 
 
tE
tv

2
1
, lấy(2’) nhân với v’, (1’) nhân với 2u’ rồi cộng vế với vế ta được
hệ :

     








0'.'.'2"'2''''.'''".2
0''.'.''.
222
vuEEuuvuEvvEvEv
vuEuE
vvv
v



   







0'.'.'"'2'.'''".2
0''.'.''.
22
vuEEuuvvEvEv
vuEuE
vv

v

- 12 -




   
 





0'''
0''
22
uEvE
Eu


   
(*)
)''2(''
)"1('
1
22
2







cuEvE
cEu

Trong đó c
1
,
2
c
là các hằng số và ta thấy điều kiện (2”) tương đương với
0',''
11
 cc


Diễn tả cách khác :
(*)






dtcEdu
tdcEdvEdu
2
2

1
22










22
2
22
22
2
2
1
2
2
2
1
2
2
dtcduE
tdcEdv
c
c
Edu

c
c

Suy ra :
222222
duEEdvcEduc 
với c =
1
2
c
c




22222
Edudvcduc 




2222
ducEdvc 


222
1 vc
cv
cE
c

dv
du





Vậy




vvuv ,
là đường trắc địa

hàm số v


vu
thỏa mãn:

22
1 vc
cv
dv
du



Khi c=0: u là hàm hằng theo v tức


là nửa đường thẳng trực giao với trục hoành.
Khi c
0

: Đặt cv=sint thì ta có du=
tdt
c
sin
1

nên u-u
t
c
cos
1
0


Do đó
 
2
2
2
0
1
c
vuu  ,

là nửa đường tròn (vì v>0) trực giao với trục hoành.

1.3.2. Mệnh đề: Với bất kỳ hai điểm
2
21
, Hhh 
luôn có một đường trắc địa đi
qua.
- 13 -
O x
h1
h2


h
2

Chứng minh :
Trường hợp 1: Nếu
21
,hh
nằm trên nửa đường
thẳng song song với trục Oy thì đường trắc địa
đi qua
21
,hh
chính là đường thẳng

.

Hình1



Trường hợp 2: Nếu
21
,hh
không nằm ở Hình 2
vị trí như trường hợp 1 nghĩa là
21
,hh
nằm bất kì ở phía trên Ox
( trên nửa đường tròn có tâm thuộc trục Ox).

Nối
21
,hh
, dựng đường thẳng trung trực của
21
hh
cắt Ox tại I. Khi đó đường trắc
địa đi qua
21
,hh
chính là nửa đường tròn tâm I, bán kính Ih
2
.
1.3.3. Mệnh đề: Với một đường trắc địa g trong H
2
và một điểm A không nằm
trên g thì sẽ có vô hạn các đường trắc địa đi qua A và song song với g (hai đường
trắc địa trong H
2

gọi là song song nếu chúng không cắt nhau).
Chứng minh:
Trường hợp 1: Nếu đường trắc địa g là nửa đường thẳng (Ơclit) song song với
trục Oy thì khi đó qua A có một đường trắc địa (là nửa đường thẳng(Ơclit) song
song với trục Oy) và vô số các đường trắc địa (là nửa đường tròn Ơclit có tâm
thuộc trục Ox) không cắt g.
I
h
1

O
x

- 14 -
g
A

x






Hình 3
Trường hợp 2: Nếu đường trắc địa g là nửa đường tròn (Ơclit) có tâm thuộc trục
Ox thì khi đó qua A có một đường trắc địa là nửa đường thẳng (Ơclit) song song
với trục Oy và vô số các đường trắc địa là nửa đường tròn(Ơclit) có tâm thuộc
trục Ox không cắt g.






Hình 4
CHƯƠNG 2: HÌNH HỌC TRÊN MÔ HÌNH NỬA PHẲNG
POINCARE

2.1. Các yếu tố của hình học phi Euclid
2.1.1. Định đề thứ 5 của Euclid
2.1.1.1. Định đề thứ 5
Nếu hai góc trong cùng phía tạo
bởi một cát tuyến với hai đường thẳng
có tổng nhỏ hơn 180
0
thì hai đường
thẳng đó phải cắt nhau ở phía hai góc
trong nói trên đối với cát tuyến
g

A

O

x

- 15 -
(
Ibavu  
0

180
) Xem Tài liệu [6]
2.1.1.2. Định đề Euclid
Định đề của Euclid gây nhiều sự chú ý của các nhà toán học vì nội dung của
nó khá dài. Theo ngôn ngữ hiện nay thì định đề này có nội dung là:
"Qua một điểm ở ngoài một đường thẳng luôn có và chỉ có đúng một đường
thẳng song song với đường thẳng đã cho".
Ngoài ra có thể phát biểu định đề dưới các dạng sau:
 Nếu qua điểm M nằm ngoài đường thẳng a có 2 đường thẳng song song
với a thì chúng trùng nhau.
 Cho điểm M ở ngoài đường thẳng a. Đường thẳng đi qua M và song song
với a là duy nhất.
2.1.1.3. Chú ý
Định đề thứ 5 tương đương với định đề sau:
+, “ Tổng các góc trong mọi tam giác đều bằng 180
0

+, “ Qua một điểm nằm trong một góc có đường thẳng cắt hai cạnh của
góc”
2.1.2. Tính chất của hai đường thẳng song song
Nhờ định đề Euclid người ta suy ra tính chất sau: Nếu một đường thẳng cắt
hai đường thẳng song song thì:
1. Hai góc so le trong bằng nhau;
2. Hai góc đồng vị bằng nhau;
3. Hai góc trong cùng phía bù nhau.
- 16 -
Định lí 1: Trong không gian, qua một điểm không nằm trên đường thẳng cho trước
có một và chỉ một đường thẳng song song với đường thẳng đã cho
NX: Hai đường thẳng song song xác định một mặt phẳng
Định lí 2: (định lí giao tuyến của ba mặt phẳng)

Nếu 3 mặt phẳng phân biệt đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao
tuyến ấy hoặc đồng quy hoặc đôi một song song với nhau
Định lí 3: Hai đường thẳng phân biệt cùng song song với đưòng thẳng thứ ba thì
song song với nhau
Định lí 4: Nếu 2 mặt phẳng cắt nhau và cùng song song với một đường thẳng thì
giao tuyến của 2 mặt phẳng đó song song với đường thẳng đã cho
2.1.3. Sự ra đời của hình học phi Euclid
Nhiều nhà toán học nghi ngờ rằng Định đề Euclid là một định lý, nghĩa là có
thể suy ra từ các tiên đề khác và loay hoay tìm cách chứng minh nó. Nhưng không
một ai thành công. Đến thế kỷ thứ 19, hầu như đồng thời và độc lập với nhau, ba
nhà toán học ở Nga (Nikolai Ivanovich Lobachevsky), Đức (Carl Friedrich Gauss),
và Hungary (János Bolyai) đã đặt ra một tư duy mới mẻ: "Chứng minh rằng nó
không thể chứng minh được". Điều đó có nghĩa là ta có thể xây dựng một thứ hình
học khác, trong đó tiên đề thứ năm là không đúng. Cả ba người đều đạt được kết
quả. Từ đó ra đời hình học phi Euclid.
2.1.4. Hình học phi Euclid
Hình học phi Euclid là bộ môn hình học dựa trên cơ sở phủ nhận ít nhất
một trong số những tiên đề Euclid. Hình học phi Euclid được bắt đầu bằng những
công trình nghiên cứu của Lobachevsky (được Lobachevsky gọi là hình học trừu
tượng) và phát triển bởi Bolyai,Gauss, Riemann.
- 17 -
Hình học phi Euclid là cơ sở toán học cho lý thuyết tương đối của Albert Einstein,
thông qua việc đề cập đến độ cong hình học củakhông gian nhiều chiều.
Hình học Lobachevsky (còn gọi hình học hyperbolic) do nhà toán học Nga Nikolai
Ivanovich Lobachevsky khởi xướng, dựa trên cơ sở bác bỏ tiên đề về đường thẳng
song song. Lobachevsky giả thiết rằng từ một điểm ngoài đường thẳng ta có thể vẽ
được hơn một đường thẳng khác, nằm trên cùng mặt phẳng với đường thẳng gốc,
mà không giao nhau với đường thẳng gốc (đường thẳng song song). Từ đó, ông lập
luận tiếp rằng từ điểm đó, có thể xác định được vô số đường thẳng khác cũng song
song với đường thẳng gốc, từ đó xây dựng nên một hệ thống lập luận hình

học logic.
Để xem xét hình học Lobachevsky ứng dụng vào lý thuyết không-thời gian cong,
cần thiết phải xem lại khái niệm đường thẳng nối hai điểm. Trong lý thuyết tương
đối rộng, trong cơ học lượng tử và trong vật lý thiên văn, người ta mặc nhiên thừa
nhận đó là đường đi của tia sáng-sóng điện từ giữa hai điểm đó.
Trong hình học Euclid, tổng các góc trong của một tam giác bằng 180°, nhưng
trong hình học phi Euclid, tổng các góc đó không bằng 180°, và phụ thuộc
vào kích thước của tam giác đó.
Hình học Lobachevsky là hình học do ông xây dựng lên, từ ý tưởng không công
nhận tính thống nhất hệ thống các tiên đề do Euclide xây dựng. Khởi đầu, các nhà
toán học đương thời gọi hình học do ông xây dựng lên là hình học ảo, nhưng ngày
nay hình học Lobachevsky đã trở nên rất thực được kiểm chứng qua các kết quả
nghiên cứu thiên văn vũ trụ, và không gian Lobachevsky đã trở thành không gian
thực.
2.2. Một số tính chất khác trên nửa phẳng Poincare' .
2.2.1 Các định nghĩa
2.2.1.1. Điểm Lobasepki.
- 18 -
Gọi mỗi điểm của H
2
là một điểm Lob(viết tắt của Lobasepki).
2.2.1.2. Đường thẳng, đoạn thẳng Lobasepki.
Các nửa đường thẳng trong H
2
trực giao với Ox hay nửa đường tròn trong
H
2
trực giao với Ox (nghĩa là có tâm trên Ox ) là các đường thẳng Lob; mỗi cung
đoạn của nó là một đoạn thẳng Lob.
2.2.1.3. Góc Lobasepki.

Cho hai đường thẳng Lob cắt nhau tại một điểm. Góc giữa hai đường
thẳng đó là góc giữa hai tia Ơclit cùng tiếp xúc với các đường thẳng Lob tại điểm
đó.
2.2.1.4. Khoảng cách
2.2.1.4.1. Định nghĩa: Khoảng cách







lqp inf, 
, trong đó

là cung khả vi
từng khúc trong H
2
nối p, q.
2.2.1.4.2. Mệnh đề:


qp,

là một mêtric trên H
2
.
Chứng minh:
* Trường hợp 1: Giả sử p ,q, r thuộc đường thẳng (Ơclit) trực giao với Ox.
i): Ta có

 
1
2
ln,
t
t
qp 

.
 
1
2
ln,
2
1
1
2
t
t
t
dt
t
dt
pq
t
t
t
t




.
Suy ra




pqqp ,,


O x
ii)



qp, 0

(hiển nhiên). Hình 5




qp,
=0
12
1
2
1
2
10ln tt

t
t
t
t

hay p=q.
iii) Ta có






rtqtpt 
321
,,


 
1
2
ln,
t
t
qp 

,
 
21
3

ln,
t
t
rq 

,
 
1
3
ln,
t
t
rp 

.
p=


2t


q=


1t




3

tr



- 19 -
Suy ra


qp,



rq,


2
32
lnln
1
t
t
t
t

=ln
21
32
tt
tt




rp,

.
* Trường hợp 2: Giả sử p, q, r có hai trong ba điểm thuộc nửa đường tròn Ơclit
có tâm trên Ox và hai điểm còn lại thuộc nửa đường thẳng mở trực giao với Ox.
Giả sử rằng:


11110
sin,cos tRtRxp 
.



tRtRxq sin,cos
1110
 .



21223
sin,cos

RRxr 
.
Do q



11123
sin,cos

RRx 
, p


,,
11
sx
r


21
, sx
nên ta có :
i)




pqqp ,,

 = ln
2
2
2
1
t
tg

t
tg
.
ii)



qp, 0

.



qp,
=0
12
tt 
hay p= q.
iii) Ta có






rtqtpt 
321
,,



 
2/
2/
ln,
1
2



tg
tg
rq  ,
 
1
2
ln,
s
s
rp 

.
Với
2,12,121
,,,

sstt , ta liên hệ qua các hệ thức:







1211
113110
sinsin
coscos


RtR
RxtRx









121
1213
sin
cos
stR
xtRx










222
1223
sin
cos
sR
xRx



Từ đó ta có:


qp,



rq,

ln
2
2
1
2
t
tg
t

tg
+ ln
2
2
1
2


tg
tg
=ln
2
2
1
2
t
tg
t
tg
.
2
2
1
2


tg
tg

- 20 -

=ln
2
cos
2
cos
2
sin
2
sin
2
cos
2
cos
2
sin
2
sin
1211
1122



tt
tt

=ln






































2
2
1
2
1
2
21
21
2
cos
2
cos
2
sin
2
sin
sinsin
sinsin




t
t
t
t
.
Do

12
tt 

12


nên 1
2
cos
2
cos
2
sin
2
sin
2
2
1
2
1
2









































t
t
.
Suy ra


qp,



rq,

>ln
 
rp
s
s
R
R
t
t
,ln
sin
sin
ln
sinsin
sinsin
1
2
11

22
12
21






.
Giả sử f là phép đẳng cự biến cung qr thành cung dạng a, khi đó pr và pq là
cung dạng b. Ta có


qp,



rq,

>


rp,

.
Tương tự, phép đẳng cự g biến cung qp thành cung dạng a, khi đó pr và qr là
hai cung dạng b. Ta có



qr,



rq,

>


pq,

.
* Trường hợp 3: Giả sử p, q, r là ba điểm thuộc nửa đường tròn Ơclit có tâm trên
Ox (cung dạng b).
Do luôn tồn tại phép đẳng cự biến cung dạng b thành cung dạng a nên theo
trường hợp 2 ta có i, ii, iii.
Vậy


qp,

là một mêtric trên H
2
.
Đường dạng a là ảnh của nửa đường thẳng mở trực giao với Ox và đường dạng b
là ảnh của nửa đường tròn mở trực giao với Ox.
2.2.1.4.3. Mệnh đề: Trong H
2
, khoảng cách



qp,

bằng độ dài của đoạn pq (khi
p, q thuộc ảnh của nửa đường thẳng mở trực giao với Ox) hoặc bằng độ dài cung
pq (khi p, q thuộc ảnh của nửa đường tròn mở trực giao với Ox).
Chứng minh:
- 21 -
+) Khi p,q thuộc cung dạng a (tức là ảnh của nửa đường thẳng mở trực giao với Ox
), độ dài cung đoạn


2,1
tt

nối p=


1
t

với q=


2
t

(t
1
<

2
t
) đó là cận dưới của độ
dài cung đoạn nhẵn trong H
2
nối p, q. Coi cung này xác định bởi tham số
s

(x(s),y(s)) với r


ps 
1
; r


qs 
2



21
ss 
thì độ dài cung đoạn r


21
, ss
bằng :
   

 


 
 
 



2
1
2
1
2
1
'
''
2
22
sy
sy
s
s
s
s
y
dy
ds
sy
sy

ds
sy
sysx
=


21
,tt

.
+) Khi p, q thuộc ảnh của nửa đường tròn mở trực giao với Ox (cung dạng b), lúc
đó tồn tại phép đẳng cự f biến cung dạng b thành cung dạng a (xem


6
).


';'':

fqppqf 
(
',


lần lượt là cung nối p với q; p’ với q’).
Ta có độ dài cung pq bằng độ dài cung p’q’’





'
(do f đẳng cự và p’q’ là cung
dạng a) (đpcm).
2.2.1.4.4. Mệnh đề:
Với một đường thẳng Lobasepki qua p,q bất kỳ trên H
2
ta có:
a) Nếu đường thẳng Lobasepki đó là nửa đường thẳng (Ơclit) mút r (r thuộc
trục hoành) trong H
2
thì


qp,

=
rq
rp


ln
.
b) Nếu đường thẳng Lobasepki đó là nửa đường tròn (Ơclit) mút r,s (r,s thuộc
trục hoành ) trong H
2
thì




qp,

=




 
sprq
sqrp


)(
ln
.
Chứng minh: Coi H
2
=


0Im|  zCz
.
Với 4 số phức phân biệt p, q, r, s, tỉ số kép của chúng kí hiệu


srqp ,,,
là:

sp
rp



:
sq
rq


(xem[7] ).
a) Xét cung đoạn trên H
2
xác định bởi tham số:








ttyxtxtRt 

,
0


.
Ta có :


0,

0
xr
;


10
,txp
;


20
,txq

- 22 -
p-r=


1
,0 t ; q-r=


2
,0 t .
Vì p, q, r là các số phức nên p-r=t
1
i ; q-r=t
2
i. Khi đó:




qp,

=
2
1
ln
t
t
=
rq
rp


ln .
b) Xét cung trong H
2
xác định bởi tham số hóa:








tRtytRxtxtt sin,cos0
0



 (R>0 cho trước).
Ta có :


110
sin,cos tRtRxp  ,



220
sin,cos tRtRxq  ,
s


0,
0
Rx  ,
r


0,
0
Rx  ,



11
sin,cos tRtRRrp 
,




11
sin,cos tRtRRsp  ,



22
sin,cos tRtRRrq 
,



22
sin,cos tRtRRsq 
.




 
sprq
sqrp


)(
ln
=
rq
sq

sp
rp




.ln
=
22
22
11
11
sincos1
sin1cos
.
sincos1
sincos1
ln
tit
tit
tit
tit





=

 1cos

sin
1cos
sin
ln
2
2
1
1
t
ti
t
ti

 1cos
sin
cos1
sin
ln
2
2
1
1
t
t
t
t
2
cos2
2
cos

2
sin2
2
sin2
2
cos
2
sin2
ln
2
2
22
1
2
11
t
tt
t
tt

=
2
cos
2
sin
2
sin
2
cos
ln

2
2
1
1
t
t
t
t
=
2
tan
2
cotln
21
tt
=
2
tan
2
tan
ln
1
2
t
t
=


qp,


.
Vậy :


qp,

=




 
sprq
sqrp


)(
ln
.


- 23 -
2.2.2 Các mệnh đề của hình học Lobasepki
2.2.2.1. Mệnh đề: Qua hai điểm Lobasepki phân biệt có duy nhất một đường
thẳng Lobasepki .
Chứng minh:

* Trường hợp 1: Nếu p, q nằm trên đường
thẳng trực giao với Ox thì đường thẳng
duy nhất là đường thẳng dạng a.


Hình 6
* Trường hợp 2: Nếu p, q không nằm ở vị trí như trường hợp 1, nghĩa
là p, q bất kì nằm phía trên Ox.
Nối p, q và dựng đường thẳng trung trực của đoạn
pq cắt Ox ở đâu thì đó chính là tâm của
đường tròn trực giao với Ox hay là nửa
đường thẳng dạng b.
Vậy: Qua hai điểm Lobasepki phân biệt có duy nhất Hình 7
một đường thẳng Lobasepki .

2.2.2.2. Mệnh đề: Qua một điểm Lobasepki ở ngoài đường thẳng Lobasepki có
nhiều hơn một đường thẳng Lobasepki không cắt đường thẳng Lobasepki đã cho .




Chứng minh:
* Trường hợp 1:
Nếu cho đường thẳng Lobasepki


dạng a (tức là ảnh của nửa đường thẳng mở
trực giao với Ox) và điểm A không thuộc

, có vô số Hình 8
đường thẳng dạng b và một đường thẳng dang a không cắt

.


A
O x
p
q

O

x

q

p
O

x

- 24 -
O

A
x


A

O


* Trường hợp 2: Nếu cho đường thẳng
Lobasepki


có dạng b
(tức là ảnh của nửa đường tròn mở
trực giao với Ox và điểm A không thuộc

,
có vô số đường thẳng dạng b và một đường
thẳng dang a không cắt

.
Hình 9
2.2.2.3. Mệnh đề: Qua một điểm Lobasepki có duy nhất một đường thẳng
Lobasepki vuông góc với đường thẳng cho trước.
Chứng minh :
*Trường hợp 1: Đường thẳng Lobasepki

có dạng a (tức là ảnh của nửa
đường thẳng mở trực giao với Ox) . Khi đó:
+) Nếu A


thì đường thẳng duy nhất qua A
và vuông góc với

là đường thẳng
Lobasepki có dạng b (tức là ảnh của
nửa đường tròn mở trực giao với Ox).

Hình 10


+) Nếu A


thì đường thẳng
duy nhất qua A và vuông góc với


là đường thẳng Lobasepki có dạng b
(tức là ảnh của nửa đường tròn mở trực giao với Ox).
Hình 11

A



O
x
- 25 -
*Trường hợp 2: Đường thẳng Lobasepki

có dạng b (tức là ảnh của nửa đường
tròn mở trực giao với Ox) . Khi đó:
+) Nếu A


và A là điểm chính giữa của


thì duy nhất đường Lobasepki dạng a
(tức là ảnh của nửa đường thẳng mở

trực giao với Ox) vuông góc

.

Hình 12
+) Nếu A


và A không phải là điểm
chính giữa của

thì tồn tại duy nhất đường
Lobasepki
1

dạng b (tức là ảnh của nửa
đường tròn mở trực giao với Ox) vuông góc

.
1

là nửa đường tròn (Ơclit) tâm I
1
, bán
kính I
1
A.
Đường thẳng Lobasepki đó xác định như sau: Hình 13

Qua A kẻ tiếp tuyến với


cắt Ox tại một điểm chính là tâm I
1
của
đường thẳng dạng b vuông góc với

.
2.2.2.4. Mệnh đề: Tồn tại và duy nhất một đường thẳng Lobasepski vuông góc với
hai đường thẳng Lobasepski cho trước.
Chứng minh:
Trường hợp 1: Nếu hai đường thẳng Lob phân biệt cho trước là hai đường dạng a
(ảnh của nửa đường thẳng mở trực giao với Ox) thì không tồn tại đường thẳng Lob
x


1


A
O x I


A 1


O

I

I

1

x

×